
Amazon SageMaker
Developer Guide

Amazon SageMaker Developer Guide

Amazon SageMaker: Developer Guide
Copyright © 2019 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon SageMaker Developer Guide

Table of Contents
What Is Amazon SageMaker? 1

Are You a First-time User of Amazon SageMaker? 1
How It Works 2

Machine Learning with Amazon SageMaker 2
How It Works: Next Topic ... 3

Explore and Preprocess Data 4
How It Works: Next Topic ... 4

Model Training 4
How It Works: Next Topic ... 7

Model Deployment 7
Hosting Services 7
Batch Transform 10
Validating Models ... 11
Programming Model ... 12

Set Up Amazon SageMaker 14
Step 1: Create an AWS Account 14
Step 2: Create an IAM Administrator User and Group 14

Get Started 16
Step 1: Create an Amazon S3 Bucket 17

Next Step 17
Step 2: Create an Amazon SageMaker Notebook Instance 17

Next Step 18
Step 3: Create a Jupyter Notebook 18

.... 19
Step 4: Download, Explore, and Transform Data 19

Step 4.1: Download the Dataset ... 19
Step 4.2: Explore the Dataset ... 20
Step 4.3: Transform Dataset and Upload to S3 21

Step 5: Train a Model ... 21
Choose the Training Algorithm 22
Create and Run a Training Job (Amazon SageMaker Python SDK) 22
Create and Run a Training Job (AWS SDK for Python (Boto 3)) ... 23

Step 6: Deploy the Model ... 26
Step 6.1: Hosting Services 26
Step 6.2: Batch Transform 28

Step 7: Validate the Model ... 30
Step 7.1: Validate a Model Deployed to Amazon SageMaker Hosting Services 30
Step 7.2: Validate a Model Deployed with Batch Transform 33

Step 8: Clean Up 35
Step 9: Integrating Amazon SageMaker Endpoints into Internet-facing Applications 35

Using Notebook Instances 36
Create a Notebook Instance 36
Access Notebook Instances 39

Control Root Access to a Notebook Instance 40
Customize a Notebook Instance 40

Lifecycle Configuration Best Practices 41
Use Example Notebooks 42

Use or View Example Notebooks in Jupyter Classic ... 42
Use or View Example Notebooks in Jupyterlab 43

Notebook Instance Software Updates 44
Set the Notebook Kernel ... 44
Install External Libraries and Kernels in Notebook Instances 45

Maintain a Sandboxed Python Environment 45
Associate Git Repositories with Amazon SageMaker Notebook Instances 46

iii

Amazon SageMaker Developer Guide

Add a Git Repository to Your Amazon SageMaker Account 47
Create a Notebook Instance with an Associated Git Repository 49
Associate a CodeCommit Repository in a Different AWS Account with a Notebook Instance 51
Use Git Repositories in a Notebook Instance 52

Get Notebook Instance Metadata 54
Monitor Jupyter Logs in Amazon CloudWatch Logs 54

Build a Model ... 56
Use Built-in Algorithms 56

Common Information 58
BlazingText 74
DeepAR Forecasting 83
Factorization Machines 98
Image Classification Algorithm 108
IP Insights ... 131
K-Means Algorithm 141
K-Nearest Neighbors (k-NN) Algorithm 148
Latent Dirichlet Allocation (LDA) 157
Linear Learner Algorithm 162
Neural Topic Model (NTM) Algorithm 177
Object2Vec 183
Object Detection Algorithm 199
Principal Component Analysis (PCA) Algorithm 222
Random Cut Forest (RCF) Algorithm 226
Semantic Segmentation 234
Sequence to Sequence (seq2seq) ... 242
XGBoost Algorithm 255

Train a Model ... 276
Monitor and Analyze Training Jobs Using Metrics ... 276

Sample Notebooks 276
Defining Training Metrics ... 277
Monitoring Training Job Metrics (Console) ... 279
Monitoring Training Job Metrics (Amazon SageMaker Console) ... 279
Example: Viewing a Training and Validation Curve 281

Incremental Training 282
Perform Incremental Training (Console) ... 283
Perform Incremental Training (API) ... 285

Managed Spot Training 287
Using Managed Spot Training 287
Managed Spot Training Lifecycle 288

Using Checkpoints ... 288
Automatic Model Tuning 288

How Hyperparameter Tuning Works 289
Define Metrics ... 290
Define Hyperparameter Ranges 292
Example: Hyperparameter Tuning Job 293
Stop Training Jobs Early ... 302
Run a Warm Start Hyperparameter Tuning Job 303
Automatic Model Tuning Resource Limits ... 307
Best Practices for Hyperparameter Tuning 308

Using Augmented Manifest Files ... 308
Augmented Manifest File format 309
Augmented Manifest File format 310
Use an Augmented Manifest File (Console) ... 310
Use an Augmented Manifest File (API) ... 311

Deploy a Model ... 313
Prerequisites ... 313
What do you want to do? 313

iv

Amazon SageMaker Developer Guide

Manage Model Deployments 313
Deploy Your Own Inference Code 314
Guide to Amazon SageMaker 314
Inference Pipelines 314

Sample Notebooks 315
Process Features with Spark ML and Scikit-learn 315
Create a Pipeline Model ... 316
Real-time Inference 318
Batch Transform 320
Logs and Metrics ... 321
Troubleshooting 326

Compile and Deploy Models with Neo 328
Sample Notebooks 329
Compile Models ... 329
Deploy Models ... 334
Request Inferences 342
Troubleshoot Errors ... 342

Batch Transform 348
Use Batch Transform with Large Datasets ... 349
Speed Up a Batch Transform Job 350
Use Batch Transform to Test Production Variants ... 350
Batch Transform Errors ... 350
Sample Notebooks 350
Associate Prediction Results with Input 351

Elastic Inference 355
How EI Works 356
Choose an EI Accelerator Type 356
Use EI in a Amazon SageMaker Notebook Instance 356
Use EI on a Hosted Endpoint ... 357
Frameworks that Support EI ... 357
Use EI with Amazon SageMaker Built-in Algorithms 357
EI Sample Notebooks 357
Set Up to Use EI ... 358
Attaching EI to a Notebook Instance 361
Endpoints with Elastic Inference 363

Automatically Scale Amazon SageMaker Models ... 365
Automatic Scaling Components 366
Before You Begin 368
Related Topics ... 369
Configure Automatic Scaling for a Production Variant 369
Edit a Scaling Policy 375
Delete a Scaling Policy 375
Update Endpoints that Use Automatic Scaling 377
Load Testing 377
Additional Considerations 378

Troubleshoot 380
CPU Detection Errors with a JVM 380

Best Practices 381
Deploy Multiple Instances 381

Hosting Instance Storage Volumes 381
Use Your Own Algorithms or Models ... 384

Scenarios and Guidance 384
Docker Container Basics ... 385
Amazon SageMaker Containers ... 386

Environmental Variables - Entrypoints ... 388
Environmental Variables - User Scripts ... 389
Environmental Variable - Reference 392

v

Amazon SageMaker Developer Guide

Get Information for a Script ... 395
Get Started with Containers ... 396
Pre-built Docker Images - Deep Learning 398
Pre-built Docker Images - Scikit-learn and Spark ML 401
Example Notebooks 402
Use Your Own Training Algorithms 404

Run Your Training Image 404
Provide Training Information 405
Signal Success or Failure 407
Training Output 408

Use Your Own Inference Code 408
With Hosting Services 408
With Batch Transform 411

Create Algorithm and Model Package Resources 413
Create an Algorithm Resource 413
Create a Model Package Resource 417

Use Algorithm and Model Package Resources 419
Use an Algorithm to Run a Training Job 420
Use an Algorithm to Run a Hyperparameter Tuning Job 423
Use a Model Package to Create a Model ... 425

Amazon SageMaker in AWS Marketplace 428
Topics ... 428
Amazon SageMaker Algorithms 428
Amazon SageMaker Model Packages 428
Sell Amazon SageMaker Algorithms and Model Packages 429

Topics ... 429
Develop Algorithms and Models in Amazon SageMaker 429
List Your Algorithm or Model Package on AWS Marketplace 431

Find and Subscribe to Algorithms and Model Packages on AWS Marketplace 431
Use Algorithms and Model Packages 432

Manage ML Experiments with Amazon SageMaker Model Tracking Capability ... 433
Sample Notebooks 433
Use Model Tracking to Find, Organize, and Evaluate Training Jobs (Console) ... 434

Use Tags to Track Training Jobs (Console) ... 434
Find Training Jobs (Console) ... 435
Evaluate Models Returned by a Search (Console) ... 435

Use Model Tracking to Find and Evaluate Training Jobs (API) ... 436
Use Search to Find Training Jobs Tagged with Specific Values (API) ... 436
Evaluate Models (API) ... 436
Get Suggestions for a Search (API) ... 437

Verify the Contents of Your Training Jobs 438
Trace the Lineage of your Models ... 438

Use Single-click on the Amazon SageMaker Console to Trace the Lineage of Your Models
(Console) ... 438
Use Code to Trace the Lineage of Your Models (API) ... 439

Use Machine Learning Frameworks with Amazon SageMaker 440
Using Apache Spark 440

Download the Amazon SageMaker Spark Library 440
Integrate Your Apache Spark Application with Amazon SageMaker 441
Example 1: Amazon SageMaker with Apache Spark 442
Additional Examples: Amazon SageMaker with Apache Spark 449

Using TensorFlow 449
Use TensorFlow Version 1.11 and Later ... 449
Use TensorFlow Legacy Mode for Versions 1.11 and Earlier ... 450

Using Apache MXNet 450
What do you want to do? 450

Using Scikit-learn 451

vi

Amazon SageMaker Developer Guide

What do you want to do? 451
Using PyTorch 451

What do you want to do? 451
Using Chainer ... 452

What do you want to do? 452
Use SparkML Serving 453

Reinforcement Learning with Amazon SageMaker RL 454
Why is Reinforcement Learning Important? ... 454
Markov Decision Process (MDP) 454
Key Features of Amazon SageMaker RL 455
Sample RL Workflow Using Amazon SageMaker RL 457
RL Environments in Amazon SageMaker 458

Use OpenAI Gym Interface for Environments in Amazon SageMaker RL 459
Use Open Source Environments 459
Use Commercial Environments 459

Distributed Training with Amazon SageMaker RL 459
Hyperparameter Tuning with Amazon SageMaker RL 460

Monitoring 461
Monitoring with CloudWatch 461
Logging with CloudWatch 466
Log Amazon SageMaker API Calls with AWS CloudTrail .. 467

Amazon SageMaker Information in CloudTrail .. 468
Operations Performed by Automatic Model Tuning 468
Understanding Amazon SageMaker Log File Entries ... 468

React to Amazon SageMaker Job Status Changes with CloudWatch Events 470
Security ... 471

Data Protection 471
Protecting Data at Rest Using Encryption 472
Protecting Data in Transit with Encryption 473
Key Management 475
Internetwork Traffic Privacy 475

Identity and Access Management 475
Audience 475
Authenticating With Identities ... 476
Managing Access Using Policies ... 478
How Amazon SageMaker Works with IAM 479
Identity-Based Policy Examples 481
Amazon SageMaker Roles 496
AWS Managed (Predefined) Policies for Amazon SageMaker 507
Amazon SageMaker API Permissions Reference 508
Troubleshooting 512

Logging and Monitoring 514
Compliance Validation 514
Resilience 515
Infrastructure Security ... 515

Connect a Notebook Instance to Resources in a VPC 516
Training and Inference Containers Run in Internet-Free Mode 516
Amazon SageMaker Scans AWS Marketplace Training and Inference Containers for Security
Vulnerabilities ... 517
Connect to Amazon SageMaker Through a VPC Interface Endpoint ... 517
Give Amazon SageMaker Training Jobs Access to Resources in Your Amazon VPC 522
Give Amazon SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC 525
Give Batch Transform Jobs Access to Resources in Your Amazon VPC 529

Amazon SageMaker Ground Truth 532
Are You a First-time User of Ground Truth? 532
Getting started 533

Step 1: Before You Begin 533

vii

Amazon SageMaker Developer Guide

Step 2: Create a Labeling Job 534
Step 3: Select Workers ... 535
Step 4: Configure the Bounding Box Tool. .. 535
Step 5: Monitoring Your Labeling Job 536

Data Labeling 537
Batches for Labeling Tasks 537
Annotation Consolidation 537
Using Automated Data Labeling 539
Chaining labeling jobs 540

Using Input and Output Data 543
Input Data 543
Output Data 545

Creating Instruction Pages 549
Short Instructions 550
Full Instructions 551
Add example images to your instructions 551

Managing Your Workforce 551
Using the Amazon Mechanical Turk Workforce 552
Managing Vendor Workforces 553
Managing a Private Workforce 553
Create and manage Amazon SNS topics for your work teams 556

Creating Custom Labeling Workflows 557
Next 557
Step 1: Setting up your workforce 557
Step 2: Creating your custom labeling task template 558
Demo: Image Annotation with crowd-bounding-box . 563
Demo: Text Intent with crowd-classifier . 567
Step 3: Processing with AWS Lambda 574
Custom Workflows via the API ... 577
HTML Elements Reference 577

Limits and Supported Regions 615
API Reference 616

Actions 616
Amazon SageMaker Service 618
Amazon SageMaker Runtime 852

Data Types 856
Amazon SageMaker Service 859
Amazon SageMaker Runtime 1041

Common Errors ... 1041
Common Parameters ... 1043

Document History 1045
AWS Glossary 1047

viii

Amazon SageMaker Developer Guide
Are You a First-time User of Amazon SageMaker?

What Is Amazon SageMaker?
Amazon SageMaker is a fully managed machine learning service. With Amazon SageMaker, data
scientists and developers can quickly and easily build and train machine learning models, and then
directly deploy them into a production-ready hosted environment. It provides an integrated Jupyter
authoring notebook instance for easy access to your data sources for exploration and analysis, so you
don't have to manage servers. It also provides common machine learning algorithms that are optimized
to run efficiently against extremely large data in a distributed environment. With native support for
bring-your-own-algorithms and frameworks, Amazon SageMaker offers flexible distributed training
options that adjust to your specific workflows. Deploy a model into a secure and scalable environment by
launching it with a single click from the Amazon SageMaker console. Training and hosting are billed by
minutes of usage, with no minimum fees and no upfront commitments.

This is a HIPAA Eligible Service. For more information about AWS, U.S. Health Insurance Portability and
Accountability Act of 1996 (HIPAA), and using AWS services to process, store, and transmit protected
health information (PHI), see HIPAA Overview.

Are You a First-time User of Amazon SageMaker?
If you are a first-time user of Amazon SageMaker, we recommend that you do the following:

1. Read How Amazon SageMaker Works (p. 2) – This section provides an overview of Amazon
SageMaker, explains key concepts, and describes the core components involved in building AI solutions
with Amazon SageMaker. We recommend that you read this topic in the order presented.

2. Read Get Started (p. 16) – This section explains how to set up your account and create your first
Amazon SageMaker notebook instance.

3. Try a model training exercise – This exercise walks you through training your first model. You use
training algorithms provided by Amazon SageMaker. For more information, see Get Started (p. 16).

4. Explore other topics – Depending on your needs, do the following:
• Submit Python code to train with deep learning frameworks – In Amazon SageMaker, you can use

your own training scripts to train models. For information, see Use Machine Learning Frameworks
with Amazon SageMaker (p. 440).

• Use Amazon SageMaker directly from Apache Spark – For information, see Use Apache Spark with
Amazon SageMaker (p. 440).

• Use Amazon AI to train and/or deploy your own custom algorithms – Package your custom
algorithms with Docker so you can train and/or deploy them in Amazon SageMaker. See Use Your
Own Algorithms or Models with Amazon SageMaker (p. 384) to learn how Amazon SageMaker
interacts with Docker containers, and for the Amazon SageMaker requirements for Docker images.

5. See the API Reference (p. 616) – This section describes the Amazon SageMaker API operations.

1

https://aws.amazon.com/compliance/hipaa-compliance/

Amazon SageMaker Developer Guide
Machine Learning with Amazon SageMaker

How Amazon SageMaker Works
Amazon SageMaker is a fully managed service that enables you to quickly and easily integrate machine
learning-based models into your applications. This section provides an overview of machine learning
and explains how Amazon SageMaker works. If you are a first-time user of Amazon SageMaker, we
recommend that you read the following sections in order:

Topics
• Machine Learning with Amazon SageMaker (p. 2)
• Explore and Preprocess Data (p. 4)
• Train a Model with Amazon SageMaker (p. 4)
• Deploy a Model in Amazon SageMaker (p. 7)

How It Works: Next Topic

Machine Learning with Amazon SageMaker (p. 2)

Machine Learning with Amazon SageMaker
This section describes a typical machine learning workflow and summarizes how you accomplish those
tasks with Amazon SageMaker.

In machine learning, you "teach" a computer to make predictions, or inferences. First, you use an
algorithm and example data to train a model. Then you integrate your model into your application to
generate inferences in real time and at scale. In a production environment, a model typically learns from
millions of example data items and produces inferences in hundreds to less than 20 milliseconds.

The following diagram illustrates the typical workflow for creating a machine learning model:

As the diagram illustrates, you typically perform the following activities:

1. Generate example data—To train a model, you need example data. The type of data that you need
depends on the business problem that you want the model to solve (the inferences that you want

2

Amazon SageMaker Developer Guide
How It Works: Next Topic

the model to generate). For example, suppose that you want to create a model to predict a number
given an input image of a handwritten digit. To train such a model, you need example images of
handwritten numbers.

Data scientists often spend a lot of time exploring and preprocessing, or "wrangling," example data
before using it for model training. To preprocess data, you typically do the following:

a. Fetch the data— You might have in-house example data repositories, or you might use datasets
that are publicly available. Typically, you pull the dataset or datasets into a single repository.

b. Clean the data—To improve model training, inspect the data and clean it as needed. For example, if
your data has a country name attribute with values United States and US, you might want to
edit the data to be consistent.

c. Prepare or transform the data—To improve performance, you might perform additional data
transformations. For example, you might choose to combine attributes. If your model predicts the
conditions that require de-icing an aircraft, instead of using temperature and humidity attributes
separately, you might combine those attributes into a new attribute to get a better model.

In Amazon SageMaker, you preprocess example data in a Jupyter notebook on your notebook
instance. You use your notebook to fetch your dataset, explore it, and prepare it for model training.
For more information, see Explore and Preprocess Data (p. 4). For more information about
preparing data in AWS Marketplace, see data preparation.

2. Train a model—Model training includes both training and evaluating the model, as follows:

• Training the model— To train a model, you need an algorithm. The algorithm you choose depends
on a number of factors. For a quick, out-of-the-box solution, you might be able to use one of
the algorithms that Amazon SageMaker provides. For a list of algorithms provided by Amazon
SageMaker and related considerations, see Use Amazon SageMaker Built-in Algorithms (p. 56).

You also need compute resources for training. Depending on the size of your training dataset and
how quickly you need the results, you can use resources ranging from a single general-purpose
instance to a distributed cluster of GPU instances. For more information, see Train a Model with
Amazon SageMaker (p. 4).

• Evaluating the model—After you've trained your model, you evaluate it to determine whether the
accuracy of the inferences is acceptable. In Amazon SageMaker, you use either the AWS SDK for
Python (Boto) or the high-level Python library that Amazon SageMaker provides to send requests to
the model for inferences.

You use a Jupyter notebook in your Amazon SageMaker notebook instance to train and evaluate
your model.

3. Deploy the model— You traditionally re-engineer a model before you integrate it with your
application and deploy it. With Amazon SageMaker hosting services, you can deploy your model
independently, decoupling it from your application code. For more information, see Deploy a Model on
Amazon SageMaker Hosting Services (p. 7).

Machine learning is a continuous cycle. After deploying a model, you monitor the inferences, collect
"ground truth," and evaluate the model to identify drift. You then increase the accuracy of your
inferences by updating your training data to include the newly collected ground truth. You do this by
retraining the model with the new dataset. As more and more example data becomes available, you
continue retraining your model to increase accuracy.

How It Works: Next Topic
Explore and Preprocess Data (p. 4)

3

https://aws.amazon.com/marketplace/search/results?searchTerms=data+preparation&spellCheck=false&page=1

Amazon SageMaker Developer Guide
Explore and Preprocess Data

Explore and Preprocess Data
Before using a dataset to train a model, data scientists typically explore and preprocess it. For example,
in one of the exercises in this guide, you use the MNIST dataset, a commonly available dataset of
handwritten numbers, for model training. Before you begin training, you transform the data into a
format that is more efficient for training. For more information, see Step 4.3: Transform the Training
Dataset and Upload It to Amazon S3 (p. 21).

To preprocess data use one of the following methods:

• Use a Jupyter notebook on an Amazon SageMaker notebook instance. You can also use the notebook
instance to do the following:

• Write code to create model training jobs

• Deploy models to Amazon SageMaker hosting

• Test or validate your models

For more information, see Use Notebook Instances (p. 36)

• You can use a model to transform data by using Amazon SageMaker batch transform. For more
information, see Step 6.2: Deploy the Model with Batch Transform (p. 28).

How It Works: Next Topic
Train a Model with Amazon SageMaker (p. 4)

Train a Model with Amazon SageMaker
The following diagram shows how you train and deploy a model with Amazon SageMaker:

4

Amazon SageMaker Developer Guide
Model Training

The area labeled Amazon SageMaker highlights the two components of Amazon SageMaker: model
training and model deployment.

To train a model in Amazon SageMaker, you create a training job. The training job includes the following
information:

• The URL of the Amazon Simple Storage Service (Amazon S3) bucket where you've stored the training
data.

• The compute resources that you want Amazon SageMaker to use for model training. Compute
resources are ML compute instances that are managed by Amazon SageMaker.

• The URL of the S3 bucket where you want to store the output of the job.
• The Amazon Elastic Container Registry path where the training code is stored. For more information,

see Common Parameters for Built-In Algorithms (p. 58).

You have the following options for a training algorithm:

• Use an algorithm provided by Amazon SageMaker—Amazon SageMaker provides training
algorithms. If one of these meets your needs, it's a great out-of-the-box solution for quick model

5

Amazon SageMaker Developer Guide
Model Training

training. For a list of algorithms provided by Amazon SageMaker, see Use Amazon SageMaker Built-in
Algorithms (p. 56). To try an exercise that uses an algorithm provided by Amazon SageMaker, see
Get Started (p. 16).

• Use Apache Spark with Amazon SageMaker—Amazon SageMaker provides a library that you can
use in Apache Spark to train models with Amazon SageMaker. Using the library provided by Amazon
SageMaker is similar to using Apache Spark MLLib. For more information, see Use Apache Spark with
Amazon SageMaker (p. 440).

• Submit custom code to train with deep learning frameworks—You can submit custom Python code
that uses TensorFlow or Apache MXNet for model training. For more information, see Use TensorFlow
with Amazon SageMaker (p. 449) and Use Apache MXNet with Amazon SageMaker (p. 450).

• Use your own custom algorithms—Put your code together as a Docker image and specify the registry
path of the image in an Amazon SageMaker CreateTrainingJob API call. For more information, see
Use Your Own Algorithms or Models with Amazon SageMaker (p. 384).

• Use an algorithm that you subscribe to from AWS Marketplace—For information, see Find and
Subscribe to Algorithms and Model Packages on AWS Marketplace (p. 431).

After you create the training job, Amazon SageMaker launches the ML compute instances and uses the
training code and the training dataset to train the model. It saves the resulting model artifacts and other
output in the S3 bucket you specified for that purpose.

You can create a training job with the Amazon SageMaker console or the API. For information about
creating a training job with the API, see the CreateTrainingJob (p. 667) API.

When you create a training job with the API, Amazon SageMaker replicates the entire dataset on ML
compute instances by default. To make Amazon SageMaker replicate a subset of the data on each
ML compute instance, you must set the S3DataDistributionType field to ShardedByS3Key. You
can set this field using the low-level SDK. For more information, see S3DataDistributionType in
S3DataSource (p. 994).

Important
To prevent your algorithm container from contending for memory, you should reserve some
memory for Amazon SageMaker critical system processes on your ML compute instances. If the
algorithm container is allowed to use memory needed for system processes, it can trigger a
system failure.

6

Amazon SageMaker Developer Guide
How It Works: Next Topic

How It Works: Next Topic
Deploy a Model in Amazon SageMaker (p. 7)

Deploy a Model in Amazon SageMaker
After you train your model, you can deploy it to get predictions in one of two ways:

• To set up a persistent endpoint to get one prediction at a time, use Amazon SageMaker hosting
services.

• To get predictions for an entire dataset, use Amazon SageMaker batch transform.

Topics

• Deploy a Model on Amazon SageMaker Hosting Services (p. 7)

• Get Inferences for an Entire Dataset with Batch Transform (p. 10)

• Validate a Machine Learning Model (p. 11)

• The Amazon SageMaker Programming Model (p. 12)

Deploy a Model on Amazon SageMaker Hosting
Services
Amazon SageMaker also provides model hosting services for model deployment, as shown in the
following diagram. Amazon SageMaker provides an HTTPS endpoint where your machine learning model
is available to provide inferences.

7

Amazon SageMaker Developer Guide
Hosting Services

Deploying a model using Amazon SageMaker hosting services is a three-step process:

1. Create a model in Amazon SageMaker—By creating a model, you tell Amazon SageMaker where it
can find the model components. This includes the S3 path where the model artifacts are stored and
the Docker registry path for the image that contains the inference code. In subsequent deployment
steps, you specify the model by name. For more information, see the CreateModel (p. 648) API.

2. Create an endpoint configuration for an HTTPS endpoint—You specify the name of one or more
models in production variants and the ML compute instances that you want Amazon SageMaker to
launch to host each production variant.

When hosting models in production, you can configure the endpoint to elastically scale the
deployed ML compute instances. For each production variant, you specify the number of
ML compute instances that you want to deploy. When you specify two or more instances,
Amazon SageMaker launches them in multiple Availability Zones. This ensures continuous
availability. Amazon SageMaker manages deploying the instances. For more information, see the
CreateEndpointConfig (p. 635) API.

3. Create an HTTPS endpoint—Provide the endpoint configuration to Amazon SageMaker. The
service launches the ML compute instances and deploys the model or models as specified in the
configuration. For more information, see the CreateEndpoint (p. 632) API. To get inferences from

8

Amazon SageMaker Developer Guide
Hosting Services

the model, client applications send requests to the Amazon SageMaker Runtime HTTPS endpoint.
For more information about the API, see the InvokeEndpoint (p. 853) API.

Note
When you create an endpoint, Amazon SageMaker attaches an Amazon EBS storage volume to
each ML compute instance that hosts the endpoint. The size of the storage volume depends on
the instance type. For a list of instance types that Amazon SageMaker hosting service supports,
see AWS Service Limits. For a list of the sizes of the storage volumes that Amazon SageMaker
attaches to each instance, see Hosting Instance Storage Volumes (p. 381).

To increase a model's accuracy, you might choose to save the user's input data and ground truth, if
available, as part of the training data. You can then retrain the model periodically with a larger, improved
training dataset.

Best Practices for Deploying Models on Amazon SageMaker
Hosting Services
When hosting models using Amazon SageMaker hosting services, consider the following:

• Typically, a client application sends requests to the Amazon SageMaker HTTPS endpoint to obtain
inferences from a deployed model. You can also send requests to this endpoint from your Jupyter
notebook during testing.

• You can deploy a model trained with Amazon SageMaker to your own deployment target. To do that,
you need to know the algorithm-specific format of the model artifacts that were generated by model
training. For more information about output formats, see the section corresponding to the algorithm
you are using in Training Data Formats (p. 65).

• You can deploy multiple variants of a model to the same Amazon SageMaker HTTPS endpoint.
This is useful for testing variations of a model in production. For example, suppose that you've
deployed a model into production. You want to test a variation of the model by directing a small
amount of traffic, say 5%, to the new model. To do this, create an endpoint configuration that
describes both variants of the model. You specify the ProductionVariant in your request to the
CreateEndPointConfig. For more information, see ProductionVariant (p. 981).

• You can configure a ProductionVariant to use Application Auto Scaling. For information about
configuring automatic scaling, see Automatically Scale Amazon SageMaker Models (p. 365).

• You can modify an endpoint without taking models that are already deployed into production
out of service. For example, you can add new model variants, update the ML Compute instance
configurations of existing model variants, or change the distribution of traffic among model variants.
To modify an endpoint, you provide a new endpoint configuration. Amazon SageMaker implements
the changes without any downtime. For more information see, UpdateEndpoint (p. 840) and
UpdateEndpointWeightsAndCapacities (p. 842).

• Changing or deleting model artifacts or changing inference code after deploying a model produces
unpredictable results. If you need to change or delete model artifacts or change inference code,
modify the endpoint by providing a new endpoint configuration. Once you provide the new endpoint
configuration, you can change or delete the model artifacts corresponding to the old endpoint
configuration.

9

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_sagemaker

Amazon SageMaker Developer Guide
Batch Transform

• If you want to get inferences on entire datasets, consider using batch transform as an alternative

to hosting services. For information, see Get Inferences for an Entire Dataset with Batch
Transform (p. 10)

How It Works: Next Topic
Validate a Machine Learning Model (p. 11)

Get Inferences for an Entire Dataset with Batch
Transform
To get inferences for an entire dataset, use batch transform. With batch transform, you create a batch
transform job using a trained model and the dataset, which must be stored in Amazon S3. Amazon
SageMaker saves the inferences in an S3 bucket that you specify when you create the batch transform
job. Batch transform manages all of the compute resources required to get inferences. This includes
launching instances and deleting them after the batch transform job has completed. Batch transform
manages interactions between the data and the model with an object within the instance node called an
agent.

Use batch transform when you:

• Want to get inferences for an entire dataset and index them to serve inferences in real time
• Don't need a persistent endpoint that applications (for example, web or mobile apps) can call to get

inferences
• Don't need the subsecond latency that Amazon SageMaker hosted endpoints provide

You can also use batch transform to preprocess your data before using it to train a new model or
generate inferences.

The following diagram shows the workflow of a batch transform job:

To perform a batch transform, create a batch transform job using either the Amazon SageMaker console
or the API. Provide the following:

• The path to the S3 bucket where you've stored the data that you want to transform.
• The compute resources that you want Amazon SageMaker to use for the transform job. Compute

resources are machine learning (ML) compute instances that are managed by Amazon SageMaker.

10

Amazon SageMaker Developer Guide
Validating Models

• The path to the S3 bucket where you want to store the output of the job.
• The name of the Amazon SageMaker model that you want to use to create inferences. You must use a

model that you have already created either with the CreateModel (p. 648) operation or the console.

The following is an example of what a dataset file might look like.

An example of input file content:
 Record1-Attribute1, Record1-Attribute2, Record1-Attribute3, ..., Record1-
AttributeM
 Record2-Attribute1, Record2-Attribute2, Record2-Attribute3, ..., Record2-
AttributeM
 Record3-Attribute1, Record3-Attribute2, Record3-Attribute3, ..., Record3-
AttributeM
 ...
 RecordN-Attribute1, RecordN-Attribute2, RecordN-Attribute3, ..., RecordN-
AttributeM

A record is a single input data unit, for information on how to delimit records for batch transform jobs,
see SplitType in TransformInput (p. 1024).

For an example of how to use batch transform, see Step 6.2: Deploy the Model with Batch
Transform (p. 28).

How It Works: Next Topic
Validate a Machine Learning Model (p. 11)

Validate a Machine Learning Model
After training a model, evaluate it to determine whether its performance and accuracy allow you to
achieve your business goals. You might generate multiple models using different methods and evaluate
each. For example, you could apply different business rules for each model, and then apply various
measures to determine each model's suitability. You might consider whether your model needs to be
more sensitive than specific (or vice versa).

You can evaluate your model using historical data (offline) or live data:

• Offline testing—Use historical, not live, data to send requests to the model for inferences.

Deploy your trained model to an alpha endpoint, and use historical data to send inference requests to
it. To send the requests, use a Jupyter notebook in your Amazon SageMaker notebook instance and
either the AWS SDK for Python (Boto) or the high-level Python library provided by Amazon SageMaker.

• Online testing with live data—Amazon SageMaker supports deploying multiple models (called

production variants) to a single Amazon SageMaker endpoint. You configure the production variants
so that a small portion of the live traffic goes to the model that you want to validate. For example, you
might choose to send 10% of the traffic to a model variant for evaluation. After you are satisfied with
the model's performance, you can route 100% traffic to the updated model.

For more information, see articles and books about how to evaluate models, for example, Evaluating
Machine Learning Models.

Options for offline model evaluation include:

11

http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp
http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp

Amazon SageMaker Developer Guide
Programming Model

• Validating using a "holdout set"—Machine learning practitioners often set aside a part of the data as
a "holdout set." They don’t use this data for model training.

With this approach, you evaluate how well your model provides inferences on the holdout set. You
then assess how effectively the model generalizes what it learned in the initial training, as opposed to
using model "memory." This approach to validation gives you an idea of how often the model is able to
infer the correct answer.

In some ways, this approach is similar to teaching elementary school students. First, you provide them
with a set of examples to learn, and then test their ability to generalize from their learning. With
homework and tests, you pose problems that were not included in the initial learning and determine
whether they are able to generalize effectively. Students with perfect memories could memorize the
problems, instead of learning the rules.

Typically, the holdout dataset is of 20-30% of the training data.

• k-fold validation—In this validation approach, you split the example dataset into k parts. You treat
each of these parts as a holdout set for k training runs, and use the other k-1 parts as the training set
for that run. You produce k models using a similar process, and aggregate the models to generate your
final model. The value k is typically in the range of 5-10.

How It Works: Next Topic
The Amazon SageMaker Programming Model (p. 12)

The Amazon SageMaker Programming Model
Amazon SageMaker provides APIs that you can use to create and manage notebook instances and train
and deploy models. For more information, see API Reference (p. 616).

Making API calls directly from code is cumbersome, and requires you to write code to authenticate your
requests. Amazon SageMaker provides the following alternatives:

• Use the Amazon SageMaker console—With the console, you don't write any code. You use the console
UI to start model training or deploy a model. The console works well for simple jobs, where you use a
built-in training algorithm and you don't need to preprocess training data.

• Modify the example Jupyter notebooks—Amazon SageMaker provides several Jupyter notebooks
that train and deploy models using specific algorithms and datasets. Start with a notebook that has a
suitable algorithm and modify it to accommodate your data source and specific needs.

• Write model training and inference code from scratch—Amazon SageMaker provides both an AWS
SDK and a high-level Python library that you can use in your code to start model training jobs and
deploy the resulting models.

• The high-level Python library—The Python library simplifies model training and deployment. In
addition to authenticating your requests, the library abstracts platform specifics by providing simple
methods and default parameters. For example:

12

Amazon SageMaker Developer Guide
Programming Model

• To deploy your model, you call only the deploy() method. The method creates an Amazon

SageMaker model, an endpoint configuration, and an endpoint.

• If you use a custom framework script for model training, you call the fit() method. The method

creates a .gzip file of your script, uploads it to an Amazon S3 location, and then runs it for model
training, and other tasks. For more information, see Use Machine Learning Frameworks with
Amazon SageMaker (p. 440).

• The AWS SDK —The SDKs provide methods that correspond to the Amazon SageMaker API (see

Actions (p. 616)). Use the SDKs to programmatically start a model training job and host the model
in Amazon SageMaker. SDK clients authenticate your requests by using your access keys, so you
don't need to write authentication code. They are available in multiple languages and platforms. For
more information, see SDKs.

In Get Started (p. 16), you train and deploy a model using an algorithm provided by Amazon
SageMaker. That exercise shows how to use both of these libraries. For more information, see Get
Started (p. 16).

• Integrate Amazon SageMaker into your Apache Spark workflow—Amazon SageMaker provides

a library for calling its APIs from Apache Spark. With it, you can use Amazon SageMaker-based
estimators in an Apache Spark pipeline. For more information, see Use Apache Spark with Amazon
SageMaker (p. 440).

How It Works: Next Topic
Get Started (p. 16)

13

https://aws.amazon.com/tools/

Amazon SageMaker Developer Guide
Step 1: Create an AWS Account

Set Up Amazon SageMaker
In this section, you sign up for an AWS account and then create an IAM user, a security group, and create
an Amazon S3 bucket.

If you're new to Amazon SageMaker, we recommend that you read How Amazon SageMaker Works (p. 2).

Topics
• Step 1: Create an AWS Account (p. 14)
• Step 2: Create an IAM Administrator User and Group (p. 14)

Step 1: Create an AWS Account
In this section, you sign up for an AWS account. If you already have an AWS account, skip this step.

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all
AWS services, including Amazon SageMaker. You are charged only for the services that you use.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the
phone keypad.

Write down your AWS account ID because you'll need it for the next task.

Step 2: Create an IAM Administrator User and
Group

When you create an AWS account, you get a single sign-in identity that has complete access to all of the
AWS services and resources in the account. This identity is called the AWS account root user. Signing in
to the AWS console using the email address and password that you used to create the account gives you
complete access to all of the AWS resources in your account.

We strongly recommend that you not use the root user for everyday tasks, even the administrative
ones. Instead, adhere to the Create Individual IAM Users, an AWS Identity and Access Management (IAM)
administrator user. Then securely lock away the root user credentials and use them to perform only a few
account and service management tasks.

To create an administrator user and sign in to the console

1. Create an administrator user in your AWS account. For instructions, see Creating Your First IAM User
and Administrators Group in the IAM User Guide.

Note
We assume that you use administrator user credentials for the exercises and procedures
in this guide. If you choose to create and use another IAM user, grant that user minimum
permissions. For more information, see Authenticating With Identities (p. 476).

14

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon SageMaker Developer Guide
Step 2: Create an IAM Administrator User and Group

2. Sign in to the AWS Management Console.

To sign in to the AWS console as a IAM user, you must use a special URL. For more information, see
How Users Sign In to Your Account in the IAM User Guide.

Next Step

Step 1: Create an Amazon S3 Bucket (p. 17)

15

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html

Amazon SageMaker Developer Guide

Get Started
The best way to learn how to use Amazon SageMaker is to create, train, and deploy a simple machine
learning model. To do this, you need the following:

• A dataset. You use the MNIST (Modified National Institute of Standards and Technology database)
dataset of images of handwritten, single digit numbers. This dataset provides a training set of 50,000
example images of handwritten single-digit numbers, a validation set of 10,000 images, and a test
dataset of 10,000 images. You provide this dataset to the algorithm for model training. For more
information about the MNIST dataset, see MNIST Dataset.

• An algorithm. You use the XGBoost algorithm provided by Amazon SageMaker to train the model
using the MNIST dataset. During model training, the algorithm assigns example data of handwritten
numbers into 10 clusters: one for each number, 0 through 9. For more information about the
algorithm, see XGBoost Algorithm (p. 255).

You also need a few resources for storing your data and running the code in this exercise:

• An Amazon Simple Storage Service (Amazon S3) bucket to store the training data and the model
artifacts that Amazon SageMaker creates when it trains the model.

• An Amazon SageMaker notebook instance to prepare and process data and to train and deploy a
machine learning model.

• A Jupyter notebook to use with the notebook instance to prepare your training data and train and
deploy the model.

In this exercise, you learn how to create all of the resources that you need to create, train, and deploy a
model.

Important
For model training, deployment, and validation, you can use either of the following:

• The high-level Amazon SageMaker Python SDK
• The AWS SDK for Python (Boto 3)

The Amazon SageMaker Python SDK abstracts several implementation details, and is easy
to use. This exercise provides code examples for both libraries. If you're a first-time Amazon
SageMaker user, we recommend that you use the Amazon SageMaker Python SDK. For more
information, see https://sagemaker.readthedocs.io/en/stable/overview.html.

If you're new to Amazon SageMaker, we recommend that you read How Amazon SageMaker Works (p. 2)
before starting this exercise.

Topics
• Step 1: Create an Amazon S3 Bucket (p. 17)
• Step 2: Create an Amazon SageMaker Notebook Instance (p. 17)
• Step 3: Create a Jupyter Notebook (p. 18)
• Step 4: Download, Explore, and Transform the Training Data (p. 19)
• Step 5: Train a Model (p. 21)
• Step 6: Deploy the Model to Amazon SageMaker (p. 26)
• Step 7: Validate the Model (p. 30)

16

http://yann.lecun.com/exdb/mnist/
https://sagemaker.readthedocs.io/en/stable/overview.html

Amazon SageMaker Developer Guide
Step 1: Create an Amazon S3 Bucket

• Step 8: Clean Up (p. 35)

• Step 9: Integrating Amazon SageMaker Endpoints into Internet-facing Applications (p. 35)

Step 1: Create an Amazon S3 Bucket
Training a model produces the following

• The model training data

• Model artifacts, which Amazon SageMaker generates during model training

You save these in an Amazon Simple Storage Service (Amazon S3) bucket: You can store datasets that
you use as your training data and model artifacts that are the output of a training job in a single bucket
or in two separate buckets. For this exercise and others in this guide, one bucket is sufficient. If you
already have S3 buckets, you can use them, or you can create new ones.

To create a bucket, follow the instructions in Create a Bucket in the Amazon Simple Storage Service
Console User Guide. Include sagemaker in the bucket name. For example, sagemaker-datetime.

Note
Amazon SageMaker needs permission to access these buckets. You grant permission with an
IAM role, which you create in the next step when you create an Amazon SageMaker notebook
instance. This IAM role automatically gets permissions to access any bucket that has sagemaker
in the name. It gets these permissions through the AmazonSageMakerFullAccess policy,
which Amazon SageMaker attaches to the role. If you add a policy to the role that grants the
SageMaker service principal S3FullAccess permission, the name of the bucket does not need
to contain sagemaker.

Next Step
Step 2: Create an Amazon SageMaker Notebook Instance (p. 17)

Step 2: Create an Amazon SageMaker Notebook
Instance

An Amazon SageMaker notebook instance is a fully managed machine learning (ML) Amazon Elastic
Compute Cloud (Amazon EC2) compute instance that runs the Jupyter Notebook App. You use the
notebook instance to create and manage Jupyter notebooks that you can use to prepare and process
data and to train and deploy machine learning models. For more information, see Explore and Preprocess
Data (p. 4).

Note
If necessary, you can change the notebook instance settings, including the ML compute instance
type, later.

To create an Amazon SageMaker notebook instance

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances, then choose Create notebook instance.

3. On the Create notebook instance page, provide the following information (if a field is not
mentioned, leave the default values):

17

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Next Step

a. For Notebook instance name, type a name for your notebook instance.

b. For Instance type, choose ml.t2.medium. This is the least expensive instance type that
notebook instances support, and it suffices for this exercise.

c. For IAM role, choose Create a new role, then choose Create role.

d. Choose Create notebook instance.

In a few minutes, Amazon SageMaker launches an ML compute instance—in this case, a
notebook instance—and attaches an ML storage volume to it. The notebook instance has a
preconfigured Jupyter notebook server and a set of Anaconda libraries.

Next Step
Step 3: Create a Jupyter Notebook (p. 18).

Step 3: Create a Jupyter Notebook
Create a Jupyter notebook in the notebook instance you created in Step 2: Create an Amazon SageMaker
Notebook Instance (p. 17), and create a cell that gets the IAM role that your notebook needs to run
Amazon SageMaker APIs and specifies the name of the Amazon S3 bucket that you will use to store the
datasets that you use for your training data and the model artifacts that a Amazon SageMaker training
job outputs.

To create a Jupyter notebook

1. Open the notebook instance.

a. Sign in to the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

b. Open the notebook instance, by choosing either Open Jupyter for classic Juypter view or
Open JupyterLab for JupyterLab view next to the name of the notebook instance. The Jupyter
notebook server page appears:

2. Create a notebook.

a. If you opened the notebook in Jupyter classic view, on the Files tab, choose New, and
conda_python3. This preinstalled environment includes the default Anaconda installation and
Python 3.

b. If you opened the notebook in JupyterLab view, on the File menu, choose New, and then choose
Notebook.. For Select Kernel, choose conda_python3. This preinstalled environment includes
the default Anaconda installation and Python 3.

3. In the Jupyter notebook, choose File and Save as, and name the notebook.

4. Copy the following Python code and paste it into the first cell in your notebook. Add the name
of the S3 bucket that you created in Set Up Amazon SageMaker (p. 14), and run the code. The
get_execution_role function retrieves the IAM role you created when you created your notebook
instance.

import os
import boto3
import re
import copy
import time
from time import gmtime, strftime
from sagemaker import get_execution_role

18

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Step 4: Download, Explore, and Transform Data

role = get_execution_role()

region = boto3.Session().region_name

bucket='bucket-name' # Replace with your s3 bucket name
prefix = 'sagemaker/xgboost-mnist' # Used as part of the path in the bucket where you
 store data
bucket_path = 'https://s3-{}.amazonaws.com/{}'.format(region,bucket) # The URL to
 access the bucket

Next Step

Step 4: Download, Explore, and Transform the Training Data (p. 19)

Step 4: Download, Explore, and Transform the
Training Data

Download the MNIST dataset to your notebook instance, review the data, transform it, and upload it to
your S3 bucket.

You transform the data by changing its format from numpy.array to comma-separated values (CSV).
The XGBoost Algorithm (p. 255) expects input in either the LIBSVM or CSV format. LIBSVM is an open
source machine learning library. In this exercise , you use CSV format because it's simpler.

Topics
• Step 4.1: Download the MNIST Dataset (p. 19)
• Step 4.2: Explore the Training Dataset (p. 20)
• Step 4.3: Transform the Training Dataset and Upload It to Amazon S3 (p. 21)

Step 4.1: Download the MNIST Dataset
To download the MNIST dataset, copy and paste the following code into the notebook and run it:.

%%time
import pickle, gzip, urllib.request, json
import numpy as np

Load the dataset
urllib.request.urlretrieve("http://deeplearning.net/data/mnist/mnist.pkl.gz",
 "mnist.pkl.gz")
with gzip.open('mnist.pkl.gz', 'rb') as f:
 train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
print(train_set[0].shape)

The code does the following:

1. Downloads the MNIST dataset (mnist.pkl.gz) from the MNIST Database website to your notebook.
2. Unzips the file and reads the following datasets into the notebook's memory:

• train_set – You use these images of handwritten numbers to train a model.
• valid_set – The XGBoost Algorithm (p. 255) uses these images to evaluate the progress of the

model during training.

19

Amazon SageMaker Developer Guide
Step 4.2: Explore the Dataset

• test_set – You use this set to get inferences to test the deployed model.

Next Step

Step 4.2: Explore the Training Dataset (p. 20)

Step 4.2: Explore the Training Dataset
Typically, you explore training data to determine what you need to clean up and which transformations
to apply to improve model training. For this exercise, you don't need to clean up the MNIST dataset.

To explore the dataset

• Type the following code in a cell in your notebook and run the cell to display the first 10 images in
train_set:.

%matplotlib inline
import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (2,10)

for i in range(0, 10):
 img = train_set[0][i]
 label = train_set[1][i]
 img_reshape = img.reshape((28,28))
 imgplot = plt.imshow(img_reshape, cmap='gray')
 print('This is a {}'.format(label))
 plt.show()

train_set contains the following structures:

• train_set[0] – Contains images.

• train_set[1] – Contains labels.

The code uses the matplotlib library to get and display the first 10 images from the training
dataset.

Next Step

Step 4.3: Transform the Training Dataset and Upload It to Amazon S3 (p. 21)

20

Amazon SageMaker Developer Guide
Step 4.3: Transform Dataset and Upload to S3

Step 4.3: Transform the Training Dataset and Upload
It to Amazon S3
The XGBoost Algorithm (p. 255) expects comma-separated values (CSV) for its training input. The
format of the training dataset is numpy.array. Transform the dataset from numpy.array format to the
CSV format. Then upload it to the Amazon S3 bucket that you created in Step 1: Create an Amazon S3
Bucket (p. 17)

To convert the dataset to CSV format and upload it

• Type the following code into a cell in your notebook and then run the cell.

%%time

import struct
import io
import csv
import boto3

def convert_data():
 data_partitions = [('train', train_set), ('validation', valid_set), ('test',
 test_set)]
 for data_partition_name, data_partition in data_partitions:
 print('{}: {} {}'.format(data_partition_name, data_partition[0].shape,
 data_partition[1].shape))
 labels = [t.tolist() for t in data_partition[1]]
 features = [t.tolist() for t in data_partition[0]]

 if data_partition_name != 'test':
 examples = np.insert(features, 0, labels, axis=1)
 else:
 examples = features
 #print(examples[50000,:])

 np.savetxt('data.csv', examples, delimiter=',')

 key = "{}/{}/examples".format(prefix,data_partition_name)
 url = 's3://{}/{}'.format(bucket, key)

 boto3.Session().resource('s3').Bucket(bucket).Object(key).upload_file('data.csv')
 print('Done writing to {}'.format(url))

convert_data()

After it converts the dataset to the CSV format, ,the code uploads the CSV file to the S3 bucket.

Next Step

Step 5: Train a Model (p. 21)

Step 5: Train a Model
To train, deploy, and validate a model in Amazon SageMaker, you can use either the Amazon SageMaker
Python SDK or the AWS SDK for Python (Boto 3). (You can also use the console, but for this exercise,

21

Amazon SageMaker Developer Guide
Choose the Training Algorithm

you will use the notebook instance and one of the SDKs.) This exercise provides code examples for each
library.

The Amazon SageMaker Python SDK abstracts several implementation details, and is easy to use. If
you're a first-time Amazon SageMaker user, we recommend that you use it to train, deploy, and validate
the model. For more information, see https://sagemaker.readthedocs.io/en/stable/overview.html.

Topics
• Choose the Training Algorithm (p. 22)
• Create and Run a Training Job (Amazon SageMaker Python SDK) (p. 22)
• Create and Run a Training Job (AWS SDK for Python (Boto 3)) (p. 23)

Choose the Training Algorithm
To choose the right algorithm for your model, you typically follow an evaluation process. For this
exercise, you use the XGBoost Algorithm (p. 255) provided by Amazon SageMaker, so no evaluation is
required. For information about choosing algorithms, see Use Amazon SageMaker Built-in Algorithms
 (p. 56).

Create and Run a Training Job (Amazon SageMaker
Python SDK)
The Amazon SageMaker Python SDK includes the sagemaker.estimator.Estimator estimator. You
can use this class, in the sagemaker.estimator module, with any algorithm. For more information, see
https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.

To run a model training job (Amazon SageMaker Python SDK)

1. Import the Amazon SageMaker Python SDK and get the XGBoost container.

import sagemaker

from sagemaker.amazon.amazon_estimator import get_image_uri

container = get_image_uri(boto3.Session().region_name, 'xgboost')

2. Download the training and validation data from the Amazon S3 location where you uploaded it in
Step 4.3: Transform the Training Dataset and Upload It to Amazon S3 (p. 21), and set the location
where you store the training output.

train_data = 's3://{}/{}/{}'.format(bucket, prefix, 'train')

validation_data = 's3://{}/{}/{}'.format(bucket, prefix, 'validation')

s3_output_location = 's3://{}/{}/{}'.format(bucket, prefix, 'xgboost_model_sdk')
print(train_data)

3. Create an instance of the sagemaker.estimator.Estimator class.

xgb_model = sagemaker.estimator.Estimator(container,
 role,
 train_instance_count=1,
 train_instance_type='ml.m4.xlarge',
 train_volume_size = 5,
 output_path=s3_output_location,
 sagemaker_session=sagemaker.Session())

22

https://sagemaker.readthedocs.io/en/stable/overview.html
https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator

Amazon SageMaker Developer Guide
Create and Run a Training Job
(AWS SDK for Python (Boto 3))

In the constructor, you specify the following parameters:

• role – The AWS Identity and Access Management (IAM) role that Amazon SageMaker can assume
to perform tasks on your behalf (for example, reading training results, called model artifacts, from
the S3 bucket and writing training results to Amazon S3). This is the role that you got in Step 3:
Create a Jupyter Notebook (p. 18).

• train_instance_count and train_instance_type – The type and number of ML compute
instances to use for model training. For this exercise, you use only a single training instance.

• train_volume_size – The size, in GB, of the Amazon Elastic Block Store (Amazon EBS) storage
volume to attach to the training instance. This must be large enough to store training data if you
use File mode (File mode is the default).

• output_path – The path to the S3 bucket where Amazon SageMaker stores the training results.
• sagemaker_session – The session object that manages interactions with Amazon SageMaker

APIs and any other AWS service that the training job uses.
4. Set the hyperparameter values for the XGBoost training job by calling the set_hyperparameters

method of the estimator. For a description of XGBoost hyperparameters, see XGBoost
Hyperparameters (p. 258).

xgb_model.set_hyperparameters(max_depth = 5,
 eta = .2,
 gamma = 4,
 min_child_weight = 6,
 silent = 0,
 objective = "multi:softmax",
 num_class = 10,
 num_round = 10)

5. Create the training channels to use for the training job. For this example, we use both train and
validation channels.

train_channel = sagemaker.session.s3_input(train_data, content_type='text/csv')
valid_channel = sagemaker.session.s3_input(validation_data, content_type='text/csv')

data_channels = {'train': train_channel, 'validation': valid_channel}

6. To start model training, call the estimator's fit method.

xgb_model.fit(inputs=data_channels, logs=True)

This is a synchronous operation. The method displays progress logs and waits until training
completes before returning. For more information about model training, see Train a Model with
Amazon SageMaker (p. 4).

Model training for this exercise can take up to 15 minutes.

Next Step

Step 6: Deploy the Model to Amazon SageMaker (p. 26)

Create and Run a Training Job (AWS SDK for Python
(Boto 3))
To train a model, Amazon SageMaker uses the CreateTrainingJob (p. 667) API. The AWS SDK for Python
(Boto 3) provides the corresponding create_training_job method.

23

Amazon SageMaker Developer Guide
Create and Run a Training Job
(AWS SDK for Python (Boto 3))

When using this method, you provide the following information:

• The training algorithm – Specify the registry path of the Docker image that contains the training code.
For the registry paths for the algorithms provided by Amazon SageMaker, see Common Parameters for
Built-In Algorithms (p. 58).

• Algorithm-specific hyperparameters – Specify algorithm-specific hyperparameters to influence the
final quality of the model. For information, see XGBoost Hyperparameters (p. 258).

• The input and output configuration – Provide the S3 bucket where training data is stored and where
Amazon SageMaker saves the results of model training (the model artifacts).

To run a model training job (AWS SDK for Python (Boto 3))

1. Import the get_image_url utility function Amazon SageMaker Python SDK and get the location of
the XGBoost container.

import sagemaker

from sagemaker.amazon.amazon_estimator import get_image_uri

container = get_image_uri(boto3.Session().region_name, 'xgboost')

2. Set up the training information for the job. You pass this information when you call
create_training_job. For more information about the information that you need to send to a
training job, see the section called “CreateTrainingJob” (p. 667).

#Ensure that the train and validation data folders generated above are reflected in the
 "InputDataConfig" parameter below.
common_training_params = \
{
 "AlgorithmSpecification": {
 "TrainingImage": container,
 "TrainingInputMode": "File"
 },
 "RoleArn": role,
 "OutputDataConfig": {
 "S3OutputPath": bucket_path + "/"+ prefix + "/xgboost"
 },
 "ResourceConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m4.xlarge",
 "VolumeSizeInGB": 5
 },
 "HyperParameters": {
 "max_depth":"5",
 "eta":"0.2",
 "gamma":"4",
 "min_child_weight":"6",
 "silent":"0",
 "objective": "multi:softmax",
 "num_class": "10",
 "num_round": "10"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 86400
 },
 "InputDataConfig": [
 {
 "ChannelName": "train",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",

24

Amazon SageMaker Developer Guide
Create and Run a Training Job
(AWS SDK for Python (Boto 3))

 "S3Uri": bucket_path + "/"+ prefix+ '/train/',
 "S3DataDistributionType": "FullyReplicated"
 }
 },
 "ContentType": "text/csv",
 "CompressionType": "None"
 },
 {
 "ChannelName": "validation",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": bucket_path + "/"+ prefix+ '/validation/',
 "S3DataDistributionType": "FullyReplicated"
 }
 },
 "ContentType": "text/csv",
 "CompressionType": "None"
 }
]
}

3. Name your training job, and finish configuring the parameters that you send to it.

#training job params
training_job_name = 'xgboost-mnist' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())
print("Job name is:", training_job_name)

training_job_params = copy.deepcopy(common_training_params)
training_job_params['TrainingJobName'] = training_job_name
training_job_params['ResourceConfig']['InstanceCount'] = 1

4. Call create_training_job to start the training job, and wait for it to complete. If the training job
fails, print the reason that it failed.

%%time

region = boto3.Session().region_name
sm = boto3.Session().client('sagemaker')

sm.create_training_job(**training_job_params)

status = sm.describe_training_job(TrainingJobName=training_job_name)
['TrainingJobStatus']
print(status)
sm.get_waiter('training_job_completed_or_stopped').wait(TrainingJobName=training_job_name)
status = sm.describe_training_job(TrainingJobName=training_job_name)
['TrainingJobStatus']
print("Training job ended with status: " + status)
if status == 'Failed':
 message = sm.describe_training_job(TrainingJobName=training_job_name)
['FailureReason']
 print('Training failed with the following error: {}'.format(message))
 raise Exception('Training job failed')

You now have a trained model. Amazon SageMaker stores the resulting artifacts in your S3 bucket.

Next Step

Step 6: Deploy the Model to Amazon SageMaker (p. 26)

25

Amazon SageMaker Developer Guide
Step 6: Deploy the Model

Step 6: Deploy the Model to Amazon SageMaker
To get predictions, deploy your model. The method you use depends on how you want to generate
inferences:

• To get one inference at a time in real time, set up a persistent endpoint using Amazon SageMaker
hosting services.

• To get inferences for an entire dataset, use Amazon SageMaker batch transform.

Topics

• Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services (p. 26)

• Step 6.2: Deploy the Model with Batch Transform (p. 28)

Step 6.1: Deploy the Model to Amazon SageMaker
Hosting Services
To deploy a model in Amazon SageMaker, hosting services, you can use either the Amazon SageMaker
Python SDK or the AWS SDK for Python (Boto 3). This exercise provides code examples for both libraries.

The Amazon SageMaker Python SDK abstracts several implementation details, and is easy to use. If
you're a first-time Amazon SageMaker user, we recommend that you use it. For more information, see
https://sagemaker.readthedocs.io/en/stable/overview.html.

Topics

• Deploy the Model to Amazon SageMaker Hosting Services (Amazon SageMaker Python
SDK) (p. 26)

• Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3).) (p. 27)

Deploy the Model to Amazon SageMaker Hosting Services
(Amazon SageMaker Python SDK)

Deploy the model that you trained in Create and Run a Training Job (Amazon SageMaker Python
SDK) (p. 22) by calling the deploy method of the sagemaker.estimator.Estimator object. This
is the same object that you used to train the model. When you call the deploy method, specify the
number and type of ML instances that you want to use to host the endpoint.

xgb_predictor = xgb_model.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
)

The deploy method creates the deployable model, configures the Amazon SageMaker hosting
services endpoint, and launches the endpoint to host the model. For more information, see https://
sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.deploy.

It also returns a sagemaker.predictor.RealTimePredictor object, which you can use to
get inferences from the model. For information, see https://sagemaker.readthedocs.io/en/stable/
predictors.html#sagemaker.predictor.RealTimePredictor.

Next Step

26

https://sagemaker.readthedocs.io/en/stable/overview.html
https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.deploy
https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.deploy
https://sagemaker.readthedocs.io/en/stable/predictors.html#sagemaker.predictor.RealTimePredictor
https://sagemaker.readthedocs.io/en/stable/predictors.html#sagemaker.predictor.RealTimePredictor

Amazon SageMaker Developer Guide
Step 6.1: Hosting Services

Step 7: Validate the Model (p. 30)

Deploy the Model to Amazon SageMaker Hosting Services (AWS
SDK for Python (Boto 3).)
Deploying a model using the AWS SDK for Python (Boto 3) is a three-step process:

1. Create a model in Amazon SageMaker – Send a CreateModel (p. 648) request to provide information
such as the location of the S3 bucket that contains your model artifacts and the registry path of the
image that contains inference code.

2. Create an endpoint configuration – Send a CreateEndpointConfig (p. 635) request to provide the
resource configuration for hosting. This includes the type and number of ML compute instances to
launch to deploy the model.

3. Create an endpoint – Send a CreateEndpoint (p. 632) request to create an endpoint. Amazon
SageMaker launches the ML compute instances and deploys the model. Amazon SageMaker returns an
endpoint. Applications can send requests for inference to this endpoint.

To deploy the model (AWS SDK for Python (Boto 3))

For each of the following steps, paste the code in a cell in the Jupyter notebook you created in Step 3:
Create a Jupyter Notebook (p. 18) and run the cell.

1. Create a deployable model by identifying the location of model artifacts and the Docker image that
contains the inference code.

model_name = training_job_name + '-mod'

info = sm.describe_training_job(TrainingJobName=training_job_name)
model_data = info['ModelArtifacts']['S3ModelArtifacts']
print(model_data)

primary_container = {
 'Image': container,
 'ModelDataUrl': model_data
}

create_model_response = sm.create_model(
 ModelName = model_name,
 ExecutionRoleArn = role,
 PrimaryContainer = primary_container)

print(create_model_response['ModelArn'])

2. Create an Amazon SageMaker endpoint configuration by specifying the ML compute instances that
you want to deploy your model to.

endpoint_config_name = 'DEMO-XGBoostEndpointConfig-' + strftime("%Y-%m-%d-%H-%M-%S",
 gmtime())
print(endpoint_config_name)
create_endpoint_config_response = sm.create_endpoint_config(
 EndpointConfigName = endpoint_config_name,
 ProductionVariants=[{
 'InstanceType':'ml.m4.xlarge',
 'InitialVariantWeight':1,
 'InitialInstanceCount':1,
 'ModelName':model_name,
 'VariantName':'AllTraffic'}])

print("Endpoint Config Arn: " + create_endpoint_config_response['EndpointConfigArn'])

27

Amazon SageMaker Developer Guide
Step 6.2: Batch Transform

3. Create an Amazon SageMaker endpoint.

%%time
import time

endpoint_name = 'DEMO-XGBoostEndpoint-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())
print(endpoint_name)
create_endpoint_response = sm.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)
print(create_endpoint_response['EndpointArn'])

resp = sm.describe_endpoint(EndpointName=endpoint_name)
status = resp['EndpointStatus']
print("Status: " + status)

while status=='Creating':
 time.sleep(60)
 resp = sm.describe_endpoint(EndpointName=endpoint_name)
 status = resp['EndpointStatus']
 print("Status: " + status)

print("Arn: " + resp['EndpointArn'])
print("Status: " + status)

This code continuously calls the describe_endpoint command in a while loop until the endpoint
either fails or is in service, and then prints the status of the endpoint. When the status changes to
InService, the endpoint is ready to serve inference requests.

Next Step

Step 7: Validate the Model (p. 30)

Step 6.2: Deploy the Model with Batch Transform
To get inference for an entire dataset, use batch transform. Amazon SageMaker stores the results in
Amazon S3.

For information about batch transforms, see Get Inferences for an Entire Dataset with Batch
Transform (p. 10). For an example that uses batch transform, see the batch transform sample
notebook at https://github.com/awslabs/amazon-sagemaker-examples/tree/master/
sagemaker_batch_transform/introduction_to_batch_transform.

Topics
• Deploy a Model with Batch Transform (Amazon SageMaker High-level Python Library) (p. 28)

• Deploy a Model with Batch Transform (SDK for Python (Boto 3)) (p. 29)

Deploy a Model with Batch Transform (Amazon SageMaker
High-level Python Library)
The following code creates a sagemaker.transformer.Transformer object from the model
that you trained in Create and Run a Training Job (Amazon SageMaker Python SDK) (p. 22).
Then it calls that object's transform method to create a transform job. When you create the
sagemaker.transformer.Transformer object, you specify the number and type of ML instances
to use to perform the batch transform job, and the location in Amazon S3 where you want to store the
inferences.

28

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_batch_transform/introduction_to_batch_transform
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_batch_transform/introduction_to_batch_transform

Amazon SageMaker Developer Guide
Step 6.2: Batch Transform

Paste the following code in a cell in the Jupyter notebook you created in Step 3: Create a Jupyter
Notebook (p. 18) and run the cell.

batch_input =
 's3://{}/{}/test/examples'.format(bucket, prefix) # The location of the
 test dataset

batch_output = 's3://{}/{}/batch-inference'.format(bucket, prefix) # The location to store
 the
results of the batch transform job

transformer = xgb_model.transformer(instance_count=1, instance_type='ml.m4.xlarge',
 output_path=batch_output)

transformer.transform(data=batch_input, data_type='S3Prefix', content_type='text/csv',
 split_type='Line')

transformer.wait()

For more information, see https://sagemaker.readthedocs.io/en/stable/transformer.html.

Next Step

Step 7: Validate the Model (p. 30)

Deploy a Model with Batch Transform (SDK for Python (Boto 3))
To run a batch transform job, call the create_transform_job. method using the model that you
trained in Create and Run a Training Job (AWS SDK for Python (Boto 3)) (p. 23).

To create a batch transform job (SDK for Python (Boto 3))

For each of the following steps, paste the code in a cell in the Jupyter notebook you created in Step 3:
Create a Jupyter Notebook (p. 18) and run the cell.

1. Name the batch transform job and specify where the input data (the test dataset) is stored and
where to store the job's output.

batch_job_name = 'xgboost-mnist-batch' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())

batch_input = 's3://{}/{}/test/examples'.format(bucket, prefix)
print(batch_input)

batch_output = 's3://{}/{}/batch-inference'.format(bucket, prefix)

2. Configure the parameters that you pass when you call the create_transform_job method.

request = \
{
 "TransformJobName": batch_job_name,
 "ModelName": model_name,
 "BatchStrategy": "MultiRecord",
 "TransformOutput": {
 "S3OutputPath": batch_output
 },
 "TransformInput": {
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": batch_input
 }
 },

29

https://sagemaker.readthedocs.io/en/stable/transformer.html

Amazon SageMaker Developer Guide
Step 7: Validate the Model

 "ContentType": "text/csv",
 "SplitType": "Line",
 "CompressionType": "None"
 },
 "TransformResources": {
 "InstanceType": "ml.m4.xlarge",
 "InstanceCount": 1
 }
}

For more information about the parameters, see the section called “CreateTransformJob” (p. 673).
3. Call the create_transform_job method, passing in the parameters that you configured in the

previous step. Then call the describe_transform_job method in a loop until it completes.

Paste the following code in a cell in the Jupyter notebook you created in Step 3: Create a Jupyter
Notebook (p. 18) and run the cell.

sm.create_transform_job(**request)

while(True):
 response = sm.describe_transform_job(TransformJobName=batch_job_name)
 status = response['TransformJobStatus']
 if status == 'Completed':
 print("Transform job ended with status: " + status)
 break
 if status == 'Failed':
 message = response['FailureReason']
 print('Transform failed with the following error: {}'.format(message))
 raise Exception('Transform job failed')
 print("Transform job is still in status: " + status)
 time.sleep(30)

Next Step

Step 7: Validate the Model (p. 30)

Step 7: Validate the Model
Now that you have trained and deployed a model in Amazon SageMaker, validate it to ensure that it
generates accurate predictions on new data. That is, on data that is different from the data that the
model was trained on. For this, use the test dataset that you created in Step 4: Download, Explore, and
Transform the Training Data (p. 19).

Topics
• Step 7.1: Validate a Model Deployed to Amazon SageMaker Hosting Services (p. 30)
• Step 7.2: Validate a Model Deployed with Batch Transform (p. 33)

Step 7.1: Validate a Model Deployed to Amazon
SageMaker Hosting Services
If you deployed a model to Amazon SageMaker hosting services in Step 6.1: Deploy the Model to
Amazon SageMaker Hosting Services (p. 26), you now have an endpoint that you can invoke to get
inferences in real time. To validate the model, invoke the endpoint with example images from the test
dataset and check whether the inferences you get match the actual labels of the images.

30

Amazon SageMaker Developer Guide
Step 7.1: Validate a Model Deployed to
Amazon SageMaker Hosting Services

Topics

• Validate a Model Deployed to Amazon SageMaker Hosting Services (Amazon SageMaker Python
SDK) (p. 31)

• Validate a Model Deployed to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto
3)) (p. 32)

Validate a Model Deployed to Amazon SageMaker Hosting
Services (Amazon SageMaker Python SDK)
To validate the model by using the Amazon SageMaker Python SDK, use the
sagemaker.predictor.RealTimePredictor object that you created in Deploy the Model to Amazon
SageMaker Hosting Services (Amazon SageMaker Python SDK) (p. 26). For information, see https://
sagemaker.readthedocs.io/en/stable/predictors.html#sagemaker.predictor.RealTimePredictor.

To validate the model (Amazon SageMaker Python SDK)

1. Download the test data from Amazon S3.

s3 = boto3.resource('s3')

test_key = "{}/test/examples".format(prefix)

s3.Bucket(bucket).download_file(test_key, 'test_data')

2. Plot the first 10 images from the test dataset with their labels.

%matplotlib inline

for i in range (0, 10):
 img = test_set[0][i]
 label = test_set[1][i]
 img_reshape = img.reshape((28,28))
 imgplot = plt.imshow(img_reshape, cmap='gray')
 print('This is a {}'.format(label))
 plt.show()

3. To get inferences for the first 10 examples in the test dataset, call the predict method of the
sagemaker.predictor.RealTimePredictor object.

31

https://sagemaker.readthedocs.io/en/stable/predictors.html#sagemaker.predictor.RealTimePredictor
https://sagemaker.readthedocs.io/en/stable/predictors.html#sagemaker.predictor.RealTimePredictor

Amazon SageMaker Developer Guide
Step 7.1: Validate a Model Deployed to
Amazon SageMaker Hosting Services

with open('test_data', 'r') as f:
 for j in range(0,10):
 single_test = f.readline()
 result = xgb_predictor.predict(single_test)
 print(result)

To see if the model is making accurate predictions, check the output from this step against the
numbers that you plotted in the previous step.

You have now trained, deployed, and validated your first model in Amazon SageMaker.

Next Step

Step 8: Clean Up (p. 35)

Validate a Model Deployed to Amazon SageMaker Hosting
Services (AWS SDK for Python (Boto 3))

To use the AWS SDK for Python (Boto 3) to validate the model, call the invoke_endpoint method. This
method corresponds to the InvokeEndpoint (p. 853) API provided by the Amazon SageMaker runtime.

To validate the model (AWS SDK for Python (Boto 3))

1. Download the test data from Amazon S3.

s3 = boto3.resource('s3')

test_key = "{}/test/examples".format(prefix)

s3.Bucket(bucket).download_file(test_key, 'test_data')

2. Plot the first 10 images from the test dataset with their labels.

%matplotlib inline

for i in range (0, 10):
 img = test_set[0][i]
 label = test_set[1][i]
 img_reshape = img.reshape((28,28))
 imgplot = plt.imshow(img_reshape, cmap='gray')
 print('This is a {}'.format(label))
 plt.show()

32

Amazon SageMaker Developer Guide
Step 7.2: Validate a Model Deployed with Batch Transform

3. Get the Amazon SageMaker runtime client, which provides the invoke_endpoint method.

runtime_client = boto3.client('runtime.sagemaker')

4. Get inferences from the first 10 examples in the test dataset by calling invoke_endpoint.

with open('test_data', 'r') as f:

 for i in range(0,10):
 single_test = f.readline()
 response = runtime_client.invoke_endpoint(EndpointName = endpoint_name,
 ContentType = 'text/csv',
 Body = single_test)
 result = response['Body'].read().decode('ascii')
 print('Predicted label is {}.'.format(result))

5. To see if the model is making accurate predictions, check the output from this step against the
numbers you plotted in the previous step.

You have now trained, deployed, and validated your first model in Amazon SageMaker.

Next Step

Step 8: Clean Up (p. 35)

Step 7.2: Validate a Model Deployed with Batch
Transform
You now have a file in Amazon S3 that contains inferences that you got by running a batch transform job
in Step 6.2: Deploy the Model with Batch Transform (p. 28). To validate the model, check a subset of
the inferences from the file to see whether they match the actual numbers from the test dataset.

To validate the batch transform inferences

1. Download the test data from Amazon S3.

s3 = boto3.resource('s3')

33

Amazon SageMaker Developer Guide
Step 7.2: Validate a Model Deployed with Batch Transform

test_key = "{}/test/examples".format(prefix)

s3.Bucket(bucket).download_file(test_key, 'test_data')

2. Plot the first 10 images from the test dataset with their labels.

%matplotlib inline

for i in range (0, 10):
 img = test_set[0][i]
 label = test_set[1][i]
 img_reshape = img.reshape((28,28))
 imgplot = plt.imshow(img_reshape, cmap='gray')
 print('This is a {}'.format(label))
 plt.show()

3. Download the output from the batch transform job from Amazon S3 to a local file.

s3.Bucket(bucket).download_file(prefix + '/batch-inference/examples.out',
 'batch_results')

4. Get the first 10 results from the batch transform job.

with open('batch_results') as f:
 results = f.readlines()
for j in range (0, 10):
 print(results[j])

5. To see if the batch transform job made accurate predictions, check the output from this step against
the numbers that you plotted from the test data.

You have now trained, deployed, and validated your first model in Amazon SageMaker.

Next Step

Step 8: Clean Up (p. 35)

34

Amazon SageMaker Developer Guide
Step 8: Clean Up

Step 8: Clean Up
To avoid incurring unnecessary charges, use the AWS Management Console to delete the resources that
you created for this exercise.

Note
If you plan to explore other exercises in this guide, you might want to keep some of these
resources, such as your notebook instance, S3 bucket, and IAM role.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/ and delete the
following resources:
• The endpoint. Deleting the endpoint also deletes the ML compute instance or instances that

support it.
• The endpoint configuration.
• The model.
• The notebook instance. Before deleting the notebook instance, stop it.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/ and delete the bucket that you
created for storing model artifacts and the training dataset.

3. Open the IAM console at https://console.aws.amazon.com/iam/ and delete the IAM role. If you
created permission policies, you can delete them, too.

4. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/ and delete
all of the log groups that have names starting with /aws/sagemaker/.

Step 9: Integrating Amazon SageMaker Endpoints
into Internet-facing Applications

In a production environment, you might have an internet-facing application sending requests to the
endpoint for inference. The following high-level example shows how to integrate your model endpoint
into your application.

1. Create an IAM role that the AWS Lambda service principal can assume. Give the role permissions to
call the Amazon SageMaker InvokeEndpoint API.

2. Create a Lambda function that calls the Amazon SageMaker InvokeEndpoint API.
3. Call the Lambda function from a mobile application. For an example of how to call a Lambda

function from a mobile application using Amazon Cognito for credentials, see Tutorial: Using AWS
Lambda as Mobile Application Backend.

35

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/lambda/latest/dg/with-android-example.html
https://docs.aws.amazon.com/lambda/latest/dg/with-android-example.html

Amazon SageMaker Developer Guide
Create a Notebook Instance

Use Notebook Instances
An Amazon SageMaker notebook instance is a fully managed ML compute instance running the Jupyter
Notebook App. Amazon SageMaker manages creating the instance and related resources. Use Jupyter
notebooks in your notebook instance to prepare and process data, write code to train models, deploy
models to Amazon SageMaker hosting, and test or validate your models.

Topics
• Create a Notebook Instance (p. 36)
• Access Notebook Instances (p. 39)
• Customize a Notebook Instance (p. 40)
• Use Example Notebooks (p. 42)
• Notebook Instance Software Updates (p. 44)
• Set the Notebook Kernel (p. 44)
• Install External Libraries and Kernels in Notebook Instances (p. 45)
• Associate Git Repositories with Amazon SageMaker Notebook Instances (p. 46)
• Get Notebook Instance Metadata (p. 54)
• Monitor Jupyter Logs in Amazon CloudWatch Logs (p. 54)

Create a Notebook Instance
To create a notebook instance, use either the Amazon SageMaker console or the
CreateNotebookInstance (p. 656) API.

After receiving the request, Amazon SageMaker does the following:

• Creates a network interface—If you choose the optional VPC configuration, it creates the network
interface in your VPC. It uses the subnet ID that you provide in the request to determine which
Availability Zone to create the subnet in. Amazon SageMaker associates the security group that you
provide in the request with the subnet. For more information, see Connect a Notebook Instance to
Resources in a VPC (p. 516).

• Launches an ML compute instance—Amazon SageMaker launches an ML compute instance in an
Amazon SageMaker VPC. Amazon SageMaker performs the configuration tasks that allow it to manage
your notebook instance, and if you specified your VPC, it enables traffic between your VPC and the
notebook instance.

• Installs Anaconda packages and libraries for common deep learning platforms—Amazon
SageMaker installs all of the Anaconda packages that are included in the installer. For more
information, see Anaconda package list. In addition, Amazon SageMaker installs the TensorFlow and
Apache MXNet deep learning libraries.

• Attaches an ML storage volume—Amazon SageMaker attaches an ML storage volume to the ML
compute instance. You can use the volume to clean up the training dataset or to temporarily store
other data to work with. Choose any size between 5 GB and 16384 GB, in 1 GB increments, for
the volume. The default is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker can't
determine the amount of available free space on the volume. Because of this, you can increase the
volume size when you update a notebook instance, but you can't decrease the volume size. If you want
to decrease the size of the ML storage volume in use, create a new notebook instance with the desired
size.

36

https://docs.anaconda.com/anaconda/packages/pkg-docs

Amazon SageMaker Developer Guide
Create a Notebook Instance

Important
Only files and data saved within the /home/ec2-user/SageMaker folder persist between
notebook instance sessions. Files and data that are saved outside this directory are
overwritten when the notebook instance stops and restarts.

Note
Each notebook instance's /tmp directory provides a minimum of 10 GB of storage in an
instant store. An instance store is temporary, block-level storage that isn't persistent. When
the instance is stopped or restarted, Amazon SageMaker deletes the directory's contents. This
temporary storage is part of the root volume of the notebook instance.

• Copies example Jupyter notebooks— These Python code examples illustrate model training and
hosting exercises using various algorithms and training datasets.

To create a notebook instance:

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances, then choose Create notebook instance.

3. On the Create notebook instance page, provide the following information:

a. For Notebook instance name, type a name for your notebook instance.

b. For Instance type, choose an instance type for your notebook instance. For a list of supported
instance types, see Amazon SageMaker Limits.

c. For Elastic Inference, choose an inference accelerator type to associate with the notebook
instance, or choose none. For information about elastic inference, see Amazon SageMaker
Elastic Inference (EI) (p. 355).

d. For IAM role, choose either an existing IAM role in your account that has the necessary
permissions to access Amazon SageMaker resources or Create a new role. If you choose Create
a new role, for Create an IAM role:

i. If you want to use S3 buckets other than the one you created in Step 1: Create an Amazon
S3 Bucket (p. 17) to store your input data and output, choose them.

The IAM role automatically has permissions to use any bucket that has sagemaker as
part of its name. The AmazonSageMakerFullAccess policy, which Amazon SageMaker
attaches to the role, gives the role those permissions.

To give access to other S3 buckets from your notebook instance

• If you're not concerned about users in your AWS account accessing your data, choose Any
S3 bucket.

• If your account has sensitive data (such as Human Resources information), restrict access
to certain buckets by choosing Specific S3 buckets. You can update the permissions
policy attached to the role you are creating later.

• To explicitly control access, restrict access by choosing None. Use bucket and object
names and tags as supported by the AmazonSageMakerFullAccess policy. For more
information, see AmazonSageMakerFullAccess Policy (p. 506).

ii. Choose Create role.

Amazon SageMaker creates an IAM role named AmazonSageMaker-
ExecutionRole-YYYYMMDDTHHmmSS. For example, AmazonSageMaker-
ExecutionRole-20171125T090800.

To see the policies that are attached to the role, use the IAM console.

Open the IAM console at https://console.aws.amazon.com/iam/.

37

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_sagemaker
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide
Create a Notebook Instance

You can see that the following policies are attached to the role:

• A trust policy that allows Amazon SageMaker to assume the role.

• The AmazonSageMakerFullAccess AWS managed policy.

• If you gave access to additional S3 bucket(s) when creating this role, the customer
managed policy attached to the role. The name of the customer managed policy is
AmazonSageMaker-ExecutionPolicy-YYYYMMDDTHHmmSS.

For more information about creating your own IAM role, see Amazon SageMaker Roles
 (p. 496).

e. For Root access, to enable root access for all notebook instance users,choose Enabled. To
disable root access for users, choose Disabled.If you enable root access, all notebook instance
users have administrator privileges and can access and edit all files on it.

Note
If you disable root access, you will still be able to set up lifecycle configurations, as
described later in this procedure.

f. (Optional) Allow access to resources in your Virtual Private Cloud (VPC).

To access resources in your VPC from the notebook instance

i. Choose the VPC and a SubnetId.

ii. For Security Group, choose your VPC's default security group. For this exercise and others
in this guide) the inbound and outbound rules of the default security group are sufficient.

iii. To allow connecting to a resource in your VPC, ensure that the resource resolves to a private
IP address in your VPC. For example, to ensure that an Amazon Redshift DNS name resolves
to a private IP address, do one of the following:

• Ensure that the Amazon Redshift cluster is not publicly accessible.

• If the Amazon Redshift cluster is publicly accessible, set the DNS resolution and DNS
hostnames VPC parameters to true. For more information, see Managing Clusters in an
Amazon Virtual Private Cloud (VPC)

iv. By default, a notebook instance can't connect to on-premises resources or to a peer
VPC. You can create a lifecycle configuration that creates an entry in your route table
that enables connection to on-premises resources or to a peer VPC. For information, see
Understanding Amazon SageMaker notebook instance networking configurations and
advanced routing options.

g. If you allowed access to resources from your VPC, enable direct internet access. For Direct
internet access, choose Enable. Without internet access, you can't train or host models from
notebooks on this notebook instance unless your VPC has a NAT gateway and your security
group allows outbound connections. For more information, see Connect a Notebook Instance to
Resources in a VPC (p. 516).

h. (Optional) To use shell scripts that run when you create or start the instance, specify a lifecycle
configuration. For information, see Customize a Notebook Instance (p. 40)

i. (Optional) If you want Amazon SageMaker to use an AWS Key Management Service (AWS KMS)
key to encrypt data in the ML storage volume attached to the notebook instance, specify the
key.

j. Specify the size, in GB, of the ML storage volume that is attached to the notebook instance. You
can choose a size between 5 GB and 16,384 GB, in 1 GB increments. You can use the volume to
clean up the training dataset when you no longer need it or to temporarily store other data to
work with.

38

https://docs.aws.amazon.com//redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com//redshift/latest/mgmt/managing-clusters-vpc.html
https://aws.amazon.com/blogs/machine-learning/understanding-amazon-sagemaker-notebook-instance-networking-configurations-and-advanced-routing-options/
https://aws.amazon.com/blogs/machine-learning/understanding-amazon-sagemaker-notebook-instance-networking-configurations-and-advanced-routing-options/

Amazon SageMaker Developer Guide
Access Notebook Instances

k. (Optional) To associate Git repositories with the notebook instance, choose a default repository
and up to three additional repositories. For more information, see Associate Git Repositories
with Amazon SageMaker Notebook Instances (p. 46).

l. Choose Create notebook instance.

In a few minutes, Amazon SageMaker launches an ML compute instance—in this case, a
notebook instance—and attaches an ML storage volume to it. The notebook instance has a
preconfigured Jupyter notebook server and a set of Anaconda libraries. For more information,
see the CreateNotebookInstance (p. 656) API.

4. When the status of the notebook instance is InService, choose Open Jupyter next to its name to
open the classic Jupyter dashboard, or choose Open JupyterLab to open the JupyterLab dashboard.
For more information, see Access Notebook Instances (p. 39).

The dashboard provides access to:

• Sample notebooks. Amazon SageMaker provides sample notebooks that contain complete code
walkthroughs. These walkthroughs show how to use Amazon SageMaker to perform common
machine learning tasks. For more information, see Use Example Notebooks (p. 42).

• The kernels for Jupyter, including those that provide support for Python 2 and 3, Apache MXNet,
TensorFlow, PySpark, and R. To create a new notebook and choose a kernel for that notebook, use
the New menu.

For more information about Jupyter notebooks, see The Jupyter notebook.

Access Notebook Instances
To access your Amazon SageMaker notebook instances, choose one of the following options:

• Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

Choose Notebook instances. The console displays a list of notebook instances in your account. To
open a notebook instance with a standard Jupyter interface, choose Open Jupyter for that instance.
To open a notebook instance with a JupyterLab interface, choose Open JupyterLab for that instance.

The console uses your sign-in credentials to send a CreatePresignedNotebookInstanceUrl (p. 665) API
request to Amazon SageMaker. Amazon SageMaker returns the URL for your notebook instance, and
the console opens the URL in another browser tab and displays the Jupyter notebook dashboard.

Note
The URL that you get from a call to CreatePresignedNotebookInstanceUrl (p. 665) is valid
only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed
to the AWS Management Console sign-in page.

• Use the API.

To get the URL for the notebook instance, call the CreatePresignedNotebookInstanceUrl (p. 665) API
and use the URL that the API returns to open the notebook instance.

39

https://jupyter-notebook.readthedocs.io/en/stable/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Control Root Access to a Notebook Instance

Use the Jupyter notebook dashboard to create and manage notebooks and to write code. For more
information about Jupyter notebooks, see http://jupyter.org/documentation.html.

Control Root Access to a Notebook Instance
By default, when you create a notebook instance, users that log into that notebook instance have root
access. Data science is an iterative process that might require the data scientist to test and use different
software tools and packages, so many notebook instance users need to have root access to be able to
install these tools and packages. Because users with root access have administrator privileges, users can
access and edit all files on a notebook instance with root access enabled.

If you don't want users to have root access to a notebook instance, when you call
CreateNotebookInstance (p. 656) or UpdateNotebookInstance (p. 844) operations, set the
RootAccess field to Disabled. You can also disable root access for users when you create or update
a notebook instance in the Amazon SageMaker console. For information, see Step 2: Create an Amazon
SageMaker Notebook Instance (p. 17).

Note
Lifecycle configurations need root access to be able to set up a notebook instance. Because of
this, lifecycle configurations associated with a notebook instance always run with root access
even if you disable root access for users.

Customize a Notebook Instance
To install packages or sample notebooks on your notebook instance, configure networking and security
for it, or otherwise use a shell script to customize it, use a lifecycle configuration. A lifecycle configuration
provides shell scripts that run only when you create the notebook instance or whenever you start one.
When you create a notebook instance, you can create a new lifecycle configuration and the scripts it uses
or apply one that you already have.

The Amazon SageMaker team maintains a public repository of notebook intance lifecycle configurations
that address common use cases for customizing notebook instances at https://github.com/aws-samples/
amazon-sagemaker-notebook-instance-lifecycle-configuration-samples.

Note
Each script has a limit of 16384 characters.
The value of the $PATH environment variable that is available to both scripts is /usr/local/
sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin. The working directory, which
is the value of the $PWD environment variable, is /.
View CloudWatch Logs for notebook instance lifecycle configurations in log group /
aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/
[LifecycleConfigHook].
Scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails
and the notebook instance is not created or started. To help decrease the run time of scripts, try
the following:

• Cut down on necessary steps. For example, limit which conda environments in which to install
large packages.

• Run tasks in parallel processes.

• Use the nohup command in your script.

To create a lifecycle configuration

1. For Lifecycle configuration - Optional, choose Create a new lifecycle configuration.

40

http://jupyter.org/documentation.html
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-configuration-samples
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-configuration-samples

Amazon SageMaker Developer Guide
Lifecycle Configuration Best Practices

2. For Name, type a name.
3. (Optional) To create a script that runs when you create the notebook and every time you start it,

choose Start notebook.
4. In the Start notebook editor, type the script.
5. (Optional) To create a script that runs only once, when you create the notebook, choose Create

notebook.
6. In the Create notebook editor, type the script configure networking.
7. Choose Create configuration.

You can see a list of notebook instance lifecycle configurations you previously created by choosing
Lifecycle configuration in the Amazon SageMaker console. From there, you can view, edit, delete
existing lifecycle configurations. You can create a new notebook instance lifecycle configuration by
choosing Create configuration. These notebook instance lifecycle configurations are available when you
create a new notebook instance.

Lifecycle Configuration Best Practices
The following are best practices for using lifecycle configurations:

• Lifecycle configurations run as the root user. If your script makes any changes within the /home/ec2-
user/SageMaker directory, (for example, installing a package with pip), use the command sudo -u
ec2-user command to run as the ec2-user user. This is the same user that Amazon SageMaker runs
as.

• Amazon SageMaker notebook instances use conda environments to implement different kernels for
Jupyter notebooks. If you want to install packages that are available to one or more notebook kernels,
enclose the commands to install the packages with conda environment commands that activate the
conda environment that contains the kernel where you want to install the packages.

For example, if you want to install a package only in for the python3 environment, use the following
code:

#!/bin/bash
sudo -u ec2-user -i <<'EOF'

This will affect only the Jupyter kernel called "conda_python3".
source activate python3

Replace myPackage with the name of the package you want to install.
pip install myPackage
You can also perform "conda install" here as well.

source deactivate

EOF

If you want to install a package in all conda environments in the notebook instance, use the following
code:

#!/bin/bash
sudo -u ec2-user -i <<'EOF'

Note that "base" is special environment name, include it there as well.
for env in base /home/ec2-user/anaconda3/envs/*; do
 source /home/ec2-user/anaconda3/bin/activate $(basename "$env")

 # Installing packages in the Jupyter system environment can affect stability of your
 SageMaker

41

Amazon SageMaker Developer Guide
Use Example Notebooks

 # Notebook Instance. You can remove this check if you'd like to install Jupyter
 extensions, etc.
 if [$env = 'JupyterSystemEnv']; then
 continue
 fi

 # Replace myPackage with the name of the package you want to install.
 pip install --upgrade --quiet myPackage
 # You can also perform "conda install" here as well.

 source /home/ec2-user/anaconda3/bin/deactivate
done

EOF

Important
When you create or change a script file, we recommend you use Create notebook editor or
a text editor that allows for Unix style line breaks. Copying text from a non Linux operating
system might include incompatible line breaks and result in an unexpected error.

Use Example Notebooks
Your notebook instance contains example notebooks provided by Amazon SageMaker. The example
notebooks contain code that shows how to apply machine learning solutions by using Amazon
SageMaker. Notebook instances use the nbexamples Jupyter extension, which enables you to view a
read-only version of an example notebook or create a copy of it so that you can modify and run it. For
more information about the nbexamples extension, see https://github.com/danielballan/nbexamples.

Note
Example notebooks typically download datasets from the internet. If you disable Amazon
SageMaker-provided internet access when you create you notebook instance, example
notebooks might not work. For more information, see Connect a Notebook Instance to
Resources in a VPC (p. 516).

Use or View Example Notebooks in Jupyter Classic
To view or use the example notebooks in the classic Jupyter view, choose the SageMaker Examples tab.

To view a read-only version of an example notebook in the Jupyter classic view, on the SageMaker
Examples tab, choose Preview for that notebook. To create a copy of an example notebook in the home
directory of your notebook instance, choose Use. In the dialog box, you can change the notebook's name
before saving it.

42

https://github.com/danielballan/nbexamples

Amazon SageMaker Developer Guide
Use or View Example Notebooks in Jupyterlab

Use or View Example Notebooks in Jupyterlab
To view or use the example notebooks in the Jupyterlab view, choose the examples icon in the left
navigation panel.

43

Amazon SageMaker Developer Guide
Notebook Instance Software Updates

To view a read-only version of an example notebook, choose the name of the notebook. This opens the
notebook as a tab in the main area. To create a copy of an example notebook in the home directory of
your notebook instance, choose Create a Copy in the top banner. In the dialog box, type a name for the
notebook and then choose CREATE COPY.

For more information about the example notebooks, see the Amazon SageMaker examples GitHub
repository.

Notebook Instance Software Updates
Amazon SageMaker periodically tests and releases software that is installed on notebook instances. This
includes:

• Kernel updates

• Security patches

• AWS SDK updates

• Amazon SageMaker Python SDK updates

• Open source software updates

Amazon SageMaker does not automatically update software on a notebook instance when it is in service.
To ensure that you have the most recent software updates, stop and restart your notebook instance,
either in the Amazon SageMaker console or by calling StopNotebookInstance (p. 832) followd by
StartNotebookInstance (p. 824).

You can also manually update software installed on your notebook instance while it is running by using
update commands in a terminal or in a notebook.

Note
Updating kernels and some packages might depend on whether root access is enabled
for the notebook instance. For more information, see Control Root Access to a Notebook
Instance (p. 40).

Notebook instances do not notify you if you are running outdated software. You can check the Personal
Health Dashboard or the security bulletin at https://aws.amazon.com/security/security-bulletins/ for
updates.

Set the Notebook Kernel
Amazon SageMaker provides several kernels for Jupyter that provide support for Python 2 and 3, Apache
MXNet, TensorFlow, and PySpark. To set a kernel for a new notebook in the Jupyter notebook dashboard,
choose New, and then choose the kernel from the list.

44

https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples
https://aws.amazon.com//premiumsupport/technology/personal-health-dashboard/
https://aws.amazon.com//premiumsupport/technology/personal-health-dashboard/
https://aws.amazon.com/security/security-bulletins/

Amazon SageMaker Developer Guide
Install External Libraries and Kernels in Notebook Instances

Install External Libraries and Kernels in Notebook
Instances

Amazon SageMaker notebook instances come with multiple environments already installed. These
environments contain Jupyter kernels and Python packages including: scikit, Pandas, NumPy,
TensorFlow, and MXNet. These environments, along with all files in the sample-notebooks folder, are
refreshed when you stop and start a notebook instance. You can also install your own environments
that contain your choice of packages and kernels. This is typically done using conda install or pip
install.

The different Jupyter kernels in Amazon SageMaker notebook instances are separate conda
environments. For information about conda environments, see Managing environments in the Conda
documentation. If you want to use an external library in a specific kernel, install the library in the
environment for that kernel. You can do this either in the terminal or in a notebook cell. The following
procedures show how to install Theano so that you can use it in a notebook with a conda_mxnet_p36
kernel.

To install Theano from a terminal

1. Open a notebook instance.
2. In the Jupyter dashboard, choose New, and then choose Terminal.
3. In the terminal, type the following commands:

conda install -n mxnet_p36 -c conda-forge theano
 python
 import theano

To install Theano from a Jupyter notebook cell

1. Open a notebook instance.
2. In the Jupyter dashboard, choose New, and then choose conda_mxnet_p36.
3. In a cell in the new notebook, type the following command:

!pip install theano

Maintain a Sandboxed Python Environment
Amazon SageMaker periodically updates the Python and dependency versions in the environments
installed on a notebook instance when it is stopped and restarted. For more information, see Notebook
Instance Software Updates (p. 44). To maintain an isolated Python environment that does not change
versions, create a lifecycle configuration that runs each time you start your notebook instance. For
information about creating lifecycle configurations, see Customize a Notebook Instance (p. 40).

The following example lifecycle configuration script installs Miniconda on your notebook instance.
This allows you to create environments in your notebook instance with specific versions of Python and
dependencies that Amazon SageMaker does not update:

#!/bin/bash

set -e

WORKING_DIR=/home/ec2-user/.myproject

45

https://conda.io/docs/user-guide/tasks/manage-environments.html

Amazon SageMaker Developer Guide
Associate Git Repositories with Amazon

SageMaker Notebook Instances

mkdir -p "$WORKING_DIR"

Install Miniconda to get a separate python and pip
wget https://repo.anaconda.com/miniconda/Miniconda3-4.5.12-Linux-x86_64.sh -O
 "$WORKING_DIR/miniconda.sh"

Install Miniconda into the working directory
bash "$WORKING_DIR/miniconda.sh" -b -u -p "$WORKING_DIR/miniconda"

Install pinned versions of any dependencies
source "$WORKING_DIR/miniconda/bin/activate"
pip install boto3==1.9.86
pip install requests==2.21.0

Bootstrapping code

Cleanup
source "$WORKING_DIR/miniconda/bin/deactivate"
rm -rf "$WORKING_DIR/miniconda.sh"

You can also add a sandboxed Python installation as a kernel that you can use in a Jupyter notebook by
including the following code to the above lifecycle configuration:

source "$WORKING_DIR/miniconda/bin/activate"

If required, add this as a kernel
pip install ipykernel
python -m ipykernel install --user --name MyProjectEnv --display-name "Python
 (myprojectenv)"

source "$WORKING_DIR/miniconda/bin/deactivate"

Associate Git Repositories with Amazon SageMaker
Notebook Instances

Associate Git repositories with your notebook instance to save your notebooks in a source control
environment that persists even if you stop or delete your notebook instance. You can associate one
default repository and up to three additional repositories with a notebook instance. The repositories can
be hosted in AWS CodeCommit, GitHub or on any other Git server. Associating Git repositories with your
notebook instance can be useful for:

• Persistence - Notebooks in a notebook instance are stored on durable Amazon EBS volumes, but they
do not persist beyond the life of your notebook instance. Storing notebooks in a Git repository enables
you to store and use notebooks even if you stop or delete your notebook instance.

• Collaboration - Peers on a team often work on machine learning projects together. Storing your
notebooks in Git repositories allows peers working in different notebook instances to share notebooks
and collaborate on them in a source-control environment.

• Learning - Many Jupyter notebooks that demonstrate machine learning techniques are available in
publicly hosted Git repositories, such as on GitHub. You can associate your notebook instance with a
repository to easily load Jupyter notebooks contained in that repository.

There are two ways to associate a Git repository with a notebook instance:

• Add a Git repository as a resource in your Amazon SageMaker account. Then, to access the repository,
you can specify an AWS Secrets Manager secret that contains credentials. That way, you can access
repositories that require authentication.

46

Amazon SageMaker Developer Guide
Add a Git Repository to Your Amazon SageMaker Account

• Associate a public Git repository that is not a resource in your account. If you do this, you cannot
specify credentials to access the repository.

Topics
• Add a Git Repository to Your Amazon SageMaker Account (p. 47)
• Create a Notebook Instance with an Associated Git Repository (p. 49)
• Associate a CodeCommit Repository in a Different AWS Account with a Notebook Instance (p. 51)
• Use Git Repositories in a Notebook Instance (p. 52)

Add a Git Repository to Your Amazon SageMaker
Account
To manage your GitHub repositories, easily associate them with your notebook instances, and associate
credentials for repositories that require authentication, add the repositories as resources in your Amazon
SageMaker account. You can view a list of repositories that are stored in your account and details about
each repository in the Amazon SageMaker console and by using the API.

You can add Git repositories to your Amazon SageMaker account in the Amazon SageMaker console or by
using the AWS CLI.

Note
You can use the Amazon SageMaker API CreateCodeRepository (p. 627) to add Git repositories
to your Amazon SageMaker account, but step-by-step instructions are not provided here.

Add a Git Repository to Your Amazon SageMaker Account
(Console)
To add a Git repository as a resource in your Amazon SageMaker account

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Git repositories, then choose Add repository.
3. To add an CodeCommit repository, choose AWS CodeCommit.

a. To use an existing CodeCommit repository:

i. Choose Use existing repository.
ii. For Repository, choose a repository from the list.
iii. Enter a name to use for the repository in Amazon SageMaker. The name must be 1 to 63

characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
iv. Choose Add repository.

b. To create a new CodeCommit repository:

i. Choose Create new repository.
ii. Enter a name for the repository that you can use in both CodeCommit and Amazon

SageMaker. The name must be 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and -
(hyphen).

iii. Choose Create repository.
4. To add a Git repository hosted somewhere other than CodeCommit :

a. Choose GitHub/Other Git-based repo.
b. Enter a name to use for the repository in Amazon SageMaker. The name must be 1 to 63

characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

47

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Add a Git Repository to Your Amazon SageMaker Account

c. Enter the URL for the repository.

Note
Do not provide a user name in the URL. Add the username and password in AWS
Secrets Manager as described in the next step.

d. For Git credentials, choose the credentials to use to authenticate to the repository. This is
necessary only if the Git repository is private.

Note
If you have two-factor authentication enabled for your Git repository, use a personal
access token generated by your Git service provider instead of a password.

i. To use an existing AWS Secrets Manager secret, choose Use existing secret, and then
choose a secret from the list. For information about creating and storing a secret, see
Creating a Basic Secret in the AWS Secrets Manager User Guide. The name of the secret you
use must contain the string sagemaker.

Note
The secret must have a staging label of AWSCURRENT and must be in the following
format:
{"username": UserName, "password": Password}
For GitHub repositories, we recommend using a personal access token instead of
your account password. For information, see https://help.github.com/articles/
creating-a-personal-access-token-for-the-command-line/.

ii. To create a new AWS Secrets Manager secret, choose Create secret, enter a name for the
secret, and then enter the username and password to use to authenticate to the repository.
The name for the secret must contain the string sagemaker.

Note
The IAM role you use to create the secret must have the
secretsmanager:GetSecretValue permission in its IAM policy.
The secret must have a staging label of AWSCURRENT and must be in the following
format:
{"username": UserName, "password": Password}
For GitHub repositories, we recommend using a personal access token instead of
your account password.

iii. To not use any credentials, choose No secret.

e. Choose Create secret.

Add a Git Repository to Your Amazon SageMaker Account (CLI)

Use the create-code-repository AWS CLI command. Specify a name for the repository as the value
of the code-repository-name argument. The name must be 1 to 63 characters. Valid characters are a-
z, A-Z, 0-9, and - (hyphen). Also specify the following:

• The default branch

• The URL of the Git repository

Note
Do not provide a user name in the URL. Add the username and password in AWS Secrets
Manager as described in the next step.

• The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the credentials to
use to authenticate the repository as the value of the git-config argument

For information about creating and storing a secret, see Creating a Basic Secret in the AWS Secrets
Manager User Guide. The following command creates a new repository named MyRespository in

48

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

Amazon SageMaker Developer Guide
Create a Notebook Instance with

an Associated Git Repository

your Amazon SageMaker account that points to a Git repository hosted at https://github.com/
myprofile/my-repo".

For Linux, OS X, or Unix:

aws sagemaker create-code-repository \
 --code-repository-name "MyRepository" \
 --git-config '{"Branch":"master", "RepositoryUrl" :
 "https://github.com/myprofile/my-repo", "SecretArn" :
 "arn:aws:secretsmanager:us-east-2:012345678901:secret:my-secret-ABc0DE"}'

For Windows:

aws sagemaker create-code-repository ^
 --code-repository-name "MyRepository" ^
 --git-config "{\"Branch\":\"master\", \"RepositoryUrl\" :
 \"https://github.com/myprofile/my-repo\", \"SecretArn\" :
 \"arn:aws:secretsmanager:us-east-2:012345678901:secret:my-secret-ABc0DE\"}"

Note
The secret must have a staging label of AWSCURRENT and must be in the following format:
{"username": UserName, "password": Password}
For GitHub repositories, we recommend using a personal access token instead of your account
password.

Create a Notebook Instance with an Associated Git
Repository
You can associate Git repositories with a notebook instance when you create the notebook instance by
using the AWS Management Console, or the AWS CLI.

Note
You can use the Amazon SageMaker API CreateNotebookInstance (p. 656) to associate Git
repositories with a notebook instance, but step-by-step instructions are not provided here.

Note
If you want to use a CodeCommit repository that is in a different AWS than the notebook
instance,set up cross-account access for the repository. For information, see Associate a
CodeCommit Repository in a Different AWS Account with a Notebook Instance (p. 51).

Topics
• Create a Notebook Instance with an Associated Git Repository (Console) (p. 49)
• Create a Notebook Instance with an Associated Git Repository (CLI) (p. 50)

Create a Notebook Instance with an Associated Git Repository
(Console)
To create a notebook instance and associate Git repositories in the AWS Management
Console

1. Follow the instructions at Step 2: Create an Amazon SageMaker Notebook Instance (p. 17).
2. For Git repositories, choose Git repositories to associate with the notebook instance.

a. For Default repository, choose a repository that you want to use as your default repository.
Amazon SageMaker clones this repository as a subdirectory in the Jupyter startup directory

49

Amazon SageMaker Developer Guide
Create a Notebook Instance with

an Associated Git Repository

at /home/ec2-user/SageMaker. When you open your notebook instance, it opens in this
repository. To choose a repository that is stored as a resource in your account, choose its
name from the list. To add a new repository as a resource in your account, choose Add a
repository to Amazon SageMaker (opens the Add repository flow in a new window) and
then follow the instructions at Create a Notebook Instance with an Associated Git Repository
(Console) (p. 49). To clone a public repository that is not stored in your account, choose
Clone a public Git repository to this notebook instance only, and then specify the URL for that
repository.

b. For Additional repository 1, choose a repository that you want to add as an additional
directory. Amazon SageMaker clones this repository as a subdirectory in the Jupyter startup
directory at /home/ec2-user/SageMaker. To choose a repository that is stored as a resource
in your account, choose its name from the list. To add a new repository as a resource in your
account, choose Add a repository to Amazon SageMaker (opens the Add repository flow
in a new window) and then follow the instructions at Create a Notebook Instance with an
Associated Git Repository (Console) (p. 49). To clone a repository that is not stored in your
account, choose Clone a public Git repository to this notebook instance only, and then specify
the URL for that repository.

Repeat this step up to three times to add up to three additional repositories to your notebook
instance.

Create a Notebook Instance with an Associated Git Repository
(CLI)
To create a notebook instance and associate Git repositories by using the AWS CLI, use the create-
notebook-instance command as follows:

• Specify the repository that you want to use as your default repository as the value of the default-
code-repository argument. Amazon SageMaker clones this repository as a subdirectory in the
Jupyter startup directory at /home/ec2-user/SageMaker. When you open your notebook instance,
it opens in this repository. To use a repository that is stored as a resource in your Amazon SageMaker
account, specify the name of the repository as the value of the default-code-repository
argument. To use a repository that is not stored in your account, specify the URL of the repository as
the value of the default-code-repository argument.

• Specify up to three additional repositories as the value of the additional-code-repositories
argument. Amazon SageMaker clones this repository as a subdirectory in the Jupyter startup directory
at /home/ec2-user/SageMaker, and the repository is excluded from the default repository by
adding it to the .git/info/exclude directory of the default repository. To use repositories that
are stored as resources in your Amazon SageMaker account, specify the names of the repositories
as the value of the additional-code-repositories argument. To use repositories that are not
stored in your account, specify the URLs of the repositories as the value of the additional-code-
repositories argument.

For example, the following command creates a notebook instance that has a repository named
MyGitRepo, that is stored as a resource in your Amazon SageMaker account, as a default repository, and
an additional repository that is hosted on GitHub:

aws sagemaker create-notebook-instance \
 --notebook-instance-name "MyNotebookInstance" \
 --instance-type "ml.t2.medium" \
 --role-arn "arn:aws:iam::012345678901:role/service-role/
AmazonSageMaker-ExecutionRole-20181129T121390" \
 --default-code-repository "MyGitRepo" \
 --additional-code-repositories "https://github.com/myprofile/my-other-
repo"

50

Amazon SageMaker Developer Guide
Associate a CodeCommit Repository in a

Different AWS Account with a Notebook Instance

Note
If you use an AWS CodeCommit repository that does not contain "SageMaker" in its name, add
the codecommit:GitPull and codecommit:GitPush permissions to the role that you pass
as the role-arn argument to the create-notebook-instance command. For information
about how to add permissions to a role, see Adding and Removing IAM Policies in the AWS
Identity and Access Management User Guide.

Associate a CodeCommit Repository in a Different
AWS Account with a Notebook Instance
To associate a CodeCommit repository in a different AWS account with your notebook instance, set up
cross-account access for the CodeCommit repository.

To set up cross-account access for a CodeCommit repository and associate it with a notebook
instance:

1. In the AWS account that contains the CodeCommit repository, create an IAM policy that allows
access to the repository from users in the account that contains your notebook instance. For
information, see Step 1: Create a Policy for Repository Access in AccountA in the CodeCommit User
Guide.

2. In the AWS account that contains the CodeCommit repository, create an IAM role, and attach the
policy that you created in the previous step to that role. For information, see Step 2: Create a Role
for Repository Access in AccountA in the CodeCommit User Guide.

3. Create a profile in the notebook instance that uses the role that you created in the previous step:

a. Open the notebook instance.

b. Open a terminal in the notebook instance.

c. Edit a new profile by typing the following in the terminal:

vi /home/ec2-user/.aws/config

d. Edit the file with the following profile information:

[profile CrossAccountAccessProfile]
region = us-west-2
role_arn =
 arn:aws:iam::CodeCommitAccount:role/CrossAccountRepositoryContributorRole
credential_source=Ec2InstanceMetadata
output = json

Where CodeCommitAccount is the account that contains the CodeCommit
repository, CrossAccountAccessProfile is the name of the new profile, and
CrossAccountRepositoryContributorRole is the name of the role you created in the
previous step.

4. On the notebook instance, configure git to use the profile you created in the previous step:

a. Open the notebook instance.

b. Open a terminal in the notebook instance.

c. Edit the Git configuration file typing the following in the terminal:

vi /home/ec2-user/.gitconfig

d. Edit the file with the following profile information:

51

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account-administrator-a.html#cross-account-create-policy-a
https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account-administrator-a.html#cross-account-create-role-a
https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account-administrator-a.html#cross-account-create-role-a

Amazon SageMaker Developer Guide
Use Git Repositories in a Notebook Instance

[credential]
 helper = !aws codecommit credential-helper --
profile CrossAccountAccessProfile $@
 UseHttpPath = true

Where CrossAccountAccessProfile is the name of the profile that you created in the
previous step.

Use Git Repositories in a Notebook Instance
When you open a notebook instance that has Git repositories associated with it, it opens in the default
repository, which is installed in your notebook instance directly under /home/ec2-user/SageMaker.
You can open and create notebooks, and you can manually run Git commands in a notebook cell. For
example:

!git pull origin master

To open any of the additional repositories, navigate up one folder. The additional repositories are also
installed as directories under /home/ec2-user/SageMaker.

If you open the notebook instance with a JupyterLab interface, the jupyter-git extension is installed and
available to use. For information about the jupyter-git extension for JupyterLab, see https://github.com/
jupyterlab/jupyterlab-git.

When you open a notebook instance in JupyterLab, you see the git repositories associated with it on the
left menu:

52

https://github.com/jupyterlab/jupyterlab-git
https://github.com/jupyterlab/jupyterlab-git

Amazon SageMaker Developer Guide
Use Git Repositories in a Notebook Instance

You can use the jupyter-git extension to manage git visually, instead of using the command line:

53

Amazon SageMaker Developer Guide
Get Notebook Instance Metadata

Get Notebook Instance Metadata
When you create a notebook instance, Amazon SageMaker creates a JSON file on the instance at the
location /opt/ml/metadata/resource-metadata.json that contains the ResourceName and
ResourceArn of the notebook instance. You can access this metadata from anywhere within the
notebook instance, including in lifecycle configurations. For information about notebook instance
lifecycle configurations, see Customize a Notebook Instance (p. 40).

The resource-metadata.json file has the following structure:

{
 "ResourceArn": "NotebookInstanceArn",
 "ResourceName": "NotebookInstanceName"
}

You can use this metadata from within the notebook instance to get other information about the
notebook instance. For example, the following commands get the tags associated with the notebook
instance:

NOTEBOOK_ARN=$(jq '.ResourceArn'
 /opt/ml/metadata/resource-metadata.json --raw-output)
aws sagemaker list-tags --resource-arn $NOTEBOOK_ARN

The out put looks like the following:

{
 "Tags": [
 {
 "Key": "test",
 "Value": "true"
 }
]
}

Monitor Jupyter Logs in Amazon CloudWatch Logs
Jupyter logs include important information such as events, metrics, and health information that provide
actionable insights when running Amazon SageMaker notebooks. By importing Jupyter logs into
CloudWatch Logs, customers can use CloudWatch Logs to detect anomalous behaviors, set alarms, and
discover insights to keep the Amazon SageMaker notebooks running more smoothly. You can access the
logs even when the Amazon EC2 instance that hosts the notebook is unresponsive, and use the logs to
troubleshoot the unresponsive notebook. Sensitive information such as AWS account IDs, secret keys,
and authentication tokens in presigned URLs are removed so that customers can share logs without
leaking private information.

To view Jupyter logs for a notebook instance:

1. Sign in to the AWS Management Console and open the Amazon SageMaker console at https://
console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances.
3. In the list of notebook instances, choose the notebook instance for which you want to view Jupyter

logs.
4. Under Monitor on the notebook instance details page, choose View logs.

54

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Monitor Jupyter Logs in Amazon CloudWatch Logs

5. In the CloudWatch console, choose the log stream for your notebook intance. Its name is in the form
NotebookInstanceName/jupyter.log.

For more information about monitoring CloudWatch logs for Amazon SageMaker, see Log Amazon
SageMaker Events with Amazon CloudWatch (p. 466).

55

Amazon SageMaker Developer Guide
Use Built-in Algorithms

Build a Model
To build a machine learning model in Amazon SageMaker, you have the following options:

• Use one of the built-in algorithims. Amazon SageMaker provides several built-in machine learning
algorithms that you can use for a variety of problem types. For more information, see Use Amazon
SageMaker Built-in Algorithms (p. 56).

• Write a custom training script in a machine learning framework that Amazon SageMaker supports, and
use one of the pre-built framework containers to run it in Amazon SageMaker. For information, see Use
Machine Learning Frameworks with Amazon SageMaker (p. 440).

• Bring your own algorithm or model to train or host in Amazon SageMaker. For information, see Use
Your Own Algorithms or Models with Amazon SageMaker (p. 384).

• Use an algorithm that you subscribe to from AWS Marketplace. For information, see Amazon
SageMaker Resources in AWS Marketplace (p. 428).

Topics

• Use Amazon SageMaker Built-in Algorithms (p. 56)

Use Amazon SageMaker Built-in Algorithms
A machine learning algorithm uses example data to create a generalized solution (a model) that
addresses the business question you are trying to answer. After you create a model using example data,
you can use it to answer the same business question for a new set of data. This is also referred to as
obtaining inferences.

Amazon SageMaker provides several built-in machine learning algorithms that you can use for a variety
of problem types.

Because you create a model to address a business question, your first step is to understand the problem
that you want to solve. Specifically, the format of the answer that you are looking for influences the
algorithm that you choose. For example, suppose that you are a bank marketing manager, and that
you want to conduct a direct mail campaign to attract new customers. Consider the potential types of
answers that you're looking for:

• Answers that fit into discrete categories—For example, answers to these questions:

• "Based on past customer responses, should I mail this particular customer?" Answers to this question
fall into two categories, "yes" or "no." In this case, you use the answer to narrow the recipients of the
mail campaign.

• "Based on past customer segmentation, which segment does this customer fall into?" Answers might
fall into categories such as "empty nester," "suburban family," or "urban professional." You could use
these segments to decide who should receive the mailing.

56

Amazon SageMaker Developer Guide
Use Built-in Algorithms

For this type of discrete classification problem, Amazon SageMaker provides two algorithms:
Linear Learner Algorithm (p. 162) and the XGBoost Algorithm (p. 255). You set the following
hyperparameters to direct these algorithms to produce discrete results:

• For the Linear Learner algorithm, set the predictor_type hyperparameter to
binary_classifier.

• For the XGBoost algorithm, set the objective hyperparameter to reg:logistic.

• Answers that are quantitative—Consider this question: "Based on the return on investment (ROI)
from past mailings, what is the ROI for mailing this customer?” In this case, you use the ROI to target
customers for the mail campaign. For these quantitative analysis problems, you can also use the Linear
Learner Algorithm (p. 162) or the XGBoost Algorithm (p. 255) algorithms. You set the following
hyperparameters to direct these algorithms to produce quantitative results:

• For the Linear Learner algorithm, set the predictor_type hyperparameter to regressor.

• For the XGBoost algorithm, set the objective hyperparameter to reg:linear.

• Answers in the form of discrete recommendations—Consider this question: "Based on past responses
to mailings, what is the recommended content for each customer?" In this case, you are looking for
a recommendation on what to mail, not whether to mail, the customer. For this problem, Amazon
SageMaker provides the Factorization Machines Algorithm (p. 98) algorithm.

All of the questions in the preceding examples rely on having example data that includes answers. There
are times that you don't need, or can't get, example data with answers. This is true for problems whose
answers identify groups. For example:

• "I want to group current and prospective customers into 10 groups based on their attributes. How
should I group them? " You might choose to send the mailing to customers in the group that has the
highest percentage of current customers. That is, prospective customers that most resemble current
customers based on the same set of attributes. For this type of question, Amazon SageMaker provides
the K-Means Algorithm (p. 141).

• "What are the attributes that differentiate these customers, and what are the values for each customer
along those dimensions." You use these answers to simplify the view of current and prospective
customers, and, maybe, to better understand these customer attributes. For this type of question,
Amazon SageMaker provides the Principal Component Analysis (PCA) Algorithm (p. 222) algorithm.

In addition to these general-purpose algorithms, Amazon SageMaker provides algorithms that are
tailored to specific use cases. These include:

• Image Classification Algorithm (p. 108)—Use this algorithm to classify images. It uses example data
with answers (referred to as supervised algorithm).

57

Amazon SageMaker Developer Guide
Common Information

• Sequence-to-Sequence Algorithm (p. 242)—This supervised algorithm is commonly used for neural
machine translation.

• Latent Dirichlet Allocation (LDA) Algorithm (p. 157)—This algorithm is suitable for determining
topics in a set of documents. It is an unsupervised algorithm, which means that it doesn't use example
data with answers during training.

• Neural Topic Model (NTM) Algorithm (p. 177)—Another unsupervised technique for determining
topics in a set of documents, using a neural network approach.

Topics

• Common Elements of Built-in Algorithms (p. 58)

• BlazingText Algorithm (p. 74)

• DeepAR Forecasting Algorithm (p. 83)

• Factorization Machines Algorithm (p. 98)

• Image Classification Algorithm (p. 108)

• IP Insights Algorithm (p. 131)

• K-Means Algorithm (p. 141)

• K-Nearest Neighbors (k-NN) Algorithm (p. 148)

• Latent Dirichlet Allocation (LDA) Algorithm (p. 157)

• Linear Learner Algorithm (p. 162)

• Neural Topic Model (NTM) Algorithm (p. 177)

• Object2Vec Algorithm (p. 183)

• Object Detection Algorithm (p. 199)

• Principal Component Analysis (PCA) Algorithm (p. 222)

• Random Cut Forest (RCF) Algorithm (p. 226)

• Semantic Segmentation Algorithm (p. 234)

• Sequence-to-Sequence Algorithm (p. 242)

• XGBoost Algorithm (p. 255)

Common Elements of Built-in Algorithms
The following topics provide information common to all of the algorithms provided by Amazon
SageMaker.

Topics

• Common Parameters for Built-In Algorithms (p. 58)

• Common Data Formats for Built-in Algorithms (p. 64)

• Instance Types for Built-in Algorithms (p. 72)

• Logs for Built-In Algorithms (p. 73)

Common Parameters for Built-In Algorithms
The following table lists parameters for each of the algorithms provided by Amazon SageMaker.

58

Amazon SageMaker Developer Guide
Common Information

Algorithm
Name

Channel
Name

Training Image and
Inference Image Registry
Path

Training
Input
Mode

File Type Instance
Class

Parallelizable

BlazingText train <ecr_path>/
blazingtext:<tag>

File or
Pipe

Text file
(one
sentence
per line
with
space-
separated
tokens)

GPU
(single
instance
only) or
CPU

No

DeepAR
Forecasting

train and
(optionally)
test

<ecr_path>/forecasting-
deepar:<tag>

File JSON
Lines or
Parquet

GPU or
CPU

Yes

Factorization
Machines

train and
(optionally)
test

<ecr_path>/factorization-
machines:<tag>

File or
Pipe

recordIO-
protobuf

CPU (GPU
for dense
data)

Yes

Image
Classification

train and
validation,
(optionally)
train_lst,
validation_lst,
and
model

<ecr_path>/image-
classification:<tag>

File or
Pipe

recordIO
or image
files (.jpg
or .png)

GPU Yes

IP
Insights

train and
(optionally)
validation

<ecr_path>/
ipinsights:<tag>

File CSV CPU or
GPU

Yes

k-means train and
(optionally)
test

<ecr_path>/kmeans:<tag> File or
Pipe

recordIO-
protobuf
or CSV

CPU or
GPUCommon
(single
GPU
device
on one
or more
instances)

No

k-nearest-
neighbor
(k-NN)

train and
(optionally)
test

<ecr_path>/knn:<tag> File or
Pipe

recordIO-
protobuf
or CSV

CPU or
GPU
(single
GPU
device
on one
or more
instances)

Yes

LDA train and
(optionally)
test

<ecr_path>/lda:<tag> File or
Pipe

recordIO-
protobuf
or CSV

CPU
(single
instance
only)

No

59

Amazon SageMaker Developer Guide
Common Information

Algorithm
Name

Channel
Name

Training Image and
Inference Image Registry
Path

Training
Input
Mode

File Type Instance
Class

Parallelizable

Linear
Learner

train and
(optionally)
validation,
test, or
both

<ecr_path>/linear-
learner:<tag>

File or
Pipe

recordIO-
protobuf
or CSV

CPU or
GPU

Yes

Neural
Topic
Model

train and
(optionally)
validation,
test, or
both

<ecr_path>/ntm:<tag> File or
Pipe

recordIO-
protobuf
or CSV

GPU or
CPU

Yes

Object2Vec train and
(optionally)
validation,
test, or
both

<ecr_path>/
object2vec:<tag>

File JSON
Lines

GPU
or CPU
(single
instance
only)

No

Object
Detection

train and
validation,
(optionally)
train_annotation,
validation_annotation,
and
model

<ecr_path>/object-
detection:<tag>

File or
Pipe

recordIO
or image
files (.jpg
or .png)

GPU Yes

PCA train and
(optionally)
test

<ecr_path>/pca:<tag> File or
Pipe

recordIO-
protobuf
or CSV

GPU or
CPU

Yes

Random
Cut Forest

train and
(optionally)
test

<ecr_path>/
randomcutforest:<tag>

File or
Pipe

recordIO-
protobuf
or CSV

CPU Yes

Semantic
Segmentation

train and
validation,
train_annotation,
validation_annotation,
and
(optionally)
label_map
and
model

<ecr_path>/semantic-
segmentation:<tag>

File or
Pipe

image
files

GPU
(single
instance
only)

No

Seq2Seq
Modeling

train,
validation,
and
vocab

<ecr_path>/seq2seq:<tag> File recordIO-
protobuf

GPU
(single
instance
only)

No

XGBoost train and
(optionally)
validation

<ecr_path>/xgboost:<tag> File CSV or
LibSVM

CPU Yes

60

Amazon SageMaker Developer Guide
Common Information

Algorithms that are parallelizable can be deployed on multiple compute instances for distributed
training. For the Training Image and Inference Image Registry Path column, use the :1 version tag
to ensure that you are using a stable version of the algorithm. You can reliably host a model trained
using an image with the :1 tag on an inference image that has the :1 tag. Using the :latest tag in the
registry path provides you with the most up-to-date version of the algorithm, but might cause problems
with backward compatibility. Avoid using the :latest tag for production purposes.

For the Training Image and Inference Image Registry Path column, depending on algorithm and region
use one of the following values for <ecr_path>.

Algorithm Name AWS Region Training Image and Inference Image Registry Path

us-west-1 632365934929.dkr.ecr.us-west-1.amazonaws.com

us-west-2 174872318107.dkr.ecr.us-west-2.amazonaws.com

us-east-1 382416733822.dkr.ecr.us-east-1.amazonaws.com

us-east-2 404615174143.dkr.ecr.us-east-2.amazonaws.com

us-gov-west-1 226302683700.dkr.ecr.us-gov-
west-1.amazonaws.com

ap-east-1 286214385809.dkr.ecr.ap-east-1.amazonaws.com

ap-northeast-1 351501993468.dkr.ecr.ap-
northeast-1.amazonaws.com

ap-northeast-2 835164637446.dkr.ecr.ap-
northeast-2.amazonaws.com

ap-south-1 991648021394.dkr.ecr.ap-south-1.amazonaws.com

ap-southeast-1 475088953585.dkr.ecr.ap-
southeast-1.amazonaws.com

ap-southeast-2 712309505854.dkr.ecr.ap-
southeast-2.amazonaws.com

ca-central-1 469771592824.dkr.ecr.ca-central-1.amazonaws.com

eu-central-1 664544806723.dkr.ecr.eu-central-1.amazonaws.com

eu-north-1 669576153137.dkr.ecr.eu-north-1.amazonaws.com

eu-west-1 438346466558.dkr.ecr.eu-west-1.amazonaws.com

eu-west-2 644912444149.dkr.ecr.eu-west-2.amazonaws.com

eu-west-3 749696950732.dkr.ecr.eu-west-3.amazonaws.com

Factorization Machines,
IP Insights, k-means, k-
nearest-neighbor, Linear
Learner, Object2Vec,
Neural Topic Model,PCA,
and Random Cut Forest

sa-east-1 855470959533.dkr.ecr.sa-east-1.amazonaws.com

us-west-1 632365934929.dkr.ecr.us-west-1.amazonaws.com

us-west-2 266724342769.dkr.ecr.us-west-2.amazonaws.com

us-east-1 766337827248.dkr.ecr.us-east-1.amazonaws.com

LDA

us-east-2 999911452149.dkr.ecr.us-east-2.amazonaws.com

61

Amazon SageMaker Developer Guide
Common Information

Algorithm Name AWS Region Training Image and Inference Image Registry Path

us-gov-west-1 226302683700.dkr.ecr.us-gov-
west-1.amazonaws.com

ap-northeast-1 258307448986.dkr.ecr.ap-
northeast-1.amazonaws.com

ap-northeast-2 293181348795.dkr.ecr.ap-
northeast-2.amazonaws.com

ap-south-1 991648021394.dkr.ecr.ap-south-1.amazonaws.com

ap-southeast-1 475088953585.dkr.ecr.ap-
southeast-1.amazonaws.com

ap-southeast-2 297031611018.dkr.ecr.ap-
southeast-2.amazonaws.com

ca-central-1 469771592824.dkr.ecr.ca-central-1.amazonaws.com

eu-central-1 353608530281.dkr.ecr.eu-central-1.amazonaws.com

eu-west-1 999678624901.dkr.ecr.eu-west-1.amazonaws.com

eu-west-2 644912444149.dkr.ecr.eu-west-2.amazonaws.com

us-west-1 632365934929.dkr.ecr.us-west-1.amazonaws.com

us-west-2 433757028032.dkr.ecr.us-west-2.amazonaws.com

us-east-1 811284229777.dkr.ecr.us-east-1.amazonaws.com

us-east-2 825641698319.dkr.ecr.us-east-2.amazonaws.com

us-gov-west-1 226302683700.dkr.ecr.us-gov-
west-1.amazonaws.com

ap-east-1 286214385809.dkr.ecr.ap-east-1.amazonaws.com

ap-northeast-1 501404015308.dkr.ecr.ap-
northeast-1.amazonaws.com

ap-northeast-2 306986355934.dkr.ecr.ap-
northeast-2.amazonaws.com

ap-south-1 991648021394.dkr.ecr.ap-south-1.amazonaws.com

ap-southeast-1 475088953585.dkr.ecr.ap-
southeast-1.amazonaws.com

ap-southeast-2 544295431143.dkr.ecr.ap-
southeast-2.amazonaws.com

ca-central-1 469771592824.dkr.ecr.ca-central-1.amazonaws.com

eu-central-1 813361260812.dkr.ecr.eu-central-1.amazonaws.com

eu-north-1 669576153137.dkr.ecr.eu-north-1.amazonaws.com

BlazingText, Image
Classification, Object
Detection, Semantic
Segmentation, Seq2Seq,
and XGBoost (0.72)

eu-west-1 685385470294.dkr.ecr.eu-west-1.amazonaws.com

62

Amazon SageMaker Developer Guide
Common Information

Algorithm Name AWS Region Training Image and Inference Image Registry Path

eu-west-2 644912444149.dkr.ecr.eu-west-2.amazonaws.com

eu-west-3 749696950732.dkr.ecr.eu-west-3.amazonaws.com

sa-east-1 855470959533.dkr.ecr.sa-east-1.amazonaws.com

us-west-1 746614075791.dkr.ecr.us-west-1.amazonaws.com

us-west-2 246618743249.dkr.ecr.us-west-2.amazonaws.com

us-east-1 683313688378.dkr.ecr.us-east-1.amazonaws.com

us-east-2 257758044811.dkr.ecr.us-east-2.amazonaws.com

us-gov-west-1 414596584902.dkr.ecr.us-gov-
west-1.amazonaws.com

ap-northeast-1 354813040037.dkr.ecr.ap-
northeast-1.amazonaws.com

ap-northeast-2 366743142698.dkr.ecr.ap-
northeast-2.amazonaws.com

ap-southeast-1 121021644041.dkr.ecr.ap-
southeast-1.amazonaws.com

ap-southeast-2 783357654285.dkr.ecr.ap-
southeast-2.amazonaws.com

ap-south-1 720646828776.dkr.ecr.ap-south-1.amazonaws.com

ap-east-1 651117190479.dkr.ecr.ap-east-1.amazonaws.com

ca-central-1 341280168497.dkr.ecr.ca-central-1.amazonaws.com

eu-central-1 492215442770.dkr.ecr.eu-central-1.amazonaws.com

eu-north-1 662702820516.dkr.ecr.eu-north-1.amazonaws.com

eu-west-1 141502667606.dkr.ecr.eu-west-1.amazonaws.com

eu-west-2 764974769150.dkr.ecr.eu-west-2.amazonaws.com

eu-west-3 659782779980.dkr.ecr.eu-west-3.amazonaws.com

XGBoost (0.90)

sa-east-1 737474898029.dkr.ecr.sa-east-1.amazonaws.com

us-west-1 632365934929.dkr.ecr.us-west-1.amazonaws.com

us-west-2 156387875391.dkr.ecr.us-west-2.amazonaws.com

us-east-1 522234722520.dkr.ecr.us-east-1.amazonaws.com

us-east-2 566113047672.dkr.ecr.us-east-2.amazonaws.com

us-gov-west-1 226302683700.dkr.ecr.us-gov-
west-1.amazonaws.com

DeepAR Forecasting

ap-east-1 286214385809.dkr.ecr.ap-east-1.amazonaws.com

63

Amazon SageMaker Developer Guide
Common Information

Algorithm Name AWS Region Training Image and Inference Image Registry Path

ap-northeast-1 633353088612.dkr.ecr.ap-
northeast-1.amazonaws.com

ap-northeast-2 204372634319.dkr.ecr.ap-
northeast-2.amazonaws.com

ap-south-1 991648021394.dkr.ecr.ap-south-1.amazonaws.com

ap-southeast-1 475088953585.dkr.ecr.ap-
southeast-1.amazonaws.com

ap-southeast-2 514117268639.dkr.ecr.ap-
southeast-2.amazonaws.com

ca-central-1 469771592824.dkr.ecr.ca-central-1.amazonaws.com

eu-north-1 669576153137.dkr.ecr.eu-north-1.amazonaws.com

eu-central-1 495149712605.dkr.ecr.eu-central-1.amazonaws.com

eu-west-1 224300973850.dkr.ecr.eu-west-1.amazonaws.com

eu-west-2 644912444149.dkr.ecr.eu-west-2.amazonaws.com

eu-west-3 749696950732.dkr.ecr.eu-west-3.amazonaws.com

sa-east-1 855470959533.dkr.ecr.sa-east-1.amazonaws.com

Use the paths and training input mode as follows:

• To create a training job (with a request to the CreateTrainingJob (p. 667) API), specify the Docker
Registry path and the training input mode for the training image. You create a training job to train a
model using a specific dataset.

• To create a model (with a CreateModel (p. 648) request), specify the Docker Registry path for the
inference image. Amazon SageMaker launches machine learning compute instances that are based on
the endpoint configuration and deploys the model, which includes the artifacts (the result of model
training).

Common Data Formats for Built-in Algorithms
The following topics explain the data formats for the algorithms provided by Amazon SageMaker.

Topics

• Common Data Formats for Training (p. 64)

• Common Data Formats for Inference (p. 68)

Common Data Formats for Training

To prepare for training, you can preprocess your data using a variety of AWS services, including AWS
Glue, Amazon EMR, Amazon Redshift, Amazon Relational Database Service, and Amazon Athena. After
preprocessing, publish the data to an Amazon S3 bucket. For training, the data need to go through a
series of conversions and transformations, including:

64

Amazon SageMaker Developer Guide
Common Information

• Training data serialization (handled by you)
• Training data deserialization (handled by the algorithm)
• Training model serialization (handled by the algorithm)
• Trained model deserialization (optional, handled by you)

When using Amazon SageMaker in the training portion of the algorithm, make sure to upload all data
at once. If more data is added to that location, a new training call would need to be made to construct a
brand new model.

The following table lists supported ContentType values:

Content Type Definition

text/csv; label_size=n Comma-separated values, where n specifies the number of starting
columns in a row that are labels. The default value for n is 1.

application/x-recordio-
protobuf

A protobuf message wrapped in a RecordIO record.

Training Data Formats

Many Amazon SageMaker algorithms support training with data in CSV format. To use data in CSV
format for training, in the input data channel specification, specify text/csv as the ContentType.
Amazon SageMaker requires that a CSV file doesn't have a header record and that the target variable is
in the first column. To run unsupervised learning algorithms that don't have a target, specify the number
of label columns in the content type. For example, in this case 'text/csv;label_size=0'.

Most Amazon SageMaker algorithms work best when you use the optimized protobuf recordIO format
for the training data. Using this format allows you to take advantage of Pipe mode when training
the algorithms that support it. File mode loads all of your data from Amazon Simple Storage Service
(Amazon S3) to the training instance volumes. In Pipe mode, your training job streams data directly
from Amazon S3. Streaming can provide faster start times for training jobs and better throughput.
With Pipe mode, you also reduce the size of the Amazon Elastic Block Store volumes for your training
instances. Pipe mode needs only enough disk space to store your final model artifacts. File mode
needs disk space to store both your final model artifacts and your full training dataset. See the
AlgorithmSpecification (p. 863) for additional details on the training input mode. For a summary of the
data formats supported by each algorithm, see the documentation for the individual algorithms or this
table.

Note
For an example that shows how to convert the commonly used numPy array into the
protobuf recordIO format, see https://github.com/awslabs/amazon-sagemaker-examples/
blob/master/introduction_to_amazon_algorithms/factorization_machines_mnist/
factorization_machines_mnist.ipynb. .

In the protobuf recordIO format, Amazon SageMaker converts each observation in the dataset into
a binary representation as a set of 4-byte floats and is then loads it to the protobuf values field. If
you are using Python for your data preparation, we strongly recommend that you use these existing
transformations. However, if you are using another language, the protobuf definition file below provides
the schema that you use to convert your data into Amazon SageMaker protobuf format.

syntax = "proto2";

 package aialgs.data;

 option java_package = "com.amazonaws.aialgorithms.proto";
 option java_outer_classname = "RecordProtos";

65

https://docs.aws.amazon.com/sagemaker/latest/dg/API_Channel.html#SageMaker-Type-Channel-ContentType
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Channel.html#SageMaker-Type-Channel-ContentType
https://mxnet.incubator.apache.org/architecture/note_data_loading.html#data-format
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.ipynb

Amazon SageMaker Developer Guide
Common Information

 // A sparse or dense rank-R tensor that stores data as doubles (float64).
 message Float32Tensor {
 // Each value in the vector. If keys is empty, this is treated as a
 // dense vector.
 repeated float values = 1 [packed = true];

 // If key is not empty, the vector is treated as sparse, with
 // each key specifying the location of the value in the sparse vector.
 repeated uint64 keys = 2 [packed = true];

 // An optional shape that allows the vector to represent a matrix.
 // For example, if shape = [10, 20], floor(keys[i] / 10) gives the row,
 // and keys[i] % 20 gives the column.
 // This also supports n-dimensonal tensors.
 // Note: If the tensor is sparse, you must specify this value.
 repeated uint64 shape = 3 [packed = true];
 }

 // A sparse or dense rank-R tensor that stores data as doubles (float64).
 message Float64Tensor {
 // Each value in the vector. If keys is empty, this is treated as a
 // dense vector.
 repeated double values = 1 [packed = true];

 // If this is not empty, the vector is treated as sparse, with
 // each key specifying the location of the value in the sparse vector.
 repeated uint64 keys = 2 [packed = true];

 // An optional shape that allows the vector to represent a matrix.
 // For example, if shape = [10, 20], floor(keys[i] / 10) gives the row,
 // and keys[i] % 20 gives the column.
 // This also supports n-dimensonal tensors.
 // Note: If the tensor is sparse, you must specify this value.
 repeated uint64 shape = 3 [packed = true];
 }

 // A sparse or dense rank-R tensor that stores data as 32-bit ints (int32).
 message Int32Tensor {
 // Each value in the vector. If keys is empty, this is treated as a
 // dense vector.
 repeated int32 values = 1 [packed = true];

 // If this is not empty, the vector is treated as sparse with
 // each key specifying the location of the value in the sparse vector.
 repeated uint64 keys = 2 [packed = true];

 // An optional shape that allows the vector to represent a matrix.
 // For Exmple, if shape = [10, 20], floor(keys[i] / 10) gives the row,
 // and keys[i] % 20 gives the column.
 // This also supports n-dimensonal tensors.
 // Note: If the tensor is sparse, you must specify this value.
 repeated uint64 shape = 3 [packed = true];
 }

 // Support for storing binary data for parsing in other ways (such as JPEG/etc).
 // This is an example of another type of value and may not immediately be supported.
 message Bytes {
 repeated bytes value = 1;

 // If the content type of the data is known, stores it.
 // This allows for the possibility of using decoders for common formats
 // in the future.
 optional string content_type = 2;
 }

66

Amazon SageMaker Developer Guide
Common Information

 message Value {
 oneof value {
 // The numbering assumes the possible use of:
 // - float16, float128
 // - int8, int16, int32
 Float32Tensor float32_tensor = 2;
 Float64Tensor float64_tensor = 3;
 Int32Tensor int32_tensor = 7;
 Bytes bytes = 9;
 }
 }

 message Record {
 // Map from the name of the feature to the value.
 //
 // For vectors and libsvm-like datasets,
 // a single feature with the name `values`
 // should be specified.
 map<string, Value> features = 1;

 // An optional set of labels for this record.
 // Similar to the features field above, the key used for
 // generic scalar / vector labels should ve 'values'.
 map<string, Value> label = 2;

 // A unique identifier for this record in the dataset.
 //
 // Whilst not necessary, this allows better
 // debugging where there are data issues.
 //
 // This is not used by the algorithm directly.
 optional string uid = 3;

 // Textual metadata describing the record.
 //
 // This may include JSON-serialized information
 // about the source of the record.
 //
 // This is not used by the algorithm directly.
 optional string metadata = 4;

 // An optional serialized JSON object that allows per-record
 // hyper-parameters/configuration/other information to be set.
 //
 // The meaning/interpretation of this field is defined by
 // the algorithm author and may not be supported.
 //
 // This is used to pass additional inference configuration
 // when batch inference is used (e.g. types of scores to return).
 optional string configuration = 5;
 }

After creating the protocol buffer, store it in an Amazon S3 location that Amazon SageMaker can access
and that can be passed as part of InputDataConfig in create_training_job.

Note
For all Amazon SageMaker algorithms, the ChannelName in InputDataConfig must be set to
train. Some algorithms also support a validation or test input channels. These are typically
used to evaluate the model's performance by using a hold-out dataset. Hold-out datasets are
not used in the initial training but can be used to further tune the model.

Trained Model Deserialization

Amazon SageMaker models are stored as model.tar.gz in the S3 bucket specified in OutputDataConfig
S3OutputPath parameter of the create_training_job call. You can specify most of these model

67

Amazon SageMaker Developer Guide
Common Information

artifacts when creating a hosting model. You can also open and review them in your notebook instance.
When model.tar.gz is untarred, it contains model_algo-1, which is a serialized Apache MXNet object.
For example, you use the following to load the k-means model into memory and view it:

import mxnet as mx
print(mx.ndarray.load('model_algo-1'))

Common Data Formats for Inference

Amazon SageMaker algorithms accept and produce several different MIME types for the http payloads
used in retrieving online and mini-batch predictions. You can use various AWS services to transform
or preprocess records prior to running inference. At a minimum, you need to convert the data for the
following:

• Inference request serialization (handled by you)
• Inference request deserialization (handled by the algorithm)
• Inference response serialization (handled by the algorithm)
• Inference response deserialization (handled by you)

Convert Data for Inference Request Serialization

Content type options for Amazon SageMaker algorithm inference requests include: text/csv,
application/json, and application/x-recordio-protobuf. Algorithms that don't support these
types, such as XGBoost, which is incompatible, support other types, such as text/x-libsvm.

For text/csv the value for the Body argument to invoke_endpoint should be a string with commas
separating the values for each feature. For example, a record for a model with four features might
look like: 1.5,16.0,14,23.0. Any transformations performed on the training data should also be
performed on the data before obtaining inference. The order of the features matters, and must remain
unchanged.

application/json is significantly more flexible and provides multiple possible formats for developers
to use in their applications. At a high level, in JavaScript, the payload might look like:

let request = {
 // Instances might contain multiple rows that predictions are sought for.
 "instances": [
 {
 // Request and algorithm specific inference parameters.
 "configuration": {},
 // Data in the specific format required by the algorithm.
 "data": {
 "<field name>": dataElement
 }
 }
]
}

You have the following options for specifying the dataElement:

Protocol buffers equivalent:

// Has the same format as the protocol buffers implementation described for training.
let dataElement = {
 "keys": [],
 "values": [],
 "shape": []
}

68

Amazon SageMaker Developer Guide
Common Information

Simple numeric vector:

// An array containing numeric values is treated as an instance containing a
// single dense vector.
let dataElement = [1.5, 16.0, 14.0, 23.0]

// It will be converted to the following representation by the SDK.
let converted = {
 "features": {
 "values": dataElement
 }
}

And, for multiple records:

let request = {
 "instances": [
 // First instance.
 {
 "features": [1.5, 16.0, 14.0, 23.0]
 },
 // Second instance.
 {
 "features": [-2.0, 100.2, 15.2, 9.2]
 }
]
}

Convert Data for Inference Response Deserialization

Amazon SageMaker algorithms return JSON in several layouts. At a high level, the structure is:

let response = {
 "predictions": [{
 // Fields in the response object are defined on a per algorithm-basis.
 }]
}

The fields that are included in predictions differ across algorithms. The following are examples of output
for the k-means algorithm.

Single-record inference:

let response = {
 "predictions": [{
 "closest_cluster": 5,
 "distance_to_cluster": 36.5
 }]
}

Multi-record inference:

let response = {
 "predictions": [
 // First instance prediction.
 {
 "closest_cluster": 5,
 "distance_to_cluster": 36.5
 },
 // Second instance prediction.

69

Amazon SageMaker Developer Guide
Common Information

 {
 "closest_cluster": 2,
 "distance_to_cluster": 90.3
 }
]
}

Multi-record inference with protobuf input:

{
 "features": [],
 "label": {
 "closest_cluster": {
 "values": [5.0] // e.g. the closest centroid/cluster was 1.0
 },
 "distance_to_cluster": {
 "values": [36.5]
 }
 },
 "uid": "abc123",
 "metadata": "{ "created_at": '2017-06-03' }"
}

Amazon SageMaker algorithms also support jsonlines format, where the per-record response content
is same as that in JSON format. The multi-record structure is a concatenation of per-record response
objects separated by newline characters. The response content for the built-in KMeans algorithm for 2
input data points is:

{"distance_to_cluster": 23.40593910217285, "closest_cluster": 0.0}
{"distance_to_cluster": 27.250282287597656, "closest_cluster": 0.0}

While running batch transform, it is recommended to use jsonlines response type by setting the
Accept field in the CreateTransformJobRequest to application/jsonlines.

Common Request Formats for All Algorithms

Most algorithms use several of the following inference request formats.

JSON Request Format

Content-type: application/json

Dense Format

let request = {
 "instances": [
 {
 "features": [1.5, 16.0, 14.0, 23.0]
 }
]
}

let request = {
 "instances": [
 {
 "data": {
 "features": {
 "values": [1.5, 16.0, 14.0, 23.0]
 }
 }

70

Amazon SageMaker Developer Guide
Common Information

 }
]
}

Sparse Format

{
 "instances": [
 {"data": {"features": {
 "keys": [26, 182, 232, 243, 431],
 "shape": [2000],
 "values": [1, 1, 1, 4, 1]
 }
 }
 },
 {"data": {"features": {
 "keys": [0, 182, 232, 243, 431],
 "shape": [2000],
 "values": [13, 1, 1, 4, 1]
 }
 }
 },
]
}

JSONLINES Request Format

Content-type: application/jsonlines

Dense Format

A single record in dense format can be represented as either:

{ "features": [1.5, 16.0, 14.0, 23.0] }

or:

{ "data": { "features": { "values": [1.5, 16.0, 14.0, 23.0] } }

Sparse Format

A single record in sparse format is represented as:

{"data": {"features": { "keys": [26, 182, 232, 243, 431], "shape": [2000], "values": [1, 1,
 1, 4, 1] } } }

Multiple records are represented as a concatenation of the above single-record representations,
separated by newline characters:

{"data": {"features": { "keys": [0, 1, 3], "shape": [4], "values": [1, 4, 1] } } }
{ "data": { "features": { "values": [1.5, 16.0, 14.0, 23.0] } }
{ "features": [1.5, 16.0, 14.0, 23.0] }

CSV Request Format

Content-type: text/csv;label_size=0

Note
CSV support is not available for factorization machines.

71

Amazon SageMaker Developer Guide
Common Information

RECORDIO Request Format

Content-type: application/x-recordio-protobuf

Use Batch Transform with Build-in Algorithms

While running batch transform, it's recommended to use jsonlines response type instead of
JSON, if supported by the algorithm. This is accomplished by setting the Accept field in the
CreateTransformJobRequest to application/jsonlines.

When you create a transform job, the SplitType must be set according to the ContentType of
the input data. Similarly, depending on the Accept field in the CreateTransformJobRequest,
AssembleWith must be set accordingly. Please use the following table to help appropriately set these
fields:

ContentType Recommended SplitType

application/x-recordio-protobuf RecordIO

text/csv Line

application/jsonlines Line

application/json None

application/x-image None

image/* None

Accept Recommended AssembleWith

application/x-recordio-protobuf None

application/json None

application/jsonlines Line

For more information on response formats for specific algorithms, see the following:

• PCA Response Formats (p. 226)
• Linear Learner Response Formats (p. 175)
• NTM Response Formats (p. 182)
• K-Means Response Formats (p. 147)
• Factorization Machine Response Formats (p. 107)

Instance Types for Built-in Algorithms
For training and hosting Amazon SageMaker algorithms, we recommend using the following EC2
instance types:

• ml.m4.xlarge, ml.m4.4xlarge, and ml.m4.10xlarge
• ml.c4.xlarge, ml.c4.2xlarge, and ml.c4.8xlarge
• ml.p2.xlarge, ml.p2.8xlarge, and ml.p2.16xlarge

Most Amazon SageMaker algorithms have been engineered to take advantage of GPU computing for
training. Despite higher per-instance costs, GPUs train more quickly, making them more cost effective.

72

Amazon SageMaker Developer Guide
Common Information

Exceptions, such as XGBoost, are noted in this guide. (XGBoost implements an open-source algorithm
that has been optimized for CPU computation.)

The size and type of data can have a great effect on which hardware configuration is most effective.
When the same model is trained on a recurring basis, initial testing across a spectrum of instance types
can discover configurations that are more cost effective in the long run. Additionally, algorithms that
train most efficiently on GPUs might not require GPUs for efficient inference. Experiment to determine
the most cost effectiveness solution.

For more information on Amazon SageMaker hardware specifications, see Amazon SageMaker ML
Instance Types.

Logs for Built-In Algorithms
Amazon SageMaker algorithms produce Amazon CloudWatch logs, which provide detailed information
on the training process. To see the logs, in the AWS management console, choose CloudWatch, choose
Logs, and then choose the /aws/sagemaker/TrainingJobs log group. Each training job has one log
stream per node that it was trained on. The log stream’s name begins with the value specified in the
TrainingJobName parameter when the job was created.

Note
If a job fails and logs do not appear in CloudWatch, it's likely that an error occurred before the
start of training. Reasons include specifying the wrong training image or S3 location.

The contents of logs vary by algorithms. However, you can typically find the following information:

• Confirmation of arguments provided at the beginning of the log
• Errors that occurred during training
• Measurement of an algorithms accuracy or numerical performance
• Timings for the algorithm, and any major stages within the algorithm

Common Errors

If a training job fails, some details about the failure are provided by the FailureReason return value in
the training job description, as follows:

sage = boto3.client('sagemaker')
sage.describe_training_job(TrainingJobName=job_name)['FailureReason']

Others are reported only in the CloudWatch logs. Common errors include the following:

1. Misspecifying a hyperparameter or specifying a hyperparameter that is invalid for the algorithm.

From the CloudWatch Log:

[10/16/2017 23:45:17 ERROR 139623806805824 train.py:48]
Additional properties are not allowed (u'mini_batch_siz' was
unexpected)

2. Specifying an invalid value for a hyperparameter.

FailureReason:

AlgorithmError: u'abc' is not valid under any of the given
schemas\n\nFailed validating u'oneOf' in
schema[u'properties'][u'feature_dim']:\n {u'oneOf':
[{u'pattern': u'^([1-9][0-9]*)$', u'type': u'string'},\n

73

https://aws.amazon.com/sagemaker/pricing/instance-types/
https://aws.amazon.com/sagemaker/pricing/instance-types/

Amazon SageMaker Developer Guide
BlazingText

{u'minimum': 1, u'type': u'integer'}]}\

FailureReason:

[10/16/2017 23:57:17 ERROR 140373086025536 train.py:48] u'abc'
is not valid under any of the given schemas

3. Inaccurate protobuf file format.

From the CloudWatch log:

[10/17/2017 18:01:04 ERROR 140234860816192 train.py:48] cannot
 copy sequence with size 785 to array axis with dimension 784

BlazingText Algorithm
The Amazon SageMaker BlazingText algorithm provides highly optimized implementations of the
Word2vec and text classification algorithms. The Word2vec algorithm is useful for many downstream
natural language processing (NLP) tasks, such as sentiment analysis, named entity recognition, machine
translation, etc. Text classification is an important task for applications that perform web searches,
information retrieval, ranking, and document classification.

The Word2vec algorithm maps words to high-quality distributed vectors. The resulting vector
representation of a word is called a word embedding. Words that are semantically similar correspond to
vectors that are close together. That way, word embeddings capture the semantic relationships between
words.

Many natural language processing (NLP) applications learn word embeddings by training on large
collections of documents. These pretrained vector representations provide information about semantics
and word distributions that typically improves the generalizability of other models that are later trained
on a more limited amount of data. Most implementations of the Word2vec algorithm are optimized for
multi-core CPU architectures. This makes it difficult to scale to large datasets.

With the BlazingText algorithm, you can scale to large datasets easily. Similar to Word2vec, it
provides the Skip-gram and continuous bag-of-words (CBOW) training architectures. BlazingText's
implementation of the supervised multi-class, multi-label text classification algorithm extends the
fastText text classifier to use GPU acceleration with custom CUDA kernels. You can train a model on
more than a billion words in a couple of minutes using a multi-core CPU or a GPU. And, you achieve
performance on par with the state-of-the-art deep learning text classification algorithms.

The Amazon SageMaker BlazingText algorithms provides the following features:

• Accelerated training of the fastText text classifier on multi-core CPUs or a GPU and Word2Vec on GPUs
using highly optimized CUDA kernels. For more information, see BlazingText: Scaling and Accelerating
Word2Vec using Multiple GPUs.

• Enriched Word Vectors with Subword Information by learning vector representations for character n-
grams. This approach enables BlazingText to generate meaningful vectors for out-of-vocabulary (OOV)
words by representing their vectors as the sum of the character n-gram (subword) vectors.

• A batch_skipgram mode for the Word2Vec algorithm that allows faster training and distributed
computation across multiple CPU nodes. The batch_skipgram mode does mini-batching using the
Negative Sample Sharing strategy to convert level-1 BLAS operations into level-3 BLAS operations.
This efficiently leverages the multiply-add instructions of modern architectures. For more information,
see Parallelizing Word2Vec in Shared and Distributed Memory.

To summarize, the following modes are supported by BlazingText on different types instances:

74

https://docs.nvidia.com/cuda/index.html
https://dl.acm.org/citation.cfm?doid=3146347.3146354
https://dl.acm.org/citation.cfm?doid=3146347.3146354
https://arxiv.org/abs/1607.04606
https://arxiv.org/pdf/1604.04661.pdf

Amazon SageMaker Developer Guide
BlazingText

Modes Word2Vec

(Unsupervised Learning)

Text Classification

(Supervised Learning)

Single CPU instance cbow

Skip-gram

Batch Skip-gram

supervised

Single GPU instance (with 1 or
more GPUs)

cbow

Skip-gram

supervised with one GPU

Multiple CPU instances Batch Skip-gram None

For more information about the mathematics behind BlazingText, see BlazingText: Scaling and
Accelerating Word2Vec using Multiple GPUs.

Topics
• Input/Output Interface for the BlazingText Algorithm (p. 75)
• EC2 Instance Recommendation for the BlazingText Algorithm (p. 77)
• BlazingText Sample Notebooks (p. 78)
• BlazingText Hyperparameters (p. 78)
• Tune a BlazingText Model (p. 82)

Input/Output Interface for the BlazingText Algorithm
The BlazingText algorithm expects a single preprocessed text file with space-separated tokens. Each line
in the file should contain a single sentence. If you need to train on multiple text files, concatenate them
into one file and upload the file in the respective channel.

Training and Validation Data Format

Training and Validation Data Format for the Word2Vec Algorithm

For Word2Vec training, upload the file under the train channel. No other channels are supported. The file
should contain a training sentence per line.

Training and Validation Data Format for the Text Classification Algorithm

For supervised mode, you can train with file mode or with the augmented manifest text format.

Train with File Mode

For supervised mode, the training/validation file should contain a training sentence per line along
with the labels. Labels are words that are prefixed by the string __label__. Here is an example of a
training/validation file:

__label__4 linux ready for prime time , intel says , despite all the linux hype , the
 open-source movement has yet to make a huge splash in the desktop market . that may be
 about to change , thanks to chipmaking giant intel corp .

__label__2 bowled by the slower one again , kolkata , november 14 the past caught up with
 sourav ganguly as the indian skippers return to international cricket was short lived .

75

https://dl.acm.org/citation.cfm?doid=3146347.3146354
https://dl.acm.org/citation.cfm?doid=3146347.3146354

Amazon SageMaker Developer Guide
BlazingText

Note
The order of labels within the sentence doesn't matter.

Upload the training file under the train channel, and optionally upload the validation file under the
validation channel.

Train with Augmented Manifest Text Format

The supervised mode also supports the augmented manifest format, which enables you to do training in
pipe mode without needing to create RecordIO files. While using the format, an S3 manifest file needs to
be generated that contains the list of sentences and their corresponding labels. The manifest file format
should be in JSON Lines format in which each line represents one sample. The sentences are specified
using the source tag and the label can be specified using the label tag. Both source and label tags
should be provided under the AttributeNames parameter value as specified in the request.

{"source":"linux ready for prime time , intel says , despite all the linux hype",
 "label":1}
{"source":"bowled by the slower one again , kolkata , november 14 the past caught up with
 sourav ganguly", "label":2}

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs with
an Augmented Manifest File (p. 308).

Model Artifacts and Inference

Model Artifacts for the Word2Vec Algorithm

For Word2Vec training, the model artifacts consist of vectors.txt, which contains words-to-vectors
mapping, and vectors.bin, a binary used by BlazingText for hosting, inference, or both. vectors.txt stores
the vectors in a format that is compatible with other tools like Gensim and Spacy. For example, a Gensim
user can run the following commands to load the vectors.txt file:

from gensim.models import KeyedVectors
word_vectors = KeyedVectors.load_word2vec_format('vectors.txt', binary=False)
word_vectors.most_similar(positive=['woman', 'king'], negative=['man'])
word_vectors.doesnt_match("breakfast cereal dinner lunch".split())

If the evaluation parameter is set to True, an additional file, eval.json, is created. This file contains the
similarity evaluation results (using Spearman’s rank correlation coefficients) on WS-353 dataset. The
number of words from the WS-353 dataset that aren't there in the training corpus are reported.

For inference requests, the model accepts a JSON file containing a list of strings and returns a list of
vectors. If the word is not found in vocabulary, inference returns a vector of zeros. If subwords is set to
True during training, the model is able to generate vectors for out-of-vocabulary (OOV) words.

Sample JSON Request

Mime-type: application/json

{
"instances": ["word1", "word2", "word3"]
}

Model Artifacts for the Text Classification Algorithm

Training with supervised outputs creates a model.bin file that can be consumed by BlazingText hosting.
For inference, the BlazingText model accepts a JSON file containing a list of sentences and returns a list
of corresponding predicted labels and probability scores. Each sentence is expected to be a string with
space-separated tokens, words, or both.

76

http://jsonlines.org/
https://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Amazon SageMaker Developer Guide
BlazingText

Sample JSON Request

Mime-type: application/json

{
 "instances": ["the movie was excellent", "i did not like the plot ."]
}

By default, the server returns only one prediction, the one with the highest probability. For retrieving the
top k predictions, you can set k in the configuration, as follows:

{
 "instances": ["the movie was excellent", "i did not like the plot ."],
 "configuration": {"k": 2}
}

For BlazingText, the content-type and accept parameters must be equal. For batch transform, they
both need to be application/jsonlines. If they differ, the Accept field is ignored. The format for
input follows:

content-type: application/jsonlines

{"source": "source_0"}
{"source": "source_1"}

if you need to pass the value of k for top-k, then you can do it in the following way:

{"source": "source_0", "k": 2}
{"source": "source_1", "k": 3}

The format for output follows:

accept: application/jsonlines

{"prob": [prob_1], "label": ["__label__1"]}
{"prob": [prob_1], "label": ["__label__1"]}

If you have passed the value of k to be more than 1, then response will be in this format:

{"prob": [prob_1, prob_2], "label": ["__label__1", "__label__2"]}
{"prob": [prob_1, prob_2], "label": ["__label__1", "__label__2"]}

For both supervised (text classification) and unsupervised (Word2Vec) modes, the binaries (*.bin)
produced by BlazingText can be cross-consumed by fastText and vice versa. You can use binaries
produced by BlazingText by fastText. Likewise, you can host the model binaries created with fastText
using BlazingText.

For more details on dataset formats and model hosting, see the example notebooks Text Classification
with the BlazingText Algorithm, FastText Models, and Generating Subword Embeddings with the
Word2Vec Algorithm.

EC2 Instance Recommendation for the BlazingText Algorithm
For cbow and skipgram modes, BlazingText supports single CPU and single GPU instances. Both
of these modes support learning of subwords embeddings. To achieve the highest speed without
compromising accuracy, we recommend that you use an ml.p3.2xlarge instance.

For batch_skipgram mode, BlazingText supports single or multiple CPU instances. When
training on multiple instances, set the value of the S3DataDistributionType field of the

77

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_text_classification_dbpedia/blazingtext_text_classification_dbpedia.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_text_classification_dbpedia/blazingtext_text_classification_dbpedia.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_hosting_pretrained_fasttext/blazingtext_hosting_pretrained_fasttext.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_word2vec_subwords_text8/blazingtext_word2vec_subwords_text8.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_word2vec_subwords_text8/blazingtext_word2vec_subwords_text8.ipynb

Amazon SageMaker Developer Guide
BlazingText

S3DataSource (p. 994) object that you pass to CreateTrainingJob (p. 667) to
FullyReplicated. BlazingText takes care of distributing data across machines.

For the supervised text classification mode, a C5 instance is recommended if the training dataset is less
than 2 GB. For larger datasets, use an instance with a single GPU (ml.p2.xlarge or ml.p3.2xlarge).

BlazingText Sample Notebooks
For a sample notebook that uses the Amazon SageMaker BlazingText algorithm to train and deploy
supervised binary and multiclass classification models, see Blazing Text classification on the DBPedia
dataset. For instructions for creating and accessing Jupyter notebook instances that you can use
to run the example in Amazon SageMaker, see Use Notebook Instances (p. 36). After creating and
opening a notebook instance, choose the SageMaker Examples tab to see a list of all the Amazon
SageMaker examples. The topic modeling example notebooks that use the Blazing Text are located in
the Introduction to Amazon algorithms section. To open a notebook, choose its Use tab, then choose
Create copy.

BlazingText Hyperparameters
When you start a training job with a CreateTrainingJob request, you specify a training algorithm.
You can also specify algorithm-specific hyperparameters as string-to-string maps. The hyperparameters
for the BlazingText algorithm depend on which mode you use: Word2Vec (unsupervised) and Text
Classification (supervised).

Word2Vec Hyperparameters

The following table lists the hyperparameters for the BlazingText Word2Vec training algorithm provided
by Amazon SageMaker.

Parameter Name Description

mode The Word2vec architecture used for training.

Required

Valid values: batch_skipgram, skipgram, or cbow

batch_size The size of each batch when mode is set to batch_skipgram. Set
to a number between 10 and 20.

Optional

Valid values: Positive integer

Default value: 11

buckets The number of hash buckets to use for subwords.

Optional

Valid values: positive integer

Default value: 2000000

epochs The number of complete passes through the training data.

Optional

Valid values: Positive integer

78

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_text_classification_dbpedia/blazingtext_text_classification_dbpedia.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_text_classification_dbpedia/blazingtext_text_classification_dbpedia.ipynb

Amazon SageMaker Developer Guide
BlazingText

Parameter Name Description

Default value: 5

evaluation Whether the trained model is evaluated using the
WordSimilarity-353 Test.

Optional

Valid values: (Boolean) True or False

Default value: True

learning_rate The step size used for parameter updates.

Optional

Valid values: Positive float

Default value: 0.05

min_char The minimum number of characters to use for subwords/character
n-grams.

Optional

Valid values: positive integer

Default value: 3

min_count Words that appear less than min_count times are discarded.

Optional

Valid values: Non-negative integer

Default value: 5

max_char The maximum number of characters to use for subwords/character
n-grams

Optional

Valid values: positive integer

Default value: 6

negative_samples The number of negative samples for the negative sample sharing
strategy.

Optional

Valid values: Positive integer

Default value: 5

79

https://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Amazon SageMaker Developer Guide
BlazingText

Parameter Name Description

sampling_threshold The threshold for the occurrence of words. Words that appear with
higher frequency in the training data are randomly down-sampled.

Optional

Valid values: Positive fraction. The recommended range is (0, 1e-3]

Default value: 0.0001

subwords Whether to learn subword embeddings on not.

Optional

Valid values: (Boolean) True or False

Default value: False

vector_dim The dimension of the word vectors that the algorithm learns.

Optional

Valid values: Positive integer

Default value: 100

window_size The size of the context window. The context window is the number
of words surrounding the target word used for training.

Optional

Valid values: Positive integer

Default value: 5

Text Classification Hyperparameters

The following table lists the hyperparameters for the Text Classification training algorithm provided by
Amazon SageMaker.

Note
Although some of the parameters are common between the Text Classification and Word2Vec
modes, they might have different meanings depending on the context.

Parameter Name Description

mode The training mode.

Required

Valid values: supervised

buckets The number of hash buckets to use for word n-grams.

Optional

Valid values: Positive integer

Default value: 2000000

80

Amazon SageMaker Developer Guide
BlazingText

Parameter Name Description

early_stopping Whether to stop training if validation accuracy doesn't improve
after a patience number of epochs.

Optional

Valid values: (Boolean) True or False

Default value: False

epochs The maximum number of complete passes through the training
data.

Optional

Valid values: Positive integer

Default value: 5

learning_rate The step size used for parameter updates.

Optional

Valid values: Positive float

Default value: 0.05

min_count Words that appear less than min_count times are discarded.

Optional

Valid values: Non-negative integer

Default value: 5

min_epochs The minimum number of epochs to train before early stopping logic
is invoked.

Optional

Valid values: Positive integer

Default value: 5

patience The number of epochs to wait before applying early stopping
when no progress is made on the validation set. Used only when
early_stopping is True.

Optional

Valid values: Positive integer

Default value: 4

81

Amazon SageMaker Developer Guide
BlazingText

Parameter Name Description

vector_dim The dimension of the embedding layer.

Optional

Valid values: Positive integer

Default value: 100

word_ngrams The number of word n-gram features to use.

Optional

Valid values: Positive integer

Default value: 2

Tune a BlazingText Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the BlazingText Algorithm

The BlazingText Word2Vec algorithm (skipgram, cbow, and batch_skipgram modes) reports on a
single metric during training: train:mean_rho. This metric is computed on WS-353 word similarity
datasets. When tuning the hyperparameter values for the Word2Vec algorithm, use this metric as the
objective.

The BlazingText Text Classification algorithm (supervised mode), also reports on a single metric during
training: the validation:accuracy. When tuning the hyperparameter values for the text classification
algorithm, use these metrics as the objective.

Metric Name Description Optimization Direction

train:mean_rho The mean rho (Spearman's rank correlation
coefficient) on WS-353 word similarity datasets

Maximize

validation:accuracy The classification accuracy on the user-specified
validation dataset

Maximize

Tunable BlazingText Hyperparameters

Tunable Hyperparameters for the Word2Vec Algorithm

Tune an Amazon SageMaker BlazingText Word2Vec model with the following hyperparameters.
The hyperparameters that have the greatest impact on Word2Vec objective metrics are: mode,
learning_rate, window_size, vector_dim, and negative_samples.

82

https://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
https://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
https://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Amazon SageMaker Developer Guide
DeepAR Forecasting

Parameter Name Parameter Type Recommended Ranges
or Values

batch_size IntegerParameterRange [8-32]

epochs IntegerParameterRange [5-15]

learning_rate ContinuousParameterRange MinValue: 0.005,
MaxValue: 0.01

min_count IntegerParameterRange [0-100]

mode CategoricalParameterRange ['batch_skipgram',
'skipgram', 'cbow']

negative_samples IntegerParameterRange [5-25]

sampling_threshold ContinuousParameterRange MinValue: 0.0001,
MaxValue: 0.001

vector_dim IntegerParameterRange [32-300]

window_size IntegerParameterRange [1-10]

Tunable Hyperparameters for the Text Classification Algorithm

Tune an Amazon SageMaker BlazingText text classification model with the following hyperparameters.

Parameter Name Parameter Type Recommended Ranges
or Values

buckets IntegerParameterRange [1000000-10000000]

epochs IntegerParameterRange [5-15]

learning_rate ContinuousParameterRange MinValue: 0.005,
MaxValue: 0.01

min_count IntegerParameterRange [0-100]

mode CategoricalParameterRange ['supervised']

vector_dim IntegerParameterRange [32-300]

word_ngrams IntegerParameterRange [1-3]

DeepAR Forecasting Algorithm
The Amazon SageMaker DeepAR forecasting algorithm is a supervised learning algorithm for forecasting
scalar (one-dimensional) time series using recurrent neural networks (RNN). Classical forecasting
methods, such as autoregressive integrated moving average (ARIMA) or exponential smoothing (ETS),
fit a single model to each individual time series. They then use that model to extrapolate the time series
into the future.

In many applications, however, you have many similar time series across a set of cross-sectional units.
For example, you might have time series groupings for demand for different products, server loads, and
requests for webpages. For this type of application, you can benefit from training a single model jointly

83

Amazon SageMaker Developer Guide
DeepAR Forecasting

over all of the time series. DeepAR takes this approach. When your dataset contains hundreds of related
time series, DeepAR outperforms the standard ARIMA and ETS methods. You can also use the trained
model to generate forecasts for new time series that are similar to the ones it has been trained on.

The training input for the DeepAR algorithm is one or, preferably, more target time series that have
been generated by the same process or similar processes. Based on this input dataset, the algorithm
trains a model that learns an approximation of this process/processes and uses it to predict how the
target time series evolves. Each target time series can be optionally associated with a vector of static
(time-independent) categorical features provided by the cat field and a vector of dynamic (time-
dependent) time series provided by the dynamic_feat field. Amazon SageMaker trains the DeepAR
model by randomly sampling training examples from each target time series in the training dataset. Each
training example consists of a pair of adjacent context and prediction windows with fixed predefined
lengths. To control how far in the past the network can see, use the context_length hyperparameter.
To control how far in the future predictions can be made, use the prediction_length hyperparameter.
For more information, see How the DeepAR Algorithm Works (p. 87).

Topics
• Input/Output Interface for the DeepAR Algorithm (p. 84)
• Best Practices for Using the DeepAR Algorithm (p. 86)
• EC2 Instance Recommendations for the DeepAR Algorithm (p. 87)
• DeepAR Sample Notebooks (p. 87)
• How the DeepAR Algorithm Works (p. 87)
• DeepAR Hyperparameters (p. 90)
• Tune a DeepAR Model (p. 94)
• DeepAR Inference Formats (p. 95)

Input/Output Interface for the DeepAR Algorithm
DeepAR supports two data channels. The required train channel describes the training dataset. The
optional test channel describes a dataset that the algorithm uses to evaluate model accuracy after
training. You can provide training and test datasets in JSON Lines format. Files can be in gzip or Parquet
file format.

When specifying the paths for the training and test data, you can specify a single file or a directory that
contains multiple files, which can be stored in subdirectories. If you specify a directory, DeepAR uses all
files in the directory as inputs for the corresponding channel, except those that start with a period (.) and
those named _SUCCESS. This ensures that you can directly use output folders produced by Spark jobs as
input channels for your DeepAR training jobs.

By default, the DeepAR model determines the input format from the file extension (.json, .json.gz,
or .parquet) in the specified input path. If the path does not end in one of these extensions, you must
explicitly specify the format in the SDK for Python. Use the content_type parameter of the s3_input
class.

The records in your input files should contain the following fields:

• start—A string with the format YYYY-MM-DD HH:MM:SS. The start timestamp can't contain time
zone information.

• target—An array of floating-point values or integers that represent the time series. You can encode
missing values as null literals, or as "NaN" strings in JSON, or as nan floating-point values in Parquet.

• dynamic_feat (optional)—An array of arrays of floating-point values or integers that represents the
vector of custom feature time series (dynamic features). If you set this field, all records must have the
same number of inner arrays (the same number of feature time series). In addition, each inner array
must have the same length as the associated target value. Missing values are not supported in the
features. For example, if target time series represents the demand of different products, an associated

84

http://jsonlines.org/
https://parquet.apache.org/
https://sagemaker.readthedocs.io/en/stable/session.html#sagemaker.session.s3_input

Amazon SageMaker Developer Guide
DeepAR Forecasting

dynamic_feat might be a boolean time-series which indicates whether a promotion was applied (1)
to the particular product or not (0):

{"start": ..., "target": [1, 5, 10, 2], "dynamic_feat": [[0, 1, 1, 0]]}

• cat (optional)—An array of categorical features that can be used to encode the groups that
the record belongs to. Categorical features must be encoded as a 0-based sequence of positive
integers. For example, the categorical domain {R, G, B} can be encoded as {0, 1, 2}. All values
from each categorical domain must be represented in the training dataset. That's because the
DeepAR algorithm can forecast only for categories that have been observed during training.
And, each categorical feature is embedded in a low-dimensional space whose dimensionality is
controlled by the embedding_dimension hyperparameter. For more information, see DeepAR
Hyperparameters (p. 90).

If you use a JSON file, it must be in JSON Lines format. For example:

{"start": "2009-11-01 00:00:00", "target": [4.3, "NaN", 5.1, ...], "cat": [0, 1],
 "dynamic_feat": [[1.1, 1.2, 0.5, ...]]}
{"start": "2012-01-30 00:00:00", "target": [1.0, -5.0, ...], "cat": [2, 3], "dynamic_feat":
 [[1.1, 2.05, ...]]}
{"start": "1999-01-30 00:00:00", "target": [2.0, 1.0], "cat": [1, 4], "dynamic_feat":
 [[1.3, 0.4]]}

In this example, each time series has two associated categorical features and one time series features.

For Parquet, you use the same three fields as columns. In addition, "start" can be the datetime type.
You can compress Parquet files using gzip (gzip) or the Snappy compression library (snappy).

If the algorithm is trained without cat and dynamic_feat fields, it learns a "global" model, that
is a model that is agnostic to the specific identity of the target time series at inference time and is
conditioned only on its shape.

If the model is conditioned on the cat and dynamic_feat feature data provided for each time series,
the prediction will probably be influenced by the character of time series with the corresponding cat
features. For example, if the target time series represents the demand of clothing items, you can
associate a two-dimensional cat vector that encodes the type of item (e.g. 0 = shoes, 1 = dress) in the
first component and the color of an item (e.g. 0 = red, 1 = blue) in the second component. A sample input
would look as follows:

{ "start": ..., "target": ..., "cat": [0, 0], ... } # red shoes
{ "start": ..., "target": ..., "cat": [1, 1], ... } # blue dress

At inference time, you can request predictions for targets with cat values that are combinations of the
cat values observed in the training data, for example:

{ "start": ..., "target": ..., "cat": [0, 1], ... } # red dress
{ "start": ..., "target": ..., "cat": [1, 1], ... } # blue dress

The following guidelines apply to training data:

• The start time and length of the time series can differ. For example, in marketing, products often enter
a retail catalog at different dates, so their start dates naturally differ. But all series must have the same
frequency, number of categorical features, and number of dynamic features.

• Shuffle the training file with respect to the position of the time series in the file. In other words, the
time series should occur in random order in the file.

• Make sure to set the start field correctly. The algorithm uses the start timestamp to derive the
internal features.

85

http://jsonlines.org/

Amazon SageMaker Developer Guide
DeepAR Forecasting

• If you use categorical features (cat), all time series must have the same number of categorical
features. If the dataset contains the cat field, the algorithm uses it and extracts the cardinality of the
groups from the dataset. By default, cardinality is "auto". If the dataset contains the cat field,
but you don't want to use it, you can disable it by setting cardinality to "". If a model was trained
using a cat feature, you must include it for inference.

• If your dataset contains the dynamic_feat field, the algorithm uses it automatically. All time series
have to have the same number of feature time series. The time points in each of the feature time series
correspond one-to-one to the time points in the target. In addition, the entry in the dynamic_feat
field should have the same length as the target. If the dataset contains the dynamic_feat field, but
you don't want to use it, disable it by setting(num_dynamic_feat to ""). If the model was trained
with the dynamic_feat field, you must provide this field for inference. In addition, each of the
features has to have the length of the provided target plus the prediction_length. In other words,
you must provide the feature value in the future.

If you specify optional test channel data, the DeepAR algorithm evaluates the trained model with
different accuracy metrics. The algorithm calculates the root mean square error (RMSE) over the test data
as follows:

yi,t is the true value of time series i at the time t. ŷi,t is the mean prediction. The sum is over all n time
series in the test set and over the last Τ time points for each time series, where Τ corresponds to the
forecast horizon. You specify the length of the forecast horizon by setting the prediction_length
hyperparameter. For more information, see DeepAR Hyperparameters (p. 90).

In addition, the algorithm evaluates the accuracy of the forecast distribution using weighted quantile
loss. For a quantile in the range [0, 1], the weighted quantile loss is defined as follows:

qi,t
(τ) is the τ-quantile of the distribution that the model predicts. To specify which quantiles to

calculate loss for, set the test_quantiles hyperparameter. In addition to these, the average of
the prescribed quantile losses is reported as part of the training logs. For information, see DeepAR
Hyperparameters (p. 90).

For inference, DeepAR accepts JSON format and the following fields:

• "instances", which includes one or more time series in JSON Lines format

• A name of "configuration", which includes parameters for generating the forecast

For more information, see DeepAR Inference Formats (p. 95).

Best Practices for Using the DeepAR Algorithm

When preparing your time series data, follow these best practices to achieve the best results:

• Except for when splitting your dataset for training and testing, always provide the entire time
series for training, testing, and when calling the model for inference. Regardless of how you set
context_length, don't break up the time series or provide only a part of it. The model uses data
points further back than the value set in context_length for the lagged values feature.

86

Amazon SageMaker Developer Guide
DeepAR Forecasting

• When tuning a DeepAR model, you can split the dataset to create a training dataset and a test dataset.
In a typical evaluation, you would test the model on the same time series used for training, but
on the future prediction_length time points that follow immediately after the last time point
visible during training. You can create training and test datasets that satisfy this criteria by using the
entire dataset (the full length of all time series that are available) as a test set and removing the last
prediction_length points from each time series for training. During training, the model doesn't see
the target values for time points on which it is evaluated during testing. During testing, the algorithm
withholds the last prediction_length points of each time series in the test set and generates a
prediction. Then it compares the forecast with the withheld values. You can create more complex
evaluations by repeating time series multiple times in the test set, but cutting them at different
endpoints. With this approach, accuracy metrics are averaged over multiple forecasts from different
time points. For more information, see Tune a DeepAR Model (p. 94).

• Avoid using very large values (>400) for the prediction_length because it makes the model slow
and less accurate. If you want to forecast further into the future, consider aggregating your data at a
higher frequency. For example, use 5min instead of 1min.

• Because lags are used, a model can look further back in the time series than the value specified for
context_length. Therefore, you don't need to set this parameter to a large value. We recommend
starting with the value that you used for prediction_length.

• We recommend training a DeepAR model on as many time series as are available. Although a DeepAR
model trained on a single time series might work well, standard forecasting algorithms, such as ARIMA
or ETS, might provide more accurate results. The DeepAR algorithm starts to outperform the standard
methods when your dataset contains hundreds of related time series. Currently, DeepAR requires that
the total number of observations available across all training time series is at least 300.

EC2 Instance Recommendations for the DeepAR Algorithm
You can train DeepAR on both GPU and CPU instances and in both single and multi-machine settings.
We recommend starting with a single CPU instance (for example, ml.c4.2xlarge or ml.c4.4xlarge), and
switching to GPU instances and multiple machines only when necessary. Using GPUs and multiple
machines improves throughput only for larger models (with many cells per layer and many layers) and
for large mini-batch sizes (for example, greater than 512).

For inference, DeepAR supports only CPU instances.

Specifying large values for context_length, prediction_length, num_cells, num_layers, or
mini_batch_size can create models that are too large for small instances. In this case, use a larger
instance type or reduce the values for these parameters. This problem also frequently occurs when
running hyperparameter tuning jobs. In that case, use an instance type large enough for the model
tuning job and consider limiting the upper values of the critical parameters to avoid job failures.

DeepAR Sample Notebooks
For a sample notebook that shows how to prepare a time series dataset for training the Amazon
SageMaker DeepAR algorithm and how to deploy the trained model for performing inferences, see Time
series forecasting with DeepAR - Synthetic data as well as DeepAR demo on electricity dataset, which
illustrates the advanced features of DeepAR on a real world dataset. For instructions on creating and
accessing Jupyter notebook instances that you can use to run the example in Amazon SageMaker, see
Use Notebook Instances (p. 36). After creating and opening a notebook instance, choose the SageMaker
Examples tab to see a list of all of the Amazon SageMaker examples. To open a notebook, choose its Use
tab, and choose Create copy.

How the DeepAR Algorithm Works
During training, DeepAR accepts a training dataset and an optional test dataset. It uses the test dataset
to evaluate the trained model. In general, the datasets don't have to contain the same set of time series.

87

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/deepar_electricity/DeepAR-Electricity.ipynb

Amazon SageMaker Developer Guide
DeepAR Forecasting

You can use a model trained on a given training set to generate forecasts for the future of the time series
in the training set, and for other time series. Both the training and the test datasets consist of one or,
preferably, more target time series. Each target time series can optionally be associated with a vector
of feature time series and a vector of categorical features. For more information, see Input/Output
Interface for the DeepAR Algorithm (p. 84).

For example, the following is an element of a training set indexed by i which consists of a target time
series, Zi,t, and two associated feature time series, Xi,1,t and Xi,2,t:

The target time series might contain missing values, which are represented by line breaks in the time
series. DeepAR supports only feature time series that are known in the future. This allows you to run
"what if?" scenarios. What happens, for example, if I change the price of a product in some way?

Each target time series can also be associated with a number of categorical features. You can use these
features to encode which groupings a time series belongs to. Categorical features allow the model to
learn typical behavior for groups, which it can use to increase model accuracy. DeepAR implements this
by learning an embedding vector for each group that captures the common properties of all time series
in the group.

How Feature Time Series Work in the DeepAR Algorithm

To facilitate learning time-dependent patterns, such as spikes during weekends, DeepAR automatically
creates feature time series based on the frequency of the target time series. For example, DeepAR creates
two feature time series (day of the month and day of the year) for a weekly time series frequency. It uses
these derived feature time series with the custom feature time series that you provide during training
and inference. The following figure shows two of these derived time series features: ui,1,t represents the
hour of the day and ui,2,t the day of the week.

88

Amazon SageMaker Developer Guide
DeepAR Forecasting

The DeepAR algorithm automatically generates these feature time series. The following table lists the
derived features for the supported basic time frequencies.

Frequency of the Time Series Derived Features

Minute minute-of-hour, hour-of-day, day-of-week, day-of-month,
day-of-year

Hour hour-of-day, day-of-week, day-of-month, day-of-year

Day day-of-week, day-of-month, day-of-year

Week day-of-month, week-of-year

Month month-of-year

DeepAR trains a model by randomly sampling several training examples from each of the time series
in the training dataset. Each training example consists of a pair of adjacent context and prediction
windows with fixed predefined lengths. The context_length hyperparameter controls how far in the
past the network can see, and the prediction_length hyperparameter controls how far in the future
predictions can be made. During training, the algorithm ignores training set elements containing time
series that are shorter than a specified prediction length. The following figure represents five samples
with context lengths of 12 hours and prediction lengths of 6 hours drawn from element i. For brevity,
we've omitted the feature time series xi,1,t and ui,2,t.

To capture seasonality patterns, DeepAR also automatically feeds lagged values from the target time
series. In the example with hourly frequency, for each time index, t = T, the model exposes the zi,t values,
which occurred approximately one, two, and three days in the past.

89

Amazon SageMaker Developer Guide
DeepAR Forecasting

For inference, the trained model takes as input target time series, which might or might not have been
used during training, and forecasts a probability distribution for the next prediction_length values.
Because DeepAR is trained on the entire dataset, the forecast takes into account patterns learned from
similar time series.

For information on the mathematics behind DeepAR, see DeepAR: Probabilistic Forecasting with
Autoregressive Recurrent Networks.

DeepAR Hyperparameters

Parameter Name Description

context_length The number of time-points that the model gets to see before
making the prediction. The value for this parameter should be
about the same as the prediction_length. The model also
receives lagged inputs from the target, so context_length can be
much smaller than typical seasonalities. For example, a daily time
series can have yearly seasonality. The model automatically includes
a lag of one year, so the context length can be shorter than a year.
The lag values that the model picks depend on the frequency of the
time series. For example, lag values for daily frequency are previous
week, 2 weeks, 3 weeks, 4 weeks, and year.

Required

Valid values: Positive integer

epochs The maximum number of passes over the training data. The
optimal value depends on your data size and learning rate. See also
early_stopping_patience. Typical values range from 10 to
1000.

Required

Valid values: Positive integer

prediction_length The number of time-steps that the model is trained to predict, also
called the forecast horizon. The trained model always generates
forecasts with this length. It can't generate longer forecasts. The
prediction_length is fixed when a model is trained and it
cannot be changed later.

90

https://arxiv.org/abs/1704.04110
https://arxiv.org/abs/1704.04110

Amazon SageMaker Developer Guide
DeepAR Forecasting

Parameter Name Description

Required

Valid values: Positive integer

time_freq The granularity of the time series in the dataset. Use time_freq to
select appropriate date features and lags. The model supports the
following basic frequencies. It also supports multiples of these basic
frequencies. For example, 5min specifies a frequency of 5 minutes.

• M: monthly
• W: weekly
• D: daily
• H: hourly
• min: every minute

Required

Valid values: An integer followed by M, W, D, H, or min. For
example, 5min.

cardinality When using the categorical features (cat), cardinality is an
array specifying the number of categories (groups) per categorical
feature. Set this to auto to infer the cardinality from the data. The
auto mode also works when no categorical features are used in the
dataset. This is the recommended setting for the parameter.

Set cardinality to ignore to force DeepAR to not use categorical
features, even it they are present in the data.

To perform additional data validation, it is possible to explicitly set
this parameter to the actual value. For example, if two categorical
features are provided where the first has 2 and the other has 3
possible values, set this to [2, 3].

For more information on how to use categorical feature, see the
data-section on the main documentation page of DeepAR.

Optional

Valid values: auto, ignore, array of positive integers, empty string,
or

Default value: auto

dropout_rate The dropout rate to use during training. The model uses zoneout
regularization. For each iteration, a random subset of hidden
neurons are not updated. Typical values are less than 0.2.

Optional

Valid values: float

Default value: 0.1

91

Amazon SageMaker Developer Guide
DeepAR Forecasting

Parameter Name Description

early_stopping_patience If this parameter is set, training stops when no progress is made
within the specified number of epochs. The model that has the
lowest loss is returned as the final model.

Optional

Valid values: integer

embedding_dimension Size of embedding vector learned per categorical feature (same
value is used for all categorical features).

The DeepAR model can learn group-level time series patterns when
a categorical grouping feature is provided. To do this, the model
learns an embedding vector of size embedding_dimension for
each group, capturing the common properties of all time series in
the group. A larger embedding_dimension allows the model to
capture more complex patterns. However, because increasing the
embedding_dimension increases the number of parameters in
the model, more training data is required to accurately learn these
parameters. Typical values for this parameter are between 10-100.

Optional

Valid values: positive integer

Default value: 10

learning_rate The learning rate used in training. Typical values range from 1e-4 to
1e-1.

Optional

Valid values: float

Default value: 1e-3

92

Amazon SageMaker Developer Guide
DeepAR Forecasting

Parameter Name Description

likelihood The model generates a probabilistic forecast, and can provide
quantiles of the distribution and return samples. Depending on
your data, select an appropriate likelihood (noise model) that is
used for uncertainty estimates. The following likelihoods can be
selected:

• gaussian: Use for real-valued data.
• beta: Use for real-valued targets between 0 and 1 inclusive.
• negative-binomial: Use for count data (non-negative integers).
• student-T: An alternative for real-valued data that works well for

bursty data.
• deterministic-L1: A loss function that does not estimate

uncertainty and only learns a point forecast.

Optional

Valid values: One of gaussian, beta, negative-binomial, student-T, or
deterministic-L1.

Default value: student-T

mini_batch_size The size of mini-batches used during training. Typical values range
from 32 to 512.

Optional

Valid values: positive integer

Default value: 128

num_cells The number of cells to use in each hidden layer of the RNN. Typical
values range from 30 to 100.

Optional

Valid values: positive integer

Default value: 40

num_dynamic_feat The number of dynamic_feat provided in the data. Set this to
auto to infer the number of dynamic features from the data. The
auto mode also works when no dynamic features are used in the
dataset. This is the recommended setting for the parameter.

To force DeepAR to not use dynamic features, even it they are
present in the data, set num_dynamic_feat to ignore.

To perform additional data validation, it is possible to explicitly
set this parameter to the actual integer value. For example, if two
dynamic features are provided, set this to 2.

Optional

Valid values: auto, ignore, positive integer, or empty string

Default value: auto

93

Amazon SageMaker Developer Guide
DeepAR Forecasting

Parameter Name Description

num_eval_samples The number of samples that are used per time-series when
calculating test accuracy metrics. This parameter does not have any
influence on the training or the final model. In particular, the model
can be queried with a different number of samples. This parameter
only affects the reported accuracy scores on the test channel after
training. Smaller values result in faster evaluation, but then the
evaluation scores are typically worse and more uncertain. When
evaluating with higher quantiles, for example 0.95, it may be
important to increase the number of evaluation samples.

Optional

Valid values: integer

Default value: 100

num_layers The number of hidden layers in the RNN. Typical values range from
1 to 4.

Optional

Valid values: positive integer

Default value: 2

test_quantiles Quantiles for which to calculate quantile loss on the test channel.

Optional

Valid values: array of floats

Default value: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Tune a DeepAR Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the DeepAR Algorithm

The DeepAR algorithm reports three metrics, which are computed during training. When tuning a model,
choose one of these as the objective. For the objective, use either the forecast accuracy on a provided
test channel (recommended) or the training loss. For recommendations for the training/test split for the
DeepAR algorithm, see Best Practices for Using the DeepAR Algorithm (p. 86).

Metric Name Description Optimization Direction

test:RMSE The root mean square error between the forecast
and the actual target computed on the test set.

Minimize

94

Amazon SageMaker Developer Guide
DeepAR Forecasting

Metric Name Description Optimization Direction

test:mean_wQuantileLossThe average overall quantile losses computed on
the test set. To control which quantiles are used,
set the test_quantiles hyperparameter.

Minimize

train:final_loss The training negative log-likelihood loss averaged
over the last training epoch for the model.

Minimize

Tunable Hyperparameters for the DeepAR Algorithm

Tune a DeepAR model with the following hyperparameters. The hyperparameters that have the greatest
impact, listed in order from the most to least impactful, on DeepAR objective metrics are: epochs,
context_length, mini_batch_size, learning_rate, and num_cells.

Parameter Name Parameter Type Recommended Ranges

mini_batch_size IntegerParameterRanges MinValue: 32,
MaxValue: 1028

epochs IntegerParameterRanges MinValue: 1, MaxValue:
1000

context_length IntegerParameterRanges MinValue: 1, MaxValue:
200

num_cells IntegerParameterRanges MinValue: 30,
MaxValue: 200

num_layers IntegerParameterRanges MinValue: 1, MaxValue:
8

dropout_rate ContinuousParameterRange MinValue: 0.00,
MaxValue: 0.2

embedding_dimension IntegerParameterRanges MinValue: 1, MaxValue:
50

learning_rate ContinuousParameterRange MinValue: 1e-5,
MaxValue: 1e-1

DeepAR Inference Formats

DeepAR JSON Request Formats

Query a trained model by using the model's endpoint. The endpoint takes the following JSON request
format.

In the request, the instances field corresponds to the time series that should be forecast by the model.

If the model was trained with categories, you must provide a cat for each instance. If the model was
trained without the cat field, it should be omitted.

If the model was trained with a custom feature time series (dynamic_feat), you have to provide the
same number of dynamic_featvalues for each instance. Each of them should have a length given by
length(target) + prediction_length, where the last prediction_length values correspond to

95

Amazon SageMaker Developer Guide
DeepAR Forecasting

the time points in the future that will be predicted. If the model was trained without custom feature time
series, the field should not be included in the request.

{
 "instances": [
 {
 "start": "2009-11-01 00:00:00",
 "target": [4.0, 10.0, "NaN", 100.0, 113.0],
 "cat": [0, 1],
 "dynamic_feat": [[1.0, 1.1, 2.1, 0.5, 3.1, 4.1, 1.2, 5.0, ...]]
 },
 {
 "start": "2012-01-30",
 "target": [1.0],
 "cat": [2, 1],
 "dynamic_feat": [[2.0, 3.1, 4.5, 1.5, 1.8, 3.2, 0.1, 3.0, ...]]
 },
 {
 "start": "1999-01-30",
 "target": [2.0, 1.0],
 "cat": [1, 3],
 "dynamic_feat": [[1.0, 0.1, -2.5, 0.3, 2.0, -1.2, -0.1, -3.0, ...]]
 }
],
 "configuration": {
 "num_samples": 50,
 "output_types": ["mean", "quantiles", "samples"],
 "quantiles": ["0.5", "0.9"]
 }
}

The configuration field is optional. configuration.num_samples sets the number of sample
paths that the model generates to estimate the mean and quantiles. configuration.output_types
describes the information that will be returned in the request. Valid values are "mean"
"quantiles" and "samples". If you specify "quantiles", each of the quantile values in
configuration.quantiles is returned as a time series. If you specify "samples", the model also
returns the raw samples used to calculate the other outputs.

DeepAR JSON Response Formats

The following is the format of a response, where [...] are arrays of numbers:

{
 "predictions": [
 {
 "quantiles": {
 "0.9": [...],
 "0.5": [...]
 },
 "samples": [...],
 "mean": [...]
 },
 {
 "quantiles": {
 "0.9": [...],
 "0.5": [...]
 },
 "samples": [...],
 "mean": [...]
 },
 {
 "quantiles": {
 "0.9": [...],

96

Amazon SageMaker Developer Guide
DeepAR Forecasting

 "0.5": [...]
 },
 "samples": [...],
 "mean": [...]
 }
]
}

DeepAR has a response timeout of 60 seconds. When passing multiple time series in a single request,
the forecasts are generated sequentially. Because the forecast for each time series typically takes about
300 to 1000 milliseconds or longer, depending on the model size, passing too many time series in a
single request can cause time outs. It's better to send fewer time series per request and send more
requests. Because the DeepAR algorithm uses multiple workers per instance, you can achieve much
higher throughput by sending multiple requests in parallel.

By default, DeepAR uses one worker per CPU for inference, if there is sufficient memory per CPU. If the
model is large and there isn't enough memory to run a model on each CPU, the number of workers is
reduced. The number of workers used for inference can be overwritten using the environment variable
MODEL_SERVER_WORKERS For example, by setting MODEL_SERVER_WORKERS=1) when calling the
Amazon SageMaker CreateModel (p. 648) API.

Batch Transform with the DeepAR Algorithm

DeepAR forecasting supports getting inferences by using batch transform from data using the JSON
Lines format. In this format, each record is represented on a single line as a JSON object, and lines
are separated by newline characters. The format is identical to the JSON Lines format used for model
training. For information, see Input/Output Interface for the DeepAR Algorithm (p. 84). For example:

{"start": "2009-11-01 00:00:00", "target": [4.3, "NaN", 5.1, ...], "cat": [0, 1],
 "dynamic_feat": [[1.1, 1.2, 0.5, ..]]}
{"start": "2012-01-30 00:00:00", "target": [1.0, -5.0, ...], "cat": [2, 3], "dynamic_feat":
 [[1.1, 2.05, ...]]}
{"start": "1999-01-30 00:00:00", "target": [2.0, 1.0], "cat": [1, 4], "dynamic_feat":
 [[1.3, 0.4]]}

Note
When creating the transformation job with CreateTransformJob (p. 673), set the
BatchStrategy value to SingleRecord and set the SplitType value in the
TransformInput (p. 1024) configuration to Line, as the default values currently cause runtime
failures.

Similar to the hosted endpoint inference request format, the cat and the dynamic_feat fields for each
instance are required if both of the following are true:

• The model is trained on a dataset that contained both the cat and the dynamic_feat fields.

• The corresponding cardinality and num_dynamic_feat values used in the training job are not set
to "".

Unlike hosted endpoint inference, the configuration field is set once for the entire batch
inference job using an environment variable named DEEPAR_INFERENCE_CONFIG. The
value of DEEPAR_INFERENCE_CONFIG can be passed when the model is created by calling
CreateTransformJob (p. 673) API. If DEEPAR_INFERENCE_CONFIG is missing in the container
environment, the inference container uses the following default:

{
 "num_samples": 100,
 "output_types": ["mean", "quantiles"],

97

Amazon SageMaker Developer Guide
Factorization Machines

 "quantiles": ["0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9"]
}

The output is also in JSON Lines format, with one line per prediction, in an order identical to the instance
order in the corresponding input file. Predictions are encoded as objects identical to the ones returned by
responses in online inference mode. For example:

{ "quantiles": { "0.1": [...], "0.2": [...] }, "samples": [...], "mean": [...] }

Note that in the TransformInput (p. 1024) configuration of the Amazon SageMaker
CreateTransformJob (p. 673) request clients must explicitly set the AssembleWith value to Line, as
the default value None concatenates all JSON objects on the same line.

For example, here is an Amazon SageMaker CreateTransformJob (p. 673) request for a DeepAR job with
a custom DEEPAR_INFERENCE_CONFIG:

{
 "BatchStrategy": "SingleRecord",
 "Environment": {
 "DEEPAR_INFERENCE_CONFIG" : "{ \"num_samples\": 200, \"output_types\": [\"mean\"] }",
 ...
 },
 "TransformInput": {
 "SplitType": "Line",
 ...
 },
 "TransformOutput": {
 "AssembleWith": "Line",
 ...
 },
 ...
}

Factorization Machines Algorithm
A factorization machine is a general-purpose supervised learning algorithm that you can use for both
classification and regression tasks. It is an extension of a linear model that is designed to capture
interactions between features within high dimensional sparse datasets economically. For example, in
a click prediction system, the factorization machine model can capture click rate patterns observed
when ads from a certain ad-category are placed on pages from a certain page-category. Factorization
machines are a good choice for tasks dealing with high dimensional sparse datasets, such as click
prediction and item recommendation.

Note
The Amazon SageMaker implementation of factorization machines considers only pair-wise (2nd
order) interactions between features.

Topics

• Input/Output Interface for the Factorization Machines Algorithm (p. 99)

• EC2 Instance Recommendation for the Factorization Machines Algorithm (p. 99)

• Factorization Machines Sample Notebooks (p. 99)

• How Factorization Machines Work (p. 99)

• Factorization Machines Hyperparameters (p. 100)

• Tune a Factorization Machines Model (p. 105)

• Factorization Machine Response Formats (p. 107)

98

Amazon SageMaker Developer Guide
Factorization Machines

Input/Output Interface for the Factorization Machines
Algorithm
The factorization machine algorithm can be run in either in binary classification mode or regression
mode. In each mode, a dataset can be provided to the test channel along with the train channel dataset.
The scoring depends on the mode used. In regression mode, the testing dataset is scored using Root
Mean Square Error (RMSE). In binary classification mode, the test dataset is scored using Binary Cross
Entropy (Log Loss), Accuracy (at threshold=0.5) and F1 Score (at threshold =0.5).

For training, the factorization machines algorithm currently supports only the recordIO-protobuf
format with Float32 tensors. Because their use case is predominantly on sparse data, CSV is not a good
candidate. Both File and Pipe mode training are supported for recordIO-wrapped protobuf.

For inference, factorization machines support the application/json and x-recordio-protobuf
formats.

• For the binary classification problem, the algorithm predicts a score and a label. The label is a number
and can be either 0 or 1. The score is a number that indicates how strongly the algorithm believes that
the label should be 1. The algorithm computes score first and then derives the label from the score
value. If the score is greater than or equal to 0.5, the label is 1.

• For the regression problem, just a score is returned and it is the predicted value. For example, if
Factorization Machines is used to predict a movie rating, score is the predicted rating value.

Please see Factorization Machines Sample Notebooks (p. 99) for more details on training and
inference file formats.

EC2 Instance Recommendation for the Factorization Machines
Algorithm
The Amazon SageMaker Factorization Machines algorithm is highly scalable and can train across
distributed instances. We recommend training and inference with CPU instances for both sparse and
dense datasets. In some circumstances, training with one or more GPUs on dense data might provide
some benefit. Training with GPUs is available only on dense data. Use CPU instances for sparse data.

Factorization Machines Sample Notebooks
For a sample notebook that uses the Amazon SageMaker factorization machine learning algorithm to
analyze the images of handwritten digits from zero to nine in the MNIST dataset, see An Introduction
to Factorization Machines with MNIST. For instructions how to create and access Jupyter notebook
instances that you can use to run the example in Amazon SageMaker, see Use Notebook Instances (p. 36).
Once you have created a notebook instance and opened it, select the SageMaker Examples tab to see
a list of all the Amazon SageMaker samples. The topic modeling example notebooks using the NTM
algorithms are located in the Introduction to Amazon algorithms section. To open a notebook, click on
its Use tab and select Create copy.

How Factorization Machines Work
The prediction task for a factorization machine model is to estimate a function ŷ from a feature set xi to
a target domain. This domain is real-valued for regression and binary for classification. The factorization
machine model is supervised and so has a training dataset (xi,yj) available. The advantages this model
presents lie in the way it uses a factorized parametrization to capture the pairwise feature interactions. It
can be represented mathematically as follows:

99

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.ipynb

Amazon SageMaker Developer Guide
Factorization Machines

The three terms in this equation correspond respectively to the three components of the model:

• The w0 term represents the global bias.
• The wi linear terms model the strength of the ith variable.
• The <vi,vj> factorization terms model the pairwise interaction between the ith and jth variable.

The global bias and linear terms are the same as in a linear model. The pairwise feature interactions
are modeled in the third term as the inner product of the corresponding factors learned for each
feature. Learned factors can also be considered as embedding vectors for each feature. For example, in
a classification task, if a pair of features tends to co-occur more often in positive labeled samples, then
the inner product of their factors would be large. In other words, their embedding vectors would be
close to each other in cosine similarity. For more information about the factorization machine model, see
Factorization Machines.

For regression tasks, the model is trained by minimizing the squared error between the model prediction
ŷn and the target value yn. This is known as the square loss:

For a classification task, the model is trained by minimizing the cross entropy loss, also known as the log
loss:

where:

For more information about loss functions for classification, see Loss functions for classification.

Factorization Machines Hyperparameters
The following table contains the hyperparameters for the factorization machines algorithm. These
are parameters that are set by users to facilitate the estimation of model parameters from data.
The required hyperparameters that must be set are listed first, in alphabetical order. The optional
hyperparameters that can be set are listed next, also in alphabetical order.

Parameter Name Description

feature_dim The dimension of the input feature space. This could be very high
with sparse input.

Required

Valid values: Positive integer. Suggested value range:
[10000,10000000]

num_factors The dimensionality of factorization.

Required

Valid values: Positive integer. Suggested value range: [2,1000], 64 is
usually optimal.

100

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://en.wikipedia.org/wiki/Loss_functions_for_classification

Amazon SageMaker Developer Guide
Factorization Machines

Parameter Name Description

predictor_type The type of predictor.

• binary_classifier: For binary classification tasks.
• regressor: For regression tasks.

Required

Valid values: String: binary_classifier or regressor

bias_init_method The initialization method for the bias term:

• normal: Initializes weights with random values sampled from a
normal distribution with a mean of zero and standard deviation
specified by bias_init_sigma.

• uniform: Initializes weights with random values uniformly
sampled from a range specified by [-bias_init_scale,
+bias_init_scale].

• constant: Initializes the weights to a scalar value specified by
bias_init_value.

Optional

Valid values: uniform, normal, or constant

Default value: normal

bias_init_scale Range for initialization of the bias term. Takes effect if
bias_init_method is set to uniform.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: None

bias_init_sigma The standard deviation for initialization of the bias term. Takes
effect if bias_init_method is set to normal.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.01

bias_init_value The initial value of the bias term. Takes effect if
bias_init_method is set to constant.

Optional

Valid values: Float. Suggested value range: [1e-8, 512].

Default value: None

101

Amazon SageMaker Developer Guide
Factorization Machines

Parameter Name Description

bias_lr The learning rate for the bias term.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.1

bias_wd The weight decay for the bias term.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.01

clip_gradient Gradient clipping optimizer parameter. Clips the gradient by
projecting onto the interval [-clip_gradient, +clip_gradient].

Optional

Valid values: Float

Default value: None

epochs The number of training epochs to run.

Optional

Valid values: Positive integer

Default value: 1

eps Epsilon parameter to avoid division by 0.

Optional

Valid values: Float. Suggested value: small.

Default value: None

102

Amazon SageMaker Developer Guide
Factorization Machines

Parameter Name Description

factors_init_method The initialization method for factorization terms:

• normal Initializes weights with random values sampled from a
normal distribution with a mean of zero and standard deviation
specified by factors_init_sigma.

• uniform: Initializes weights with random values uniformly
sampled from a range specified by [-factors_init_scale,
+factors_init_scale].

• constant: Initializes the weights to a scalar value specified by
factors_init_value.

Optional

Valid values: uniform, normal, or constant.

Default value: normal

factors_init_scale The range for initialization of factorization terms. Takes effect if
factors_init_method is set to uniform.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: None

factors_init_sigma The standard deviation for initialization of factorization terms.
Takes effect if factors_init_method is set to normal.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.001

factors_init_value The initial value of factorization terms. Takes effect if
factors_init_method is set to constant.

Optional

Valid values: Float. Suggested value range: [1e-8, 512].

Default value: None

factors_lr The learning rate for factorization terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.0001

103

Amazon SageMaker Developer Guide
Factorization Machines

Parameter Name Description

factors_wd The weight decay for factorization terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.00001

linear_lr The learning rate for linear terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.001

linear_init_method The initialization method for linear terms:

• normal Initializes weights with random values sampled from a
normal distribution with a mean of zero and standard deviation
specified by linear_init_sigma.

• uniform Initializes weights with random values uniformly
sampled from a range specified by [-linear_init_scale,
+linear_init_scale].

• constant Initializes the weights to a scalar value specified by
linear_init_value.

Optional

Valid values: uniform, normal, or constant.

Default value: normal

linear_init_scale Range for initialization of linear terms. Takes effect if
linear_init_method is set to uniform.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: None

linear_init_sigma The standard deviation for initialization of linear terms. Takes effect
if linear_init_method is set to normal.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.01

104

Amazon SageMaker Developer Guide
Factorization Machines

Parameter Name Description

linear_init_value The initial value of linear terms. Takes effect if
linear_init_method is set to constant.

Optional

Valid values: Float. Suggested value range: [1e-8, 512].

Default value: None

linear_wd The weight decay for linear terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.001

mini_batch_size The size of mini-batch used for training.

Optional

Valid values: Positive integer

Default value: 1000

rescale_grad Gradient rescaling optimizer parameter. If set, multiplies the
gradient with rescale_grad before updating. Often choose to be
1.0/batch_size.

Optional

Valid values: Float

Default value: None

Tune a Factorization Machines Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the Factorization Machines Algorithm

The factorization machines algorithm has both binary classification and regression predictor types. The
predictor type determines which metric you can use for automatic model tuning. The algorithm reports a
test:rmse regressor metric, which is computed during training. When tuning the model for regression
tasks, choose this metric as the objective.

Metric Name Description Optimization Direction

test:rmse Root Mean Square Error Minimize

105

Amazon SageMaker Developer Guide
Factorization Machines

The factorization machines algorithm reports three binary classification metrics, which are computed
during training. When tuning the model for binary classification tasks, choose one of these as the
objective.

Metric Name Description Optimization Direction

test:binary_classification_accuracyAccuracy Maximize

test:binary_classification_cross_entropyCross Entropy Minimize

test:binary_f_beta Beta Maximize

Tunable Factorization Machines Hyperparameters

You can tune the following hyperparameters for the factorization machines algorithm. The initialization
parameters that contain the terms bias, linear, and factorization depend on their initialization method.
There are three initialization methods: uniform, normal, and constant. These initialization methods
are not themselves tunable. The parameters that are tunable are dependent on this choice of the
initialization method. For example, if the initialization method is uniform, then only the scale
parameters are tunable. Specifically, if bias_init_method==uniform, then bias_init_scale,
linear_init_scale, and factors_init_scale are tunable. Similarly, if the initialization method is
normal, then only sigma parameters are tunable. If the initialization method is constant, then only
value parameters are tunable. These dependencies are listed in the following table.

Parameter Name Parameter Type Recommended
Ranges

Dependency

bias_init_scale ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==uniform

bias_init_sigma ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==normal

bias_init_value ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==constant

bias_lr ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

bias_wd ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

epoch IntegerParameterRange MinValue: 1,
MaxValue: 1000

None

factors_init_scaleContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==uniform

factors_init_sigmaContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==normal

factors_init_valueContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==constant

factors_lr ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

106

Amazon SageMaker Developer Guide
Factorization Machines

Parameter Name Parameter Type Recommended
Ranges

Dependency

factors_wd ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512]

None

linear_init_scaleContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==uniform

linear_init_sigmaContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==normal

linear_init_valueContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init_method==constant

linear_lr ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

linear_wd ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

mini_batch_size IntegerParameterRange MinValue: 100,
MaxValue: 10000

None

Factorization Machine Response Formats

JSON Response Format

Binary classification

let response = {
 "predictions": [
 {
 "score": 0.4,
 "predicted_label": 0
 }
]
}

Regression

let response = {
 "predictions": [
 {
 "score": 0.4
 }
]
}

JSONLINES Response Format

Binary classification

{"score": 0.4, "predicted_label": 0}

Regression

107

Amazon SageMaker Developer Guide
Image Classification Algorithm

{"score": 0.4}

RECORDIO Response Format

Binary classification

[
 Record = {
 features = {},
 label = {
 'score’: {
 keys: [],
 values: [0.4] # float32
 },
 'predicted_label': {
 keys: [],
 values: [0.0] # float32
 }
 }
 }
]

Regression

[
 Record = {
 features = {},
 label = {
 'score’: {
 keys: [],
 values: [0.4] # float32
 }
 }
 }
]

Image Classification Algorithm
The Amazon SageMaker image classification algorithm is a supervised learning algorithm that supports
multi-label classification. It takes an image as input and outputs one or more labels assigned to that
image. It uses a convolutional neural network (ResNet) that can be trained from scratch or trained using
transfer learning when a large number of training images are not available.

The recommended input format for the Amazon SageMaker image classification algorithms is Apache
MXNet RecordIO. However, you can also use raw images in .jpg or .png format.

Note
To maintain better interoperability with existing deep learning frameworks, this differs from the
protobuf data formats commonly used by other Amazon SageMaker algorithms.

For more information on convolutional networks, see:

• Deep residual learning for image recognition Kaiming He, et al., 2016 IEEE Conference on Computer
Vision and Pattern Recognition

• ImageNet image database
• Image classification in MXNet

Topics

108

https://mxnet.incubator.apache.org/architecture/note_data_loading.html
https://arxiv.org/abs/1512.03385
http://www.image-net.org/
https://github.com/apache/incubator-mxnet/tree/master/example/image-classification

Amazon SageMaker Developer Guide
Image Classification Algorithm

• Input/Output Interface for the Image Classification Algorithm (p. 109)
• EC2 Instance Recommendation for the Image Classification Algorithm (p. 123)
• Image Classification Sample Notebooks (p. 123)
• How Image Classification Works (p. 123)
• Image Classification Hyperparameters (p. 124)
• Tune an Image Classification Model (p. 130)

Input/Output Interface for the Image Classification Algorithm
The Amazon SageMaker Image Classification algorithm supports both RecordIO (application/x-
recordio) and image (image/png, image/jpeg, and application/x-image) content types for
training in file mode and supports RecordIO (application/x-recordio) content type for training in
pipe mode. However you can also train in pipe mode using the image files (image/png, image/jpeg,
and application/x-image), without creating RecordIO files, by using the augmented manifest format.
Distributed training is currently not supported in pipe mode and can only be used in file mode. The
algorithm supports image/png, image/jpeg, and application/x-image for inference.

Train with RecordIO Format

If you use the RecordIO format for training, specify both train and validation channels as values for
the InputDataConfig parameter of the CreateTrainingJob (p. 667) request. Specify one RecordIO
(.rec) file in the train channel and one RecordIO file in the validation channel. Set the content type
for both channels to application/x-recordio.

Train with Image Format

If you use the Image format for training, specify train, validation, train_lst,
and validation_lst channels as values for the InputDataConfig parameter of the
CreateTrainingJob (p. 667) request. Specify the individual image data (.jpg or .png files) for
the train and validation channels. Specify one .lst file in each of the train_lst and
validation_lst channels. Set the content type for all four channels to application/x-image.

Note
Amazon SageMaker reads the training and validation data separately from different channels, so
you must store the training and validation data in different folders.

A .lst file is a tab-separated file with three columns that contains a list of image files. The first column
specifies the image index, the second column specifies the class label index for the image, and the third
column specifies the relative path of the image file. The image index in the first column must be unique
across all of the images. The set of class label indices are numbered successively and the numbering
should start with 0. For example, 0 for the cat class, 1 for the dog class, and so on for additional classes.

The following is an example of a .lst file:

5 1 your_image_directory/train_img_dog1.jpg
1000 0 your_image_directory/train_img_cat1.jpg
22 1 your_image_directory/train_img_dog2.jpg

For example, if your training images are stored in s3://<your_bucket>/train/class_dog, s3://
<your_bucket>/train/class_cat, and so on, specify the path for your train channel as s3://
<your_bucket>/train, which is the top-level directory for your data. In the .lst file, specify the
relative path for an individual file named train_image_dog1.jpg in the class_dog class directory as
class_dog/train_image_dog1.jpg. You can also store all your image files under one subdirectory
inside the train directory. In that case, use that subdirectory for the relative path. For example, s3://
<your_bucket>/train/your_image_directory.

109

Amazon SageMaker Developer Guide
Image Classification Algorithm

Train with Augmented Manifest Image Format

The augmented manifest format enables you to do training in Pipe mode using image files without
needing to create RecordIO files. You need to specify both train and validation channels as values for the
InputDataConfig parameter of the

Starts a model training job. After training completes, Amazon SageMaker saves the resulting
model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the
resulting model artifacts as part of the model. You can also use the artifacts in a machine
learning service other than Amazon SageMaker, provided that you know how to use them for
inferences.

In the request body, you provide the following:

• AlgorithmSpecification - Identifies the training algorithm to use.

• HyperParameters - Specify these algorithm-specific parameters to enable the estimation
of model parameters during training. Hyperparameters can be tuned to optimize this
learning process. For a list of hyperparameters for each training algorithm provided by
Amazon SageMaker, see Algorithms.

• InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx
location where it is stored.

• OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon
SageMaker to save the results of model training.

• ResourceConfig - Identifies the resources, ML compute instances, and ML storage
volumes to deploy for model training. In distributed training, you specify more than one
instance.

• EnableManagedSpotTraining - Optimize the cost of training machine learning models
by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed
Spot Training.

• RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to
perform tasks on your behalf during model training. You must grant this role the necessary
permissions so that Amazon SageMaker can successfully complete model training.

• StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a
time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing
to to wait for a managed spot training job to complete.

For more information about Amazon SageMaker, see How It Works.

Request Syntax

{

 "AlgorithmSpecification": {

 "AlgorithmName": "string",

 "MetricDefinitions": [

 {

 "Name": "string",

 "Regex": "string"

 }

],

 "TrainingImage": "string",

 "TrainingInputMode": "string"

 },

 "CheckpointConfig": {

 "LocalPath": "string",

 "S3Uri": "string"

110

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

 },

 "EnableInterContainerTrafficEncryption": boolean,

 "EnableManagedSpotTraining": boolean,

 "EnableNetworkIsolation": boolean,

 "HyperParameters": {

 "string" : "string"

 },

 "InputDataConfig": [

 {

 "ChannelName": "string",

 "CompressionType": "string",

 "ContentType": "string",

 "DataSource": {

 "FileSystemDataSource": {

 "DirectoryPath": "string",

 "FileSystemAccessMode": "string",

 "FileSystemId": "string",

 "FileSystemType": "string"

 },

 "S3DataSource": {

 "AttributeNames": ["string"],

 "S3DataDistributionType": "string",

 "S3DataType": "string",

 "S3Uri": "string"

 }

 },

 "InputMode": "string",

 "RecordWrapperType": "string",

 "ShuffleConfig": {

 "Seed": number

 }

 }

],

 "OutputDataConfig": {

 "KmsKeyId": "string",

 "S3OutputPath": "string"

 },

 "ResourceConfig": {

 "InstanceCount": number,

 "InstanceType": "string",

 "VolumeKmsKeyId": "string",

 "VolumeSizeInGB": number

 },

 "RoleArn": "string",

 "StoppingCondition": {

 "MaxRuntimeInSeconds": number,

 "MaxWaitTimeInSeconds": number

 },

 "Tags": [

 {

 "Key": "string",

 "Value": "string"

 }

],

 "TrainingJobName": "string",

 "VpcConfig": {

 "SecurityGroupIds": ["string"],

 "Subnets": ["string"]

 }

}

111

Amazon SageMaker Developer Guide
Image Classification Algorithm

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AlgorithmSpecification (p. 667)

The registry path of the Docker image that contains the training algorithm and
algorithm-specific metadata, including the input mode. For more information
about algorithms provided by Amazon SageMaker, see Algorithms. For information
about providing your own algorithms, see Using Your Own Algorithms with Amazon
SageMaker.

Type: AlgorithmSpecification (p. 863) object

Required: Yes
CheckpointConfig (p. 667)

Contains information about the output location for managed spot training checkpoint
data.

Type: CheckpointConfig (p. 880) object

Required: No
EnableInterContainerTrafficEncryption (p. 667)

To encrypt all communications between ML compute instances in distributed training,
choose True. Encryption provides greater security for distributed training, but training
might take longer. How long it takes depends on the amount of communication between
compute instances, especially if you use a deep learning algorithm in distributed training.
For more information, see Protect Communications Between ML Compute Instances in a
Distributed Training Job.

Type: Boolean

Required: No
EnableManagedSpotTraining (p. 667)

To train models using managed spot training, choose True. Managed spot training
provides a fully managed and scalable infrastructure for training machine learning
models. this option is useful when training jobs can be interrupted and when there is
flexibility when the training job is run.

The complete and intermediate results of jobs are stored in an Amazon S3 bucket,
and can be used as a starting point to train models incrementally. Amazon SageMaker
provides metrics and logs in CloudWatch. They can be used to see when managed spot
training jobs are running, interrupted, resumed, or completed.

Type: Boolean

Required: No
EnableNetworkIsolation (p. 667)

Isolates the training container. No inbound or outbound network calls can be made,
except for calls between peers within a training cluster for distributed training. If you
enable network isolation for training jobs that are configured to use a VPC, Amazon

112

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

SageMaker downloads and uploads customer data and model artifacts through the
specified VPC, but the training container does not have network access.

Note
The Semantic Segmentation built-in algorithm does not support network
isolation.

Type: Boolean

Required: No
HyperParameters (p. 667)

Algorithm-specific parameters that influence the quality of the model. You set
hyperparameters before you start the learning process. For a list of hyperparameters for
each training algorithm provided by Amazon SageMaker, see Algorithms.

You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-
value pair. Each key and value is limited to 256 characters, as specified by the Length
Constraint.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
InputDataConfig (p. 667)

An array of Channel objects. Each channel is a named input source. InputDataConfig
describes the input data and its location.

Algorithms can accept input data from one or more channels. For example, an algorithm
might have two channels of input data, training_data and validation_data. The
configuration for each channel provides the S3, EFS, or FSx location where the input data
is stored. It also provides information about the stored data: the MIME type, compression
method, and whether the data is wrapped in RecordIO format.

Depending on the input mode that the algorithm supports, Amazon SageMaker either
copies input data files from an S3 bucket to a local directory in the Docker container, or
makes it available as input streams. For example, if you specify an EFS location, input
data files will be made available as input streams. They do not need to be downloaded.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
OutputDataConfig (p. 667)

Specifies the path to the S3 location where you want to store model artifacts. Amazon
SageMaker creates subfolders for the artifacts.

Type: OutputDataConfig (p. 976) object

Required: Yes

113

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

ResourceConfig (p. 667)

The resources, including the ML compute instances and ML storage volumes, to use for
model training.

ML storage volumes store model artifacts and incremental states. Training algorithms
might also use ML storage volumes for scratch space. If you want Amazon SageMaker
to use the ML storage volume to store the training data, choose File as the
TrainingInputMode in the algorithm specification. For distributed training algorithms,
specify an instance count greater than 1.

Type: ResourceConfig (p. 991) object

Required: Yes
RoleArn (p. 667)

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to
perform tasks on your behalf.

During model training, Amazon SageMaker needs your permission to read input data
from an S3 bucket, download a Docker image that contains training code, write model
artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics
to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For
more information, see Amazon SageMaker Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must
have the iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StoppingCondition (p. 667)

Specifies a limit to how long a model training job can run. When the job reaches the time
limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays
job termination for 120 seconds. Algorithms can use this 120-second window to save the
model artifacts, so the results of training are not lost.

Type: StoppingCondition (p. 1004) object

Required: Yes
Tags (p. 667)

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the
AWS Billing and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TrainingJobName (p. 667)

The name of the training job. The name must be unique within an AWS Region in an AWS
account.

114

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Image Classification Algorithm

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
VpcConfig (p. 667)

A VpcConfig (p. 1039) object that specifies the VPC that you want your training job to
connect to. Control access to and from your training container by configuring the VPC.
For more information, see Protect Training Jobs by Using an Amazon Virtual Private
Cloud.

Type: VpcConfig (p. 1039) object

Required: No
Response Syntax

{

 "TrainingJobArn": "string"

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TrainingJobArn (p. 672)

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-
job/.*

Errors

For information about the errors that are common to all actions, see Common
Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have
too many training jobs created.

HTTP Status Code: 400

115

https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

 (p.) request. While using the format, an S3 manifest file needs to be generated that contains
the list of images and their corresponding annotations. The manifest file format should be in JSON
Lines format in which each line represents one sample. The images are specified using the 'source-
ref' tag that points to the S3 location of the image. The annotations are provided under the
"AttributeNames" parameter value as specified in the

Starts a model training job. After training completes, Amazon SageMaker saves the resulting
model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the
resulting model artifacts as part of the model. You can also use the artifacts in a machine
learning service other than Amazon SageMaker, provided that you know how to use them for
inferences.

In the request body, you provide the following:

• AlgorithmSpecification - Identifies the training algorithm to use.
• HyperParameters - Specify these algorithm-specific parameters to enable the estimation

of model parameters during training. Hyperparameters can be tuned to optimize this
learning process. For a list of hyperparameters for each training algorithm provided by
Amazon SageMaker, see Algorithms.

• InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx
location where it is stored.

• OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon
SageMaker to save the results of model training.

• ResourceConfig - Identifies the resources, ML compute instances, and ML storage
volumes to deploy for model training. In distributed training, you specify more than one
instance.

• EnableManagedSpotTraining - Optimize the cost of training machine learning models
by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed
Spot Training.

• RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to
perform tasks on your behalf during model training. You must grant this role the necessary
permissions so that Amazon SageMaker can successfully complete model training.

• StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a
time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing
to to wait for a managed spot training job to complete.

116

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateTrainingJob
http://jsonlines.org/
http://jsonlines.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

For more information about Amazon SageMaker, see How It Works.

Request Syntax

{

 "AlgorithmSpecification": {

 "AlgorithmName": "string",

 "MetricDefinitions": [

 {

 "Name": "string",

 "Regex": "string"

 }

],

 "TrainingImage": "string",

 "TrainingInputMode": "string"

 },

 "CheckpointConfig": {

 "LocalPath": "string",

 "S3Uri": "string"

 },

 "EnableInterContainerTrafficEncryption": boolean,

 "EnableManagedSpotTraining": boolean,

 "EnableNetworkIsolation": boolean,

 "HyperParameters": {

 "string" : "string"

 },

 "InputDataConfig": [

 {

 "ChannelName": "string",

 "CompressionType": "string",

 "ContentType": "string",

 "DataSource": {

 "FileSystemDataSource": {

 "DirectoryPath": "string",

 "FileSystemAccessMode": "string",

 "FileSystemId": "string",

 "FileSystemType": "string"

 },

 "S3DataSource": {

 "AttributeNames": ["string"],

 "S3DataDistributionType": "string",

 "S3DataType": "string",

 "S3Uri": "string"

 }

 },

 "InputMode": "string",

 "RecordWrapperType": "string",

 "ShuffleConfig": {

 "Seed": number

 }

 }

],

 "OutputDataConfig": {

 "KmsKeyId": "string",

 "S3OutputPath": "string"

 },

 "ResourceConfig": {

 "InstanceCount": number,

 "InstanceType": "string",

 "VolumeKmsKeyId": "string",

 "VolumeSizeInGB": number

 },

 "RoleArn": "string",

 "StoppingCondition": {

 "MaxRuntimeInSeconds": number,

117

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

 "MaxWaitTimeInSeconds": number

 },

 "Tags": [

 {

 "Key": "string",

 "Value": "string"

 }

],

 "TrainingJobName": "string",

 "VpcConfig": {

 "SecurityGroupIds": ["string"],

 "Subnets": ["string"]

 }

}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AlgorithmSpecification (p. 667)

The registry path of the Docker image that contains the training algorithm and
algorithm-specific metadata, including the input mode. For more information
about algorithms provided by Amazon SageMaker, see Algorithms. For information
about providing your own algorithms, see Using Your Own Algorithms with Amazon
SageMaker.

Type: AlgorithmSpecification (p. 863) object

Required: Yes
CheckpointConfig (p. 667)

Contains information about the output location for managed spot training checkpoint
data.

Type: CheckpointConfig (p. 880) object

Required: No
EnableInterContainerTrafficEncryption (p. 667)

To encrypt all communications between ML compute instances in distributed training,
choose True. Encryption provides greater security for distributed training, but training
might take longer. How long it takes depends on the amount of communication between
compute instances, especially if you use a deep learning algorithm in distributed training.
For more information, see Protect Communications Between ML Compute Instances in a
Distributed Training Job.

Type: Boolean

Required: No
EnableManagedSpotTraining (p. 667)

To train models using managed spot training, choose True. Managed spot training
provides a fully managed and scalable infrastructure for training machine learning
models. this option is useful when training jobs can be interrupted and when there is
flexibility when the training job is run.

The complete and intermediate results of jobs are stored in an Amazon S3 bucket,
and can be used as a starting point to train models incrementally. Amazon SageMaker

118

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

provides metrics and logs in CloudWatch. They can be used to see when managed spot
training jobs are running, interrupted, resumed, or completed.

Type: Boolean

Required: No
EnableNetworkIsolation (p. 667)

Isolates the training container. No inbound or outbound network calls can be made,
except for calls between peers within a training cluster for distributed training. If you
enable network isolation for training jobs that are configured to use a VPC, Amazon
SageMaker downloads and uploads customer data and model artifacts through the
specified VPC, but the training container does not have network access.

Note
The Semantic Segmentation built-in algorithm does not support network
isolation.

Type: Boolean

Required: No
HyperParameters (p. 667)

Algorithm-specific parameters that influence the quality of the model. You set
hyperparameters before you start the learning process. For a list of hyperparameters for
each training algorithm provided by Amazon SageMaker, see Algorithms.

You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-
value pair. Each key and value is limited to 256 characters, as specified by the Length
Constraint.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
InputDataConfig (p. 667)

An array of Channel objects. Each channel is a named input source. InputDataConfig
describes the input data and its location.

Algorithms can accept input data from one or more channels. For example, an algorithm
might have two channels of input data, training_data and validation_data. The
configuration for each channel provides the S3, EFS, or FSx location where the input data
is stored. It also provides information about the stored data: the MIME type, compression
method, and whether the data is wrapped in RecordIO format.

Depending on the input mode that the algorithm supports, Amazon SageMaker either
copies input data files from an S3 bucket to a local directory in the Docker container, or
makes it available as input streams. For example, if you specify an EFS location, input
data files will be made available as input streams. They do not need to be downloaded.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
119

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

OutputDataConfig (p. 667)

Specifies the path to the S3 location where you want to store model artifacts. Amazon
SageMaker creates subfolders for the artifacts.

Type: OutputDataConfig (p. 976) object

Required: Yes
ResourceConfig (p. 667)

The resources, including the ML compute instances and ML storage volumes, to use for
model training.

ML storage volumes store model artifacts and incremental states. Training algorithms
might also use ML storage volumes for scratch space. If you want Amazon SageMaker
to use the ML storage volume to store the training data, choose File as the
TrainingInputMode in the algorithm specification. For distributed training algorithms,
specify an instance count greater than 1.

Type: ResourceConfig (p. 991) object

Required: Yes
RoleArn (p. 667)

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to
perform tasks on your behalf.

During model training, Amazon SageMaker needs your permission to read input data
from an S3 bucket, download a Docker image that contains training code, write model
artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics
to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For
more information, see Amazon SageMaker Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must
have the iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StoppingCondition (p. 667)

Specifies a limit to how long a model training job can run. When the job reaches the time
limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays
job termination for 120 seconds. Algorithms can use this 120-second window to save the
model artifacts, so the results of training are not lost.

Type: StoppingCondition (p. 1004) object

Required: Yes
Tags (p. 667)

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the
AWS Billing and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

120

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Image Classification Algorithm

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TrainingJobName (p. 667)

The name of the training job. The name must be unique within an AWS Region in an AWS
account.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
VpcConfig (p. 667)

A VpcConfig (p. 1039) object that specifies the VPC that you want your training job to
connect to. Control access to and from your training container by configuring the VPC.
For more information, see Protect Training Jobs by Using an Amazon Virtual Private
Cloud.

Type: VpcConfig (p. 1039) object

Required: No
Response Syntax

{

 "TrainingJobArn": "string"

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TrainingJobArn (p. 672)

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-
job/.*

Errors

For information about the errors that are common to all actions, see Common
Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400 121

https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

Amazon SageMaker Developer Guide
Image Classification Algorithm

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have
too many training jobs created.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

 (p.) request. It can also contain additional metadata under the metadata tag, but these are
ignored by the algorithm. In the following example, the "AttributeNames" are contained in the list of
image and annotation references ["source-ref", "class"]. The corresponding label value is "0"
for the first image and “1” for the second image:

{"source-ref":"s3://image/filename1.jpg", "class":"0"}
{"source-ref":"s3://image/filename2.jpg", "class":"1", "class-metadata": {"class-name":
 "cat", "type" : "groundtruth/image-classification"}}

The order of "AttributeNames" in the input files matters when training the ImageClassification
algorithm. It accepts piped data in a specific order, with image first, followed by label. So the
"AttributeNames" in this example are provided with "source-ref" first, followed by "class".
When using the ImageClassification algorithm with Augmented Manifest, the value of the
RecordWrapperType parameter must be "RecordIO".

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs with
an Augmented Manifest File (p. 308).

Incremental Training

You can also seed the training of a new model with the artifacts from a model that you trained
previously with Amazon SageMaker. Incremental training saves training time when you want to train a
new model with the same or similar data. Amazon SageMaker image classification models can be seeded
only with another build-in image classification model trained in Amazon SageMaker.

To use a pretrained model, in the CreateTrainingJob (p. 667) request, specify the ChannelName
as "model" in the InputDataConfig parameter. Set the ContentType for the model channel to
application/x-sagemaker-model. The input hyperparameters of both the new model and
the pretrained model that you upload to the model channel must have the same settings for the
num_layers, image_shape and num_classes input parameters. These parameters define the network
architecture. For the pretrained model file, use the compressed model artifacts (in .tar.gz format) output
by Amazon SageMaker. You can use either RecordIO or image formats for input data.

122

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateTrainingJob

Amazon SageMaker Developer Guide
Image Classification Algorithm

For a sample notebook that shows how to use incremental training with the Amazon SageMaker image
classification algorithm, see the End-to-End Incremental Training Image Classification Example. For more
information on incremental training and for instructions on how to use it, see Incremental Training in
Amazon SageMaker (p. 282).

Inference with the Image Format Algorithm

The generated models can be hosted for inference and support encoded .jpg and .png image formats
as image/png, image/jpeg, and application/x-image content-type. The output is the probability
values for all classes encoded in JSON format, or in JSON Lines text format for batch transform. The
image classification model processes a single image per request and so outputs only one line in the JSON
or JSON Lines format. The following is an example of a response in JSON Lines format:

accept: application/jsonlines

 {"prediction": [prob_0, prob_1, prob_2, prob_3, ...]}

For more details on training and inference, see the image classification sample notebook instances
referenced in the introduction.

EC2 Instance Recommendation for the Image Classification
Algorithm
For image classification, we support the following GPU instances for training: ml.p2.xlarge,
ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlargeand ml.p3.16xlarge. We
recommend using GPU instances with more memory for training with large batch sizes. However, both
CPU (such as C4) and GPU (such as P2 and P3) instances can be used for the inference. You can also run
the algorithm on multi-GPU and multi-machine settings for distributed training.

Both P2 and P3 instances are supported in the image classification algorithm.

Image Classification Sample Notebooks
For a sample notebook that uses the Amazon SageMaker image classification algorithm to train a model
on the caltech-256 dataset and then to deploy it to perform inferences, see the End-to-End Multiclass
Image Classification Example. For instructions how to create and access Jupyter notebook instances
that you can use to run the example in Amazon SageMaker, see Use Notebook Instances (p. 36). Once
you have created a notebook instance and opened it, select the SageMaker Examples tab to see a list
of all the Amazon SageMaker samples. The example image classification notebooks are located in the
Introduction to Amazon algorithms section. To open a notebook, click on its Use tab and select Create
copy.

How Image Classification Works
The image classification algorithm takes an image as input and classifies it into one of the output
categories. Deep learning has revolutionized the image classification domain and has achieved great
performance. Various deep learning networks such as ResNet [1], DenseNet, inception, and so on, have
been developed to be highly accurate for image classification. At the same time, there have been efforts
to collect labeled image data that are essential for training these networks. ImageNet[2] is one such
large dataset that has more than 11 million images with about 11,000 categories. Once a network is
trained with ImageNet data, it can then be used to generalize with other datasets as well, by simple re-
adjustment or fine-tuning. In this transfer learning approach, a network is initialized with weights (in
this example, trained on ImageNet), which can be later fine-tuned for an image classification task in a
different dataset.

Image classification in Amazon SageMaker can be run in two modes: full training and transfer learning.
In full training mode, the network is initialized with random weights and trained on user data from

123

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-incremental-training-highlevel.ipynb
http://jsonlines.org/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb

Amazon SageMaker Developer Guide
Image Classification Algorithm

scratch. In transfer learning mode, the network is initialized with pre-trained weights and just the top
fully connected layer is initialized with random weights. Then, the whole network is fine-tuned with new
data. In this mode, training can be achieved even with a smaller dataset. This is because the network is
already trained and therefore can be used in cases without sufficient training data.

Image Classification Hyperparameters

Parameter Name Description

num_classes Number of output classes. This parameter defines the dimensions
of the network output and is typically set to the number of classes
in the dataset.

Required

Valid values: positive integer

num_training_samples Number of training examples in the input dataset.

If there is a mismatch between this value and the number
of samples in the training set, then the behavior of the
lr_scheduler_step parameter is undefined and distributed
training accuracy might be affected.

Required

Valid values: positive integer

augmentation_type Data augmentation type. The input images can be augmented in
multiple ways as specified below.

• crop: Randomly crop the image and flip the image horizontally
• crop_color: In addition to ‘crop’, three random values in

the range [-36, 36], [-50, 50], and [-50, 50] are added to the
corresponding Hue-Saturation-Lightness channels respectively

• crop_color_transform: In addition to crop_color, random
transformations, including rotation, shear, and aspect ratio
variations are applied to the image. The maximum angle of
rotation is 10 degrees, the maximum shear ratio is 0.1, and the
maximum aspect changing ratio is 0.25.

Optional

Valid values: crop, crop_color, or crop_color_transform.

Default value: no default value

beta_1 The beta1 for adam, that is the exponential decay rate for the first
moment estimates.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.9

beta_2 The beta2 for adam, that is the exponential decay rate for the
second moment estimates.

124

Amazon SageMaker Developer Guide
Image Classification Algorithm

Parameter Name Description

Optional

Valid values: float. Range in [0, 1].

Default value: 0.999

checkpoint_frequency Period to store model parameters (in number of epochs).

Optional

Valid values: positive integer no greater than epochs.

Default value: None (Save checkpoint at the epoch that has the best
validation accuracy.)

early_stopping True to use early stopping logic during training. False not to use
it.

Optional

Valid values: True or False

Default value: False

early_stopping_min_epochs The minimum number of epochs that must be run before
the early stopping logic can be invoked. It is used only when
early_stopping = True.

Optional

Valid values: positive integer

Default value: 10

early_stopping_patience The number of epochs to wait before ending training if no
improvement is made in the relevant metric. It is used only when
early_stopping = True.

Optional

Valid values: positive integer

Default value: 5

early_stopping_tolerance Relative tolerance to measure an improvement in accuracy
validation metric. If the ratio of the improvement in accuracy
divided by the previous best accuracy is smaller than the
early_stopping_tolerance value set, early stopping considers
there is no improvement. It is used only when early_stopping =
True.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.0

125

Amazon SageMaker Developer Guide
Image Classification Algorithm

Parameter Name Description

epochs Number of training epochs.

Optional

Valid values: positive integer

Default value: 30

eps The epsilon for adam and rmsprop. It is usually set to a small value
to avoid division by 0.

Optional

Valid values: float. Range in [0, 1].

Default value: 1e-8

gamma The gamma for rmsprop, the decay factor for the moving average
of the squared gradient.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.9

image_shape The input image dimensions, which is the same size as the input
layer of the network. The format is defined as 'num_channels,
height, width'. The image dimension can take on any value as the
network can handle varied dimensions of the input. However, there
may be memory constraints if a larger image dimension is used.
Typical image dimensions for image classification are '3, 224, 224'.
This is similar to the ImageNet dataset.

Optional

Valid values: string

Default value: ‘3, 224, 224’

126

Amazon SageMaker Developer Guide
Image Classification Algorithm

Parameter Name Description

kv_store Weight update synchronization mode during distributed training.
The weight updates can be updated either synchronously or
asynchronously across machines. Synchronous updates typically
provide better accuracy than asynchronous updates but can be
slower. See distributed training in MXNet for more details.

This parameter is not applicable to single machine training.

• dist_sync: The gradients are synchronized after every batch
with all the workers. With dist_sync, batch-size now means
the batch size used on each machine. So if there are n machines
and we use batch size b, then dist_sync behaves like local with
batch size n*b

• dist_async: Performs asynchronous updates. The weights are
updated whenever gradients are received from any machine
and the weight updates are atomic. However, the order is not
guaranteed.

Optional

Valid values: dist_sync or dist_async

Default value: no default value

learning_rate Initial learning rate.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.1

lr_scheduler_factor The ratio to reduce learning rate used in conjunction with the
lr_scheduler_step parameter, defined as lr_new = lr_old *
lr_scheduler_factor.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.1

lr_scheduler_step The epochs at which to reduce the learning rate. As explained
in the lr_scheduler_factor parameter, the learning rate
is reduced by lr_scheduler_factor at these epochs. For
example, if the value is set to "10, 20", then the learning rate is
reduced by lr_scheduler_factor after 10th epoch and again
by lr_scheduler_factor after 20th epoch. The epochs are
delimited by ",".

Optional

Valid values: string

Default value: no default value

127

Amazon SageMaker Developer Guide
Image Classification Algorithm

Parameter Name Description

mini_batch_size The batch size for training. In a single-machine multi-GPU setting,
each GPU handles mini_batch_size/num_gpu training samples.
For the multi-machine training in dist_sync mode, the actual batch
size is mini_batch_size*number of machines. See MXNet docs
for more details.

Optional

Valid values: positive integer

Default value: 32

momentum The momentum for sgd and nag, ignored for other optimizers.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.9

multi_label Flag to use for multi-label classification where each sample can
be assigned multiple labels. Average accuracy across all classes is
logged.

Optional

Valid values: 0 or 1

Default value: 0

num_layers Number of layers for the network. For data with large image size
(for example, 224x224 - like ImageNet), we suggest selecting the
number of layers from the set [18, 34, 50, 101, 152, 200]. For data
with small image size (for example, 28x28 - like CIFAR), we suggest
selecting the number of layers from the set [20, 32, 44, 56, 110].
The number of layers in each set is based on the ResNet paper. For
transfer learning, the number of layers defines the architecture of
base network and hence can only be selected from the set [18, 34,
50, 101, 152, 200].

Optional

Valid values: positive integer in [18, 34, 50, 101, 152, 200] or [20,
32, 44, 56, 110]

Default value: 152

128

Amazon SageMaker Developer Guide
Image Classification Algorithm

Parameter Name Description

optimizer The optimizer type. For more details of the parameters for the
optimizers, please refer to MXNet's API.

Optional

Valid values: One of sgd, adam, rmsprop, or nag.

• sgd: Stochastic gradient descent
• adam: Adaptive momentum estimation
• rmsprop: Root mean square propagation
• nag: Nesterov accelerated gradient

Default value: sgd

precision_dtype The precision of the weights used for training. The algorithm can
use either single precision (float32) or half precision (float16)
for the weights. Using half-precision for weights results in reduced
memory consumption.

Optional

Valid values: float32 or float16

Default value: float32

resize Resizes the image before using it for training. The images are
resized so that the shortest side has the number of pixels specified
by this parameter. If the parameter is not set, then the training data
is used without resizing.

Optional

Valid values: positive integer

Default value: no default value

top_k Reports the top-k accuracy during training. This parameter has to
be greater than 1, since the top-1 training accuracy is the same as
the regular training accuracy that has already been reported.

Optional

Valid values: positive integer larger than 1.

Default value: no default value

129

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
https://calculus.subwiki.org/wiki/Nesterov%27s_gradient_acceleration

Amazon SageMaker Developer Guide
Image Classification Algorithm

Parameter Name Description

use_pretrained_model Flag to use pre-trained model for training. If set to 1, then the
pretrained model with the corresponding number of layers is
loaded and used for training. Only the top FC layer are reinitialized
with random weights. Otherwise, the network is trained from
scratch.

Optional

Valid values: 0 or 1

Default value: 0

use_weighted_loss Flag to use weighted cross-entropy loss for multi-label classification
(used only when multi_label = 1), where the weights are
calculated based on the distribution of classes.

Optional

Valid values: 0 or 1

Default value: 0

weight_decay The coefficient weight decay for sgd and nag, ignored for other
optimizers.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.0001

Tune an Image Classification Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the Image Classification Algorithm

The image classification algorithm is a supervised algorithm. It reports an accuracy metric that is
computed during training. When tuning the model, choose this metric as the objective metric.

Metric Name Description Optimization Direction

validation:accuracy The ratio of the number of correct predictions to
the total number of predictions made.

Maximize

Tunable Image Classification Hyperparameters

Tune an image classification model with the following hyperparameters. The hyperparameters that have
the greatest impact on image classification objective metrics are: mini_batch_size, learning_rate,

130

Amazon SageMaker Developer Guide
IP Insights

and optimizer. Tune the optimizer-related hyperparameters, such as momentum, weight_decay,
beta_1, beta_2, eps, and gamma, based on the selected optimizer. For example, use beta_1 and
beta_2 only when adam is the optimizer.

For more information about which hyperparameters are used in each optimizer, see Image Classification
Hyperparameters (p. 124).

Parameter Name Parameter Type Recommended Ranges

beta_1 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

beta_2 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

eps ContinuousParameterRanges MinValue: 1e-8,
MaxValue: 1.0

gamma ContinuousParameterRanges MinValue: 1e-8,
MaxValue: 0.999

learning_rate ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.5

mini_batch_size IntegerParameterRanges MinValue: 8, MaxValue:
512

momentum ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

optimizer CategoricalParameterRanges ['sgd', ‘adam’, ‘rmsprop’,
'nag']

weight_decay ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

IP Insights Algorithm
Amazon SageMaker IP Insights is an unsupervised learning algorithm that learns the usage patterns for
IPv4 addresses. It is designed to capture associations between IPv4 addresses and various entities, such
as user IDs or account numbers. You can use it to identify a user attempting to log into a web service
from an anomalous IP address, for example. Or you can use it to identify an account that is attempting
to create computing resources from an unusual IP address. Trained IP Insight models can be hosted at an
endpoint for making real-time predictions or used for processing batch transforms

Amazon SageMaker IP insights ingests historical data as (entity, IPv4 Address) pairs and learns the IP
usage patterns of each entity. When queried with an (entity, IPv4 Address) event, an Amazon SageMaker
IP Insights model returns a score that infers how anomalous the pattern of the event is. For example,
when a user attempts to log in from an IP address, if the IP Insights score is high enough, a web login
server might decide to trigger a multi-factor authentication system. In more advanced solutions, you
can feed the IP Insights score into another machine learning model. For example, you can combine the
IP Insight score with other features to rank the findings of another security system, such as those from
Amazon GuardDuty.

The Amazon SageMaker IP Insights algorithm can also learn vector representations of IP addresses,
known as embeddings. You can use vector-encoded embeddings as features in downstream machine
learning tasks that use the information observed in the IP addresses. For example, you can use them in
tasks such as measuring similarities between IP addresses in clustering and visualization tasks.

131

https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

Amazon SageMaker Developer Guide
IP Insights

Topics
• Input/Output Interface for the IP Insights Algorithm (p. 132)
• EC2 Instance Recommendation for the IP Insights Algorithm (p. 132)
• IP Insights Sample Notebooks (p. 133)
• How IP Insights Works (p. 133)
• IP Insights Hyperparameters (p. 134)
• Tune an IP Insights Model (p. 137)
• IP Insights Data Formats (p. 138)

Input/Output Interface for the IP Insights Algorithm
Training and Validation

The Amazon SageMaker IP Insights algorithm supports training and validation data channels. It uses
the optional validation channel to compute an area-under-curve (AUC) score on a predefined negative
sampling strategy. The AUC metric validates how well the model discriminates between positive and
negative samples. Training and validation data content types need to be in text/csv format. The first
column of the CSV data is an opaque string that provides a unique identifier for the entity. The second
column is an IPv4 address in decimal-dot notation. IP Insights currently supports only File mode. For
more information and some examples, see IP Insights Training Data Formats (p. 138).

Inference

For inference, IP Insights supports text/csv, application/json, and application/jsonlines
data content types. For more information about the common data formats for inference provided by
Amazon SageMaker, see Common Data Formats for Inference (p. 68). IP Insights inference returns
output formatted as either application/json or application/jsonlines. Each record in the
output data contains the corresponding dot_product (or compatibility score) for each input data point.
For more information and some examples, see IP Insights Inference Data Formats (p. 139).

EC2 Instance Recommendation for the IP Insights Algorithm
The Amazon SageMaker IP Insights algorithm can run on both GPU and CPU instances. For training
jobs, we recommend using GPU instances. However, for certain workloads with large training datasets,
distributed CPU instances might reduce training costs. For inference, we recommend using CPU
instances.

GPU Instances for the IP Insights Algorithm

IP Insights supports all available GPUs. If you need to speed up training, we recommend starting with
a single GPU instance, such as ml.p3.2xlarge, and then moving to a multi-GPU environment, such as
ml.p3.8xlarge and ml.p3.16xlarge. Multi-GPUs automatically divide the mini batches of training data
across themselves. If you switch from a single GPU to multiple GPUs, the mini_batch_size is divided
equally into the number of GPUs used. You may want to increase the value of the mini_batch_size to
compensate for this.

CPU Instances for the IP Insights Algorithm

The type of CPU instance that we recommend depends largely on the instance's available memory
and the model size. The model size is determined by two hyperparameters: vector_dim and
num_entity_vectors. The maximum supported model size is 8 GB. The following table lists typical
EC2 instance types that you would deploy based on these input parameters for various model sizes.
In Table 1, the value for vector_dim in the first column range from 32 to 2048 and the values for
num_entity_vectors in the first row range from 10,000 to 50,00,000.

132

Amazon SageMaker Developer Guide
IP Insights

vector_dim
\
num_entity_vectors.

10,000 50,000 100,000 500,000 1,000,000 5,000,000 10,000,00050,000,000

32 ml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.xlargeml.m5.2xlargeml.m5.4xlarge

64 ml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.2xlargeml.m5.2xlarge

128 ml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.2xlargeml.m5.4xlarge

256 ml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.xlargeml.m5.4xlarge

512 ml.m5.largeml.m5.largeml.m5.largeml.m5.largeml.m5.2xlarge

1024 ml.m5.largeml.m5.largeml.m5.largeml.m5.xlargeml.m5.4xlarge

2048 ml.m5.largeml.m5.largeml.m5.xlargeml.m5.xlarge

The values for the mini_batch_size, num_ip_encoder_layers,
random_negative_sampling_rate, and shuffled_negative_sampling_rate hyperparameters
also affect the amount of memory required. If these values are large, you might need to use a larger
instance type than normal.

IP Insights Sample Notebooks
For a sample notebook that shows how to train the Amazon SageMaker IP Insights algorithm and
perform inferences with it, see An Introduction to the Amazon SageMakerIP Insights Algorithm . For
instructions how to create and access Jupyter notebook instances that you can use to run the example
in Amazon SageMaker, see Use Notebook Instances (p. 36). After creating a notebook instance, choose
the SageMaker Examples tab to see a list of all the Amazon SageMaker examples. To open a notebook,
choose its Use tab and choose Create copy.

How IP Insights Works
Amazon SageMaker IP Insights is an unsupervised algorithm that consumes observed data in the form
of (entity, IPv4 address) pairs that associates entities with IP addresses. IP Insights determines how likely
it is that an entity would use a particular IP address by learning latent vector representations for both
entities and IP addresses. The distance between these two representations can then serve as the proxy
for how likely this association is.

The IP Insights algorithm uses a neural network to learn the latent vector representations for entities
and IP addresses. Entities are first hashed to a large but fixed hash space and then encoded by a
simple embedding layer. Character strings such as user names or account IDs can be fed directly into
IP Insights as they appear in log files. You don't need to preprocess the data for entity identifiers. You
can provide entities as an arbitrary string value during both training and inference. The hash size should
be configured with a value that is high enough to insure that the number of collisions, which occur
when distinct entities are mapped to the same latent vector, remain insignificant. For more information
about how to select appropriate hash sizes, see Feature Hashing for Large Scale Multitask Learning. For
representing IP addresses, on the other hand, IP Insights uses a specially designed encoder network to
uniquely represent each possible IPv4 address by exploiting the prefix structure of IP addresses.

During training, IP Insights automatically generates negative samples by randomly pairing entities and
IP addresses. These negative samples represent data that is less likely to occur in reality. The model
is trained to discriminate between positive samples that are observed in the training data and these
generated negative samples. More specifically, the model is trained to minimize the cross entropy, also
known as the log loss, defined as follows:

133

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/ipinsights_login/ipinsights-tutorial.ipynb
https://alex.smola.org/papers/2009/Weinbergeretal09.pdf

Amazon SageMaker Developer Guide
IP Insights

yn is the label that indicates whether the sample is from the real distribution governing observed data
(yn=1) or from the distribution generating negative samples (yn=0). pn is the probability that the sample
is from the real distribution, as predicted by the model.

Generating negative samples is an important process that is used to achieve an accurate model of
the observed data. If negative samples are extremely unlikely, for example, if all of the IP addresses
in negative samples are 10.0.0.0, then the model trivially learns to distinguish negative samples and
fails to accurately characterize the actual observed dataset. To keep negative samples more realistic,
IP Insights generates negative samples both by randomly generating IP addresses and randomly
picking IP addresses from training data. You can configure the type of negative sampling and the
rates at which negative samples are generated with the random_negative_sampling_rate and
shuffled_negative_sampling_rate hyperparameters.

Given an nth (entity, IP address pair), the IP Insights model outputs a score, Sn , that indicates how
compatible the entity is with the IP address. This score corresponds to the log odds ratio for a given
(entity, IP address) of the pair coming from a real distribution as compared to coming from a negative
distribution. It is defined as follows:

The score is essentially a measure of the similarity between the vector representations of the nth entity
and IP address. It can be interpreted as how much more likely it would be to observe this event in reality
than in a randomly generated dataset. During training, the algorithm uses this score to calculate an
estimate of the probability of a sample coming from the real distribution, pn, to use in the cross entropy
minimization, where:

IP Insights Hyperparameters
In the CreateTransformJob (p. 673) request, you specify the training algorithm. You can also
specify algorithm-specific hyperparameters as string-to-string maps. The following table lists the
hyperparameters for the Amazon SageMaker IP Insights algorithm.

Parameter Name Description

num_entity_vectors The number of entity vector representations (entity
embedding vectors) to train. Each entity in the training
set is randomly assigned to one of these vectors using
a hash function. Because of hash collisions, it might be
possible to have multiple entities assigned to the same
vector. This would cause the same vector to represent
multiple entities. This generally has a negligible effect on
model performance, as long as the collision rate is not
too severe. To keep the collision rate low, set this value as
high as possible. However, the model size, and, therefore,
the memory requirement, for both training and inference,
scales linearly with this hyperparameter. We recommend
that you set this value to twice the number of unique entity
identifiers.

Required

134

Amazon SageMaker Developer Guide
IP Insights

Parameter Name Description

Valid values: 1 ≤ positive integer ≤ 250,000,000

vector_dim The size of embedding vectors to represent entities and IP
addresses. The larger the value, the more information that
can be encoded using these representations. In practice,
model size scales linearly with this parameter and limits
how large the dimension can be. In addition, using vector
representations that are too large can cause the model to
overfit, especially for small training datasets. Overfitting
occurs when a model doesn't learn any pattern in the
data but effectively memorizes the training data and,
therefore, cannot generalize well and performs poorly
during inference. The recommended value is 128.

Required

Valid values: 4 ≤ positive integer ≤ 4096

batch_metrics_publish_interval The interval (every X batches) at which the Apache MXNet
Speedometer function prints the training speed of the
network (samples/second).

Optional

Valid values: positive integer ≥ 1

Default value: 1,000

epochs The number of passes over the training data. The optimal
value depends on your data size and learning rate. Typical
values range from 5 to 100.

Optional

Valid values: positive integer ≥ 1

Default value: 10

learning_rate The learning rate for the optimizer. IP Insights use a
gradient-descent-based Adam optimizer. The learning
rate effectively controls the step size to update model
parameters at each iteration. Too large a learning rate can
cause the model to diverge because the training is likely
to overshoot a minima. On the other hand, too small a
learning rate slows down convergence. Typical values range
from 1e-4 to 1e-1.

Optional

Valid values: 1e-6 ≤ float ≤ 10.0

Default value: 0.001

135

Amazon SageMaker Developer Guide
IP Insights

Parameter Name Description

mini_batch_size The number of examples in each mini batch. The
training procedure processes data in mini batches.
The optimal value depends on the number of unique
account identifiers in the dataset. In general, the larger
the mini_batch_size, the faster the training and the
greater the number of possible shuffled-negative-sample
combinations. However, with a large mini_batch_size,
the training is more likely to converge to a poor local
minimum and perform relatively worse for inference.

Optional

Valid values: 1 ≤ positive integer ≤ 500000

Default value: 10,000

num_ip_encoder_layers The number of fully connected layers used to encode the
IP address embedding. The larger the number of layers, the
greater the model's capacity to capture patterns among
IP addresses. However, using a large number of layers
increases the chance of overfitting.

Optional

Valid values: 0 ≤ positive integer ≤ 100

Default value: 1

random_negative_sampling_rate The number of random negative samples, R, to generate
per input example. The training procedure relies on
negative samples to prevent the vector representations
of the model collapsing to a single point. Random
negative sampling generates R random IP addresses
for each input account in the mini batch. The sum of
the random_negative_sampling_rate (R) and
shuffled_negative_sampling_rate (S) must be in the
interval: 1 ≤ R + S ≤ 500.

Optional

Valid values: 0 ≤ positive integer ≤ 500

Default value: 1

136

Amazon SageMaker Developer Guide
IP Insights

Parameter Name Description

shuffled_negative_sampling_rate The number of shuffled negative samples, S, to generate
per input example. In some cases, it helps to use more
realistic negative samples that are randomly picked
from the training data itself. This kind of negative
sampling is achieved by shuffling the data within a
mini batch. Shuffled negative sampling generates
S negative IP addresses by shuffling the IP address
and account pairings within a mini batch. The sum
of the random_negative_sampling_rate (R) and
shuffled_negative_sampling_rate (S) must be in the
interval: 1 ≤ R + S ≤ 500.

Optional

Valid values: 0 ≤ positive integer ≤ 500

Default value: 1

weight_decay The weight decay coefficient. This parameter adds an L2
regularization factor that is required to prevent the model
from overfitting the training data.

Optional

Valid values: 0.0 ≤ float ≤ 10.0

Default value: 0.00001

Tune an IP Insights Model

Automatic model tuning, also called hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the IP Insights Algorithm

The Amazon SageMaker IP Insights algorithm is an unsupervised learning algorithm that learns
associations between IP addresses and entities. The algorithm trains a discriminator model , which
learns to separate observed data points (positive samples) from randomly generated data points
(negative samples). Automatic model tuning on IP Insights helps you find the model that can most
accurately distinguish between unlabeled validation data and automatically generated negative samples.
The model accuracy on the validation dataset is measured by the area under the receiver operating
characteristic (ROC) curve. This validation:discriminator_auc metric can take values between 0.0
and 1.0, where 1.0 indicates perfect accuracy.

The IP Insights algorithm computes a validation:discriminator_auc metric during validation, the
value of which is used as the objective function to optimize for hyperparameter tuning.

137

Amazon SageMaker Developer Guide
IP Insights

Metric Name Description Optimization Direction

validation:discriminator_aucArea under the ROC curve on the validation
dataset. The validation dataset is not labeled. AUC
is a metric that describes the model's ability to
discriminate validation data points from randomly
generated data points.

Maximize

Tunable IP Insights Hyperparameters

You can tune the following hyperparameters for the Amazon SageMaker IP Insights algorithm.

Parameter Name Parameter Type Recommended Ranges

epochs IntegerParameterRange MinValue: 1, MaxValue:
100

learning_rate ContinuousParameterRange MinValue: 1e-4,
MaxValue: 0.1

mini_batch_size IntegerParameterRanges MinValue: 100,
MaxValue: 50000

num_entity_vectors IntegerParameterRanges MinValue: 10000,
MaxValue: 1000000

num_ip_encoder_layersIntegerParameterRanges MinValue: 1, MaxValue:
10

random_negative_sampling_rateIntegerParameterRanges MinValue: 0, MaxValue:
10

shuffled_negative_sampling_rateIntegerParameterRanges MinValue: 0, MaxValue:
10

vector_dim IntegerParameterRanges MinValue: 8, MaxValue:
256

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

IP Insights Data Formats
This section provides examples of the available input and output data formats used by the IP Insights
algorithm during training and inference.

Topics
• IP Insights Training Data Formats (p. 138)
• IP Insights Inference Data Formats (p. 139)

IP Insights Training Data Formats

The following are the available data input formats for the IP Insights algorithm. Amazon SageMaker
built-in algorithms adhere to the common input training format described in Common Data Formats for

138

Amazon SageMaker Developer Guide
IP Insights

Training (p. 64). However, the Amazon SageMaker IP Insights algorithm currently supports only the
CSV data input format.

IP Insights Training Data Input Formats

INPUT: CSV

The CSV file must have two columns. The first column is an opaque string that corresponds to an entity's
unique identifier. The second column is the IPv4 address of the entity's access event in decimal-dot
notation.

content-type: text/csv

entity_id_1, 192.168.1.2
entity_id_2, 10.10.1.2

IP Insights Inference Data Formats

The following are the available input and output formats for the IP Insights algorithm. Amazon
SageMaker built-in algorithms adhere to the common input inference format described in Common
Data Formats for Inference (p. 68). However, the Amazon SageMaker IP Insights algorithm does not
currently support RecordIO format.

IP Insights Input Request Formats

INPUT: CSV Format

The CSV file must have two columns. The first column is an opaque string that corresponds to an entity's
unique identifier. The second column is the IPv4 address of the entity's access event in decimal-dot
notation.

content-type: text/csv

entity_id_1, 192.168.1.2
entity_id_2, 10.10.1.2

INPUT: JSON Format

JSON data can be provided in different formats. IP Insights follows the common Amazon SageMaker
formats. For more information about inference formats, see Common Data Formats for Inference
 (p. 68).

content-type: application/json

{
 "instances": [
 {"data": {"features": {"values": ["entity_id_1", "192.168.1.2"]}}},
 {"features": ["entity_id_2", "10.10.1.2"]}
]
}

INPUT: JSONLINES Format

The JSON Lines content type is useful for running batch transform jobs. For more information on
Amazon SageMaker inference formats, see Common Data Formats for Inference (p. 68). For more
information on running batch transform jobs, see Get Inferences for an Entire Dataset with Batch
Transform (p. 10).

139

Amazon SageMaker Developer Guide
IP Insights

content-type: application/jsonlines

{"data": {"features": {"values": ["entity_id_1", "192.168.1.2"]}}},
{"features": ["entity_id_2", "10.10.1.2"]}]

IP Insights Output Response Formats

OUTPUT: JSON Response Format

The default output of the Amazon SageMaker IP Insights algorithm is the dot_product between
the input entity and IP address. The dot_product signifies how compatible the model considers the
entity and IP address. The dot_product is unbounded. To make predictions about whether an event is
anomalous, you need to set a threshold based on your defined distribution. For information about how
to use the dot_product for anomaly detection, see the An Introduction to the Amazon SageMakerIP
Insights Algorithm.

accept: application/json

{
 "predictions": [
 {"dot_product": 0.0},
 {"dot_product": 2.0}
]
}

Advanced users can access the model's learned entity and IP embeddings by providing the additional
content-type parameter verbose=True to the Accept heading. You can use the entity_embedding
and ip_embedding for debugging, visualizing, and understanding the model. Additionally, you can use
these embeddings in other machine learning techniques, such as classification or clustering.

accept: application/json;verbose=True

{
 "predictions": [
 {
 "dot_product": 0.0,
 "entity_embedding": [1.0, 0.0, 0.0],
 "ip_embedding": [0.0, 1.0, 0.0]
 },
 {
 "dot_product": 2.0,
 "entity_embedding": [1.0, 0.0, 1.0],
 "ip_embedding": [1.0, 0.0, 1.0]
 }
]
}

OUTPUT: JSONLINES Response Format

accept: application/jsonlines

{"dot_product": 0.0}
{"dot_product": 2.0}

accept: application/jsonlines; verbose=True

{"dot_product": 0.0, "entity_embedding": [1.0, 0.0, 0.0], "ip_embedding": [0.0, 1.0, 0.0]}
{"dot_product": 2.0, "entity_embedding": [1.0, 0.0, 1.0], "ip_embedding": [1.0, 0.0, 1.0]}

140

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/ipinsights_login/ipinsights-tutorial.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/ipinsights_login/ipinsights-tutorial.ipynb

Amazon SageMaker Developer Guide
K-Means Algorithm

K-Means Algorithm
K-means is an unsupervised learning algorithm. It attempts to find discrete groupings within data, where
members of a group are as similar as possible to one another and as different as possible from members
of other groups. You define the attributes that you want the algorithm to use to determine similarity.

Amazon SageMaker uses a modified version of the web-scale k-means clustering algorithm. Compared
with the original version of the algorithm, the version used by Amazon SageMaker is more accurate.
Like the original algorithm, it scales to massive datasets and delivers improvements in training time. To
do this, the version used by Amazon SageMaker streams mini-batches (small, random subsets) of the
training data. For more information about mini-batch k-means, see Web-scale k-means Clustering.

The k-means algorithm expects tabular data, where rows represent the observations that you want to
cluster, and the columns represent attributes of the observations. The n attributes in each row represent
a point in n-dimensional space. The Euclidean distance between these points represents the similarity
of the corresponding observations. The algorithm groups observations with similar attribute values (the
points corresponding to these observations are closer together). For more information about how k-
means works in Amazon SageMaker, see How K-Means Clustering Works (p. 142).

Topics
• Input/Output Interface for the K-Means Algorithm (p. 141)
• EC2 Instance Recommendation for the K-Means Algorithm (p. 141)
• K-Means Sample Notebooks (p. 141)
• How K-Means Clustering Works (p. 142)
• K-Means Hyperparameters (p. 144)
• Tune a K-Means Model (p. 147)
• K-Means Response Formats (p. 147)

Input/Output Interface for the K-Means Algorithm
For training, the k-means algorithm expects data to be provided in the train channel (recommended
S3DataDistributionType=ShardedByS3Key), with an optional test channel (recommended
S3DataDistributionType=FullyReplicated) to score the data on. Both recordIO-wrapped-
protobuf and CSV formats are supported for training. You can use either File mode or Pipe mode to
train models on data that is formatted as recordIO-wrapped-protobuf or as CSV.

For inference, text/csv, application/json, and application/x-recordio-protobuf are
supported. k-means returns a closest_cluster label and the distance_to_cluster for each
observation.

For more information on input and output file formats, see K-Means Response Formats (p. 147) for
inference and the K-Means Sample Notebooks (p. 141). The k-means algorithm does not support
multiple instance learning, in which the training set consists of labeled “bags”, each of which is a
collection of unlabeled instances.

EC2 Instance Recommendation for the K-Means Algorithm
We recommend training k-means on CPU instances. You can train on GPU instances, but should limit
GPU training to p*.xlarge instances because only one GPU per instance is used.

K-Means Sample Notebooks
For a sample notebook that uses the Amazon SageMaker K-means algorithm to segment the population
of counties in the United States by attributes identified using principle component analysis, see Analyze

141

https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/US-census_population_segmentation_PCA_Kmeans/sagemaker-countycensusclustering.ipynb

Amazon SageMaker Developer Guide
K-Means Algorithm

US census data for population segmentation using Amazon SageMaker. For instructions how to create
and access Jupyter notebook instances that you can use to run the example in Amazon SageMaker, see
Use Notebook Instances (p. 36). Once you have created a notebook instance and opened it, select the
SageMaker Examples tab to see a list of all the Amazon SageMaker samples. To open a notebook, click
on its Use tab and select Create copy.

How K-Means Clustering Works

K-means is an algorithm that trains a model that groups similar objects together. The k-means algorithm
accomplishes this by mapping each observation in the input dataset to a point in the n-dimensional
space (where n is the number of attributes of the observation). For example, your dataset might contain
observations of temperature and humidity in a particular location, which are mapped to points (t, h) in 2-
dimensional space.

Note
Clustering algorithms are unsupervised. In unsupervised learning, labels that might be
associated with the objects in the training dataset aren't used.

In k-means clustering, each cluster has a center. During model training, the k-means algorithm uses the
distance of the point that corresponds to each observation in the dataset to the cluster centers as the
basis for clustering. You choose the number of clusters (k) to create.

For example, suppose that you want to create a model to recognize handwritten digits and you choose
the MNIST dataset for training. The dataset provides thousands of images of handwritten digits (0
through 9). In this example, you might choose to create 10 clusters, one for each digit (0, 1, …, 9). As
part of model training, the k-means algorithm groups the input images into 10 clusters.

Each image in the MNIST dataset is a 28x28-pixel image, with a total of 784 pixels. Each image
corresponds to a point in a 784-dimensional space, similar to a point in a 2-dimensional space (x,y). To
find a cluster to which a point belongs, the k-means algorithm finds the distance of that point from all of
the cluster centers. It then chooses the cluster with the closest center as the cluster to which the image
belongs.

Note
Amazon SageMaker uses a customized version of the algorithm where, instead of specifying that
the algorithm create k clusters, you might choose to improve model accuracy by specifying extra
cluster centers (K = k*x). However, the algorithm ultimately reduces these to k clusters.

In Amazon SageMaker, you specify the number of clusters when creating a training job. For more
information, see CreateTrainingJob (p. 667). In the request body, you add the HyperParameters
string map to specify the k and extra_center_factor strings.

The following is a summary of how k-means works for model training in Amazon SageMaker:

1. It determines the initial K cluster centers.

Note
In the following topics, K clusters refer to k * x, where you specify k and x when creating a
model training job.

2. It iterates over input training data and recalculates cluster centers.

3. It reduces resulting clusters to k (if the data scientist specified the creation of k*x clusters in the
request).

The following sections also explain some of the parameters that a data scientist might specify to
configure a model training job as part of the HyperParameters string map.

Topics

142

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/US-census_population_segmentation_PCA_Kmeans/sagemaker-countycensusclustering.ipynb

Amazon SageMaker Developer Guide
K-Means Algorithm

• Step 1: Determine the Initial Cluster Centers (p. 143)
• Step 2: Iterate over the Training Dataset and Calculate Cluster Centers (p. 143)
• Step 3: Reduce the Clusters from K to k (p. 144)

Step 1: Determine the Initial Cluster Centers

When using k-means in Amazon SageMaker, the initial cluster centers are chosen from the observations
in a small, randomly sampled batch. Choose one of the following strategies to determine how these
initial cluster centers are selected:

• The random approach—Randomly choose K observations in your input dataset as cluster centers. For
example, you might choose a cluster center that points to the 784-dimensional space that corresponds
to any 10 images in the MNIST training dataset.

• The k-means++ approach, which works as follows:

1. Start with one cluster and determine its center. You randomly select an observation from your
training dataset and use the point corresponding to the observation as the cluster center. For
example, in the MNIST dataset, randomly choose a handwritten digit image. Then choose the point
in the 784-dimensional space that corresponds to the image as your cluster center. This is cluster
center 1.

2. Determine the center for cluster 2. From the remaining observations in the training dataset, pick
an observation at random. Choose one that is different than the one you previously selected. This
observation corresponds to a point that is far away from cluster center 1. Using the MNIST dataset
as an example, you do the following:
• For each of the remaining images, find the distance of the corresponding point from cluster

center 1. Square the distance and assign a probability that is proportional to the square of the
distance. That way, an image that is different from the one that you previously selected has a
higher probability of getting selected as cluster center 2.

• Choose one of the images randomly, based on probabilities assigned in the previous step. The
point that corresponds to the image is cluster center 2.

3. Repeat Step 2 to find cluster center 3. This time, find the distances of the remaining images from
cluster center 2.

4. Repeat the process until you have the K cluster centers.

To train a model in Amazon SageMaker, you create a training job. In the request, you provide
configuration information by specifying the following HyperParameters string maps:

• To specify the number of clusters to create, add the k string.
• For greater accuracy, add the optional extra_center_factor string.
• To specify the strategy that you want to use to determine the initial cluster centers, add the
init_method string and set its value to random or k-means++.

For more information, see CreateTrainingJob (p. 667). For an example, see Create and Run a Training
Job (AWS SDK for Python (Boto 3)) (p. 23).

You now have an initial set of cluster centers.

Step 2: Iterate over the Training Dataset and Calculate Cluster Centers

The cluster centers that you created in the preceding step are mostly random, with some consideration
for the training dataset. In this step, you use the training dataset to move these centers toward the true
cluster centers. The algorithm iterates over the training dataset, and recalculates the K cluster centers.

143

Amazon SageMaker Developer Guide
K-Means Algorithm

1. Read a mini-batch of observations (a small, randomly chosen subset of all records) from the training
dataset and do the following.

Note
When creating a model training job, you specify the batch size in the mini_batch_size
string in the HyperParameters string map.

a. Assign all of the observations in the mini-batch to one of the clusters with the closest cluster
center.

b. Calculate the number of observations assigned to each cluster. Then, calculate the proportion of
new points assigned per cluster.

For example, consider the following clusters:

Cluster c1 = 100 previously assigned points. You added 25 points from the mini-batch in this
step.

Cluster c2 = 150 previously assigned points. You added 40 points from the mini-batch in this
step.

Cluster c3 = 450 previously assigned points. You added 5 points from the mini-batch in this
step.

Calculate the proportion of new points assigned to each of clusters as follows:

p1 = proportion of points assigned to c1 = 25/(100+25)
p2 = proportion of points assigned to c2 = 40/(150+40)
p3 = proportion of points assigned to c3 = 5/(450+5)

c. Compute the center of the new points added to each cluster:

d1 = center of the new points added to cluster 1
d2 = center of the new points added to cluster 2
d3 = center of the new points added to cluster 3

d. Compute the weighted average to find the updated cluster centers as follows:

Center of cluster 1 = ((1 - p1) * center of cluster 1) + (p1 * d1)
Center of cluster 2 = ((1 - p2) * center of cluster 2) + (p2 * d2)
Center of cluster 3 = ((1 - p3) * center of cluster 3) + (p3 * d3)

2. Read the next mini-batch, and repeat Step 1 to recalculate the cluster centers.

3. For more information about mini-batch k-means, see Web-Scale k-means Clustering).

Step 3: Reduce the Clusters from K to k

If the algorithm created K clusters—(K = k*x) where x is greater than 1—then it reduces the K clusters to
k clusters. (For more information, see extra_center_factor in the preceding discussion.) It does this
by applying Lloyd's method with kmeans++ initialization to the K cluster centers. For more information
about Lloyd's method, see k-means clustering.

K-Means Hyperparameters

In the CreateTrainingJob (p. 667) request, you specify the training algorithm that you want to use.
You can also specify algorithm-specific hyperparameters as string-to-string maps. The following table
lists the hyperparameters for the k-means training algorithm provided by Amazon SageMaker. For more
information about how k-means clustering works, see How K-Means Clustering Works (p. 142).

144

https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf

Amazon SageMaker Developer Guide
K-Means Algorithm

Parameter Name Description

feature_dim The number of features in the input data.

Required

Valid values: Positive integer

k The number of required clusters.

Required

Valid values: Positive integer

epochs The number of passes done over the training data.

Optional

Valid values: Positive integer

Default value: 1

eval_metrics A JSON list of metric types used to report a score for the model.
Allowed values are msd for Means Square Error and ssd for Sum of
Square Distance. If test data is provided, the score is reported for
each of the metrics requested.

Optional

Valid values: Either [\"msd\"] or [\"ssd\"] or [\"msd\",
\"ssd\"] .

Default value: [\"msd\"]

extra_center_factor The algorithm creates K centers = num_clusters *
extra_center_factor as it runs and reduces the number of
centers from K to k when finalizing the model.

Optional

Valid values: Either a positive integer or auto.

Default value: auto

half_life_time_size Used to determine the weight given to an observation when
computing a cluster mean. This weight decays exponentially as
more points are observed. When a point is first observed, it is
assigned a weight of 1 when computing the cluster mean. The
decay constant for the exponential decay function is chosen so that
after observing half_life_time_size points, its weight is 1/2. If
set to 0, there is no decay.

Optional

Valid values: Non-negative integer

Default value: 0

init_method Method by which the algorithm chooses the initial cluster centers.
The standard k-means approach chooses them at random. An

145

Amazon SageMaker Developer Guide
K-Means Algorithm

Parameter Name Description

alternative k-means++ method chooses the first cluster center at
random. Then it spreads out the position of the remaining initial
clusters by weighting the selection of centers with a probability
distribution that is proportional to the square of the distance of the
remaining data points from existing centers.

Optional

Valid values: Either random or kmeans++.

Default value: random

local_lloyd_init_method The initialization method for Lloyd's expectation-maximization (EM)
procedure used to build the final model containing k centers.

Optional

Valid values: Either random or kmeans++.

Default value: kmeans++

local_lloyd_max_iter The maximum number of iterations for Lloyd's expectation-
maximization (EM) procedure used to build the final model
containing k centers.

Optional

Valid values: Positive integer

Default value: 300

local_lloyd_num_trials The number of times the Lloyd's expectation-maximization (EM)
procedure with the least loss is run when building the final model
containing k centers.

Optional

Valid values: Either a positive integer or auto.

Default value: auto

local_lloyd_tol The tolerance for change in loss for early stopping of Lloyd's
expectation-maximization (EM) procedure used to build the final
model containing k centers.

Optional

Valid values: Float. Range in [0, 1].

Default value: 0.0001

mini_batch_size The number of observations per mini-batch for the data iterator.

Optional

Valid values: Positive integer

Default value: 5000

146

Amazon SageMaker Developer Guide
K-Means Algorithm

Tune a K-Means Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

The Amazon SageMaker k-means algorithm is an unsupervised algorithm that groups data into clusters
whose members are as similar as possible. Because it is unsupervised, it doesn't use a validation dataset
that hyperparameters can optimize against. But it does take a test dataset and emits metrics that depend
on the squared distance between the data points and the final cluster centroids at the end of each
training run. To find the model that reports the tightest clusters on the test dataset, you can use a
hyperparameter tuning job. The clusters optimize the similarity of their members.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the K-Means Algorithm

The k-means algorithm computes the following metrics during training. When tuning a model, choose
one of these metrics as the objective metric.

Metric Name Description Optimization Direction

test:msd Mean squared distances between each record in
the test set and the closest center of the model.

Minimize

test:ssd Sum of the squared distances between each
record in the test set and the closest center of the
model.

Minimize

Tunable K-Means Hyperparameters

Tune the Amazon SageMaker k-means model with the following hyperparameters. The
hyperparameters that have the greatest impact on k-means objective metrics are: mini_batch_size,
extra_center_factor, and init_method. Tuning the hyperparameter epochs generally results in
minor improvements.

Parameter Name Parameter Type Recommended Ranges

epochs IntegerParameterRanges MinValue: 1,
MaxValue:10

extra_center_factor IntegerParameterRanges MinValue: 4,
MaxValue:10

init_method CategoricalParameterRanges ['kmeans++', 'random']

mini_batch_size IntegerParameterRanges MinValue: 3000,
MaxValue:15000

K-Means Response Formats
All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. This topic contains a list of the available output formats for the
Amazon SageMaker k-means algorithm.

147

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

JSON Response Format

{
 "predictions": [
 {
 "closest_cluster": 1.0,
 "distance_to_cluster": 3.0,
 },
 {
 "closest_cluster": 2.0,
 "distance_to_cluster": 5.0,
 },

]
}

JSONLINES Response Format

{"closest_cluster": 1.0, "distance_to_cluster": 3.0}
{"closest_cluster": 2.0, "distance_to_cluster": 5.0}

RECORDIO Response Format

[
 Record = {
 features = {},
 label = {
 'closest_cluster': {
 keys: [],
 values: [1.0, 2.0] # float32
 },
 'distance_to_cluster': {
 keys: [],
 values: [3.0, 5.0] # float32
 },
 }
 }
]

K-Nearest Neighbors (k-NN) Algorithm
Amazon SageMaker k-nearest neighbors (k-NN) algorithm is an index-based algorithm. It uses a non-
parametric method for classification or regression. For classification problems, the algorithm queries the
k points that are closest to the sample point and returns the most frequently used label of their class as
the predicted label. For regression problems, the algorithm queries the k closest points to the sample
point and returns the average of their feature values as the predicted value.

Training with the k-NN algorithm has three steps: sampling, dimension reduction, and index building.
Sampling reduces the size of the initial dataset so that it fits into memory. For dimension reduction,
the algorithm decreases the feature dimension of the data to reduce the footprint of the k-NN model
in memory and inference latency. We provide two methods of dimension reduction methods: random
projection and the fast Johnson-Lindenstrauss transform. Typically, you use dimension reduction for
high-dimensional (d >1000) datasets to avoid the “curse of dimensionality” that troubles the statistical
analysis of data that becomes sparse as dimensionality increases. The main objective of k-NN's training is
to construct the index. The index enables efficient lookups of distances between points whose values or
class labels have not yet been determined and the k nearest points to use for inference.

Topics

148

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

• Input/Output Interface for the k-NN Algorithm (p. 149)
• k-NN Sample Notebooks (p. 149)
• How the K-nn Algorithm Works (p. 150)
• EC2 Instance Recommendation for the K-nn Algorithm (p. 151)
• K-nn Hyperparameters (p. 151)
• Tune a K-nn Model (p. 152)
• Data Formats for K-nn Training Input (p. 154)
• K-nn Request and Response Formats (p. 154)

Input/Output Interface for the k-NN Algorithm
Amazon SageMaker k-NN supports train and test data channels.

• Use a train channel for data that you want to sample and construct into the k-NN index.
• Use a test channel to emit scores in log files. Scores are listed as one line per mini-batch: accuracy for
classifier, mean-squared error (mse) for regressor for score.

For training inputs, k-NN supports text/csv and application/x-recordio-protobuf data
formats. For input type text/csv, the first label_size columns are interpreted as the label vector
for that row. You can use either File mode or Pipe mode to train models on data that is formatted as
recordIO-wrapped-protobuf or as CSV.

For inference inputs, k-NN supports the application/json, application/x-recordio-protobuf,
and text/csv data formats. The text/csv format accepts a label_size and encoding parameter. It
assumes a label_size of 0 and a UTF-8 encoding.

For inference outputs, k-NN supports the application/json and application/x-recordio-
protobuf data formats. These two data formats also support a verbose output mode. In verbose output
mode, the API provides the search results with the distances vector sorted from smallest to largest, and
corresponding elements in the labels vector.

For batch transform, k-NN supports the application/jsonlines data format for both input and
output. An example input is as follows:

content-type: application/jsonlines

{"features": [1.5, 16.0, 14.0, 23.0]}
{"data": {"features": {"values": [1.5, 16.0, 14.0, 23.0]}}

An example output is as follows:

accept: application/jsonlines

{"predicted_label": 0.0}
{"predicted_label": 2.0}

For more information on input and output file formats, see Data Formats for K-nn Training
Input (p. 154) for training, K-nn Request and Response Formats (p. 154) for inference, and the k-NN
Sample Notebooks (p. 149).

k-NN Sample Notebooks
For a sample notebook that uses the Amazon SageMaker k-nearest neighbor algorithm to predict
wilderness cover types from geological and forest service data, see the K-Nearest Neighbor Covertype

149

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/k_nearest_neighbors_covtype/k_nearest_neighbors_covtype.ipynb

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

. For instructions how to create and access Jupyter notebook instances that you can use to run
the example in Amazon SageMaker, see Use Notebook Instances (p. 36). Once you have created a
notebook instance and opened it, select the SageMaker Examples tab to see a list of all the Amazon
SageMaker samples. The topic modeling example notebooks using the NTM algorithms are located in the
Introduction to Amazon algorithms section. To open a notebook, click on its Use tab and select Create
copy.

How the K-nn Algorithm Works

Step 1: Sample

To specify the total number of data points to be sampled from the training dataset, use the
sample_sizeparameter. For example, if the initial dataset has 1,000 data points and the sample_size
is set to 100, where the total number of instances is 2, each worker would sample 50 points. A total set
of 100 data points would be collected. Sampling runs in linear time with respect to the number of data
points.

Step 2: Perform Dimension Reduction

The current implementation of k-NN has two methods of dimension reduction. You specify the method
in the dimension_reduction_type hyperparameter. The sign method specifies a random projection,
which uses a linear projection using a matrix of random signs, and the fjlt method specifies a fast
Johnson-Lindenstrauss transform, a method based on the Fourier transform. Both methods preserve the
L2 and inner product distances. The fjlt method should be used when the target dimension is large
and has better performance with CPU inference. The methods differ in their computational complexity.
The sign method requires O(ndk) time to reduce the dimension of a batch of n points of dimension d
into a target dimension k. The fjlt method requires O(nd log(d)) time, but the constants involved are
larger. Using dimension reduction introduces noise into the data and this noise can reduce prediction
accuracy.

Step 3: Build an Index

During inference, the algorithm queries the index for the k-nearest-neighbors of a sample point. Based
on the references to the points, the algorithm makes the classification or regression prediction. It makes
the prediction based on the class labels or values provided. k-NN provides three different types of
indexes: a flat index, an inverted index, and an inverted index with product quantization. You specify the
type with the index_type parameter.

Serialize the Model

When the k-NN algorithm finishes training, it serializes three files to prepare for inference.

• model_algo-1: Contains the serialized index for computing the nearest neighbors.
• model_algo-1.labels: Contains serialized labels (np.float32 binary format) for computing the predicted

label based on the query result from the index.
• model_algo-1.json: Contains the JSON-formatted model metadata which stores the k and
predictor_type hyper-parameters from training for inference along with other relevant state.

With the current implementation of k-NN, you can modify the metadata file to change the way
predictions are computed. For example, you can change k to 10 or change predictor_type to
regressor.

{
 "k": 5,
 "predictor_type": "classifier",
 "dimension_reduction": {"type": "sign", "seed": 3, "target_dim": 10, "input_dim": 20},
 "normalize": False,

150

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

 "version": "1.0"
}

EC2 Instance Recommendation for the K-nn Algorithm

Instance Recommendation for Training with the K-nn Algorithm

To start, try running training on a CPU, using, for example, an ml.m5.2xlarge instance, or on a GPU using,
for example, an ml.p2.xlarge instance.

Instance Recommendation for Inference with the K-nn Algorithm

Inference requests from CPUs generally have a lower average latency than requests from GPUs because
there is a tax on CPU-to-GPU communication when you use GPU hardware. However, GPUs generally
have higher throughput for larger batches.

K-nn Hyperparameters

Parameter Name Description

feature_dim The number of features in the input data.

Required

Valid values: positive integer.

k The number of nearest neighbors.

Required

Valid values: positive integer

predictor_type The type of inference to use on the data labels.

Required

Valid values: classifier for classification or regressor for regression.

sample_size The number of data points to be sampled from the training data set.

Required

Valid values: positive integer

dimension_reduction_targetThe target dimension to reduce to.

Required when you specify the dimension_reduction_type
parameter.

Valid values: positive integer greater than 0 and less than feature_dim.

dimension_reduction_typeThe type of dimension reduction method.

Optional

Valid values: sign for random projection or fjlt for the fast Johnson-
Lindenstrauss transform.

Default value: No dimension reduction

151

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

Parameter Name Description

faiss_index_ivf_nlistsThe number of centroids to construct in the index when index_type is
faiss.IVFFlat or faiss.IVFPQ.

Optional

Valid values: positive integer

Default value: auto, which resolves to sqrt(sample_size).

faiss_index_pq_m The number of vector sub-components to construct in the index when
index_type is set to faiss.IVFPQ.

The FaceBook AI Similarity Search (FAISS) library requires that the
value of faiss_index_pq_m is a divisor of the data dimension. If
faiss_index_pq_m is not a divisor of the data dimension, we increase
the data dimension to smallest integer divisible by faiss_index_pq_m.
If no dimension reduction is applied, the algorithm adds a padding of
zeros. If dimension reduction is applied, the algorithm increase the value
of the dimension_reduction_target hyper-parameter.

Optional

Valid values: One of the following positive integers: 1, 2, 3, 4, 8, 12, 16,
20, 24, 28, 32, 40, 48, 56, 64, 96

index_metric The metric to measure the distance between points when finding nearest
neighbors. When training with index_type set to faiss.IVFPQ, the
INNER_PRODUCT distance and COSINE similarity are not supported.

Optional

Valid values: L2 for Euclidean-distance, INNER_PRODUCT for inner-
product distance, COSINE for cosine similarity.

Default value: L2

index_type The type of index.

Optional

Valid values: faiss.Flat, faiss.IVFFlat, faiss.IVFPQ.

Default values: faiss.Flat

mini_batch_size The number of observations per mini-batch for the data iterator.

Optional

Valid values: positive integer

Default value: 5000

Tune a K-nn Model

The Amazon SageMaker k-nearest neighbors algorithm is a supervised algorithm. The algorithm
consumes a test data set and emits a metric about the accuracy for a classification task or about the
mean squared error for a regression task. These accuracy metrics compare the model predictions for

152

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

their respective task to the ground truth provided by the empirical test data. To find the best model that
reports the highest accuracy or lowest error on the test dataset, run a hyperparameter tuning job for k-
NN.

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective
metric appropriate for the prediction task of the algorithm. Automatic model tuning searches the
hyperparameters chosen to find the combination of values that result in the model that optimizes the
objective metric. The hyperparameters are used only to help estimate model parameters and are not
used by the trained model to make predictions.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the K-nn Algorithm

The k-nearest neighbors algorithm computes one of two metrics in the following table during training
depending on the type of task specified by the predictor_type hyper-parameter.

• classifier specifies a classification task and computes test:accuracy

• regressor specifies a regression task and computes test:mse.

Choose the predictor_type value appropriate for the type of task undertaken to calculate the
relevant objective metric when tuning a model.

Metric Name Description Optimization Direction

test:accuracy When predictor_type is set to classifier, k-
NN compares the predicted label, based on the
average of the k-nearest neighbors' labels, to the
ground truth label provided in the test channel
data. The accuracy reported ranges from 0.0 (0%)
to 1.0 (100%).

Maximize

test:mse When predictor_type is set to regressor, k-
NN compares the predicted label, based on the
average of the k-nearest neighbors' labels, to the
ground truth label provided in the test channel
data. The mean squared error is computed by
comparing the two labels.

Minimize

Tunable K-nn Hyperparameters

Tune the Amazon SageMaker k-nearest neighbor model with the following hyperparameters.

Parameter Name Parameter Type Recommended Ranges

k IntegerParameterRanges MinValue: 1, MaxValue:
1024

sample_size IntegerParameterRanges MinValue: 256,
MaxValue: 20000000

153

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

Data Formats for K-nn Training Input
All Amazon SageMaker built-in algorithms adhere to the common input training formats described in
Common Data Formats - Training. This topic contains a list of the available input formats for the Amazon
SageMaker k-nearest-neighbor algorithm.

CSV Data Format

content-type: text/csv; label_size=1

4,1.2,1.3,9.6,20.3

The first label_size columns are interpreted as the label vector for that row.

RECORDIO Data Format

content-type: application/x-recordio-protobuf

[
 Record = {
 features = {
 'values': {
 values: [1.2, 1.3, 9.6, 20.3] # float32
 }
 },
 label = {
 'values': {
 values: [4] # float32
 }
 }
 }
]

}

K-nn Request and Response Formats
All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. This topic contains a list of the available output formats for the
Amazon SageMaker k-nearest-neighbor algorithm.

INPUT: CSV Request Format

content-type: text/csv

1.2,1.3,9.6,20.3

This accepts a label_size or encoding parameter. It assumes a label_size of 0 and a utf-8 encoding.

INPUT: JSON Request Format

content-type: application/json

{
 "instances": [
 {"data": {"features": {"values": [-3, -1, -4, 2]}}},
 {"features": [3.0, 0.1, 0.04, 0.002]}]

154

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

}

INPUT: JSONLINES Request Format

content-type: application/jsonlines

{"features": [1.5, 16.0, 14.0, 23.0]}
{"data": {"features": {"values": [1.5, 16.0, 14.0, 23.0]}}

INPUT: RECORDIO Request Format

content-type: application/x-recordio-protobuf

[
 Record = {
 features = {
 'values': {
 values: [-3, -1, -4, 2] # float32
 }
 },
 label = {}
 },
 Record = {
 features = {
 'values': {
 values: [3.0, 0.1, 0.04, 0.002] # float32
 }
 },
 label = {}
 },
]

OUTPUT: JSON Response Format

accept: application/json

{
 "predictions": [
 {"predicted_label": 0.0},
 {"predicted_label": 2.0}
]
}

OUTPUT: JSONLINES Response Format

accept: application/jsonlines

{"predicted_label": 0.0}
{"predicted_label": 2.0}

OUTPUT: VERBOSE JSON Response Format

In verbose mode, the API provides the search results with the distances vector sorted from smallest to
largest, with corresponding elements in the labels vector. In this example, k is set to 3.

accept: application/json; verbose=true

{
 "predictions": [

155

Amazon SageMaker Developer Guide
K-Nearest Neighbors (k-NN) Algorithm

 {
 "predicted_label": 0.0,
 "distances": [3.11792408, 3.89746071, 6.32548437],
 "labels": [0.0, 1.0, 0.0]
 },
 {
 "predicted_label": 2.0,
 "distances": [1.08470316, 3.04917915, 5.25393973],
 "labels": [2.0, 2.0, 0.0]
 }
]
}

OUTPUT: RECORDIO-PROTOBUF Response Format

content-type: application/x-recordio-protobuf

[
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [0.0] # float32
 }
 }
 },
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [2.0] # float32
 }
 }
 }
]

OUTPUT: VERBOSE RECORDIO-PROTOBUF Response Format

In verbose mode, the API provides the search results with the distances vector sorted from smallest to
largest, with corresponding elements in the labels vector. In this example, k is set to 3.

accept: application/x-recordio-protobuf; verbose=true

[
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [0.0] # float32
 },
 'distances': {
 values: [3.11792408, 3.89746071, 6.32548437] # float32
 },
 'labels': {
 values: [0.0, 1.0, 0.0] # float32
 }
 }
 },
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [0.0] # float32

156

Amazon SageMaker Developer Guide
Latent Dirichlet Allocation (LDA)

 },
 'distances': {
 values: [1.08470316, 3.04917915, 5.25393973] # float32
 },
 'labels': {
 values: [2.0, 2.0, 0.0] # float32
 }
 }
 }
]

SAMPLE OUTPUT for the K-nn Algorithm

For regressor tasks:

[06/08/2018 20:15:33 INFO 140026520049408] #test_score (algo-1) : ('mse',
 0.013333333333333334)

For classifier tasks:

[06/08/2018 20:15:46 INFO 140285487171328] #test_score (algo-1) : ('accuracy',
 0.98666666666666669)

Latent Dirichlet Allocation (LDA) Algorithm
The Amazon SageMaker Latent Dirichlet Allocation (LDA) algorithm is an unsupervised learning
algorithm that attempts to describe a set of observations as a mixture of distinct categories. LDA is most
commonly used to discover a user-specified number of topics shared by documents within a text corpus.
Here each observation is a document, the features are the presence (or occurrence count) of each word,
and the categories are the topics. Since the method is unsupervised, the topics are not specified up front,
and are not guaranteed to align with how a human may naturally categorize documents. The topics are
learned as a probability distribution over the words that occur in each document. Each document, in turn,
is described as a mixture of topics.

The exact content of two documents with similar topic mixtures will not be the same. But overall, you
would expect these documents to more frequently use a shared subset of words, than when compared
with a document from a different topic mixture. This allows LDA to discover these word groups and use
them to form topics. As an extremely simple example, given a set of documents where the only words
that occur within them are: eat, sleep, play, meow, and bark, LDA might produce topics like the following:

Topic eat sleep play meow bark

Topic 1 0.1 0.3 0.2 0.4 0.0

Topic 2 0.2 0.1 0.4 0.0 0.3

You can infer that documents that are more likely to fall into Topic 1 are about cats (who are more likely
to meow and sleep), and documents that fall into Topic 2 are about dogs (who prefer to play and bark).
These topics can be found even though the words dog and cat never appear in any of the texts.

Topics
• Input/Output Interface for the LDA Algorithm (p. 158)
• EC2 Instance Recommendation for the LDA Algorithm (p. 158)
• LDA Sample LDA Notebooks (p. 158)
• How LDA Works (p. 158)

157

Amazon SageMaker Developer Guide
Latent Dirichlet Allocation (LDA)

• LDA Hyperparameters (p. 160)
• Tune an LDA Model (p. 161)

Input/Output Interface for the LDA Algorithm
LDA expects data to be provided on the train channel, and optionally supports a test channel, which
is scored by the final model. LDA supports both recordIO-wrapped-protobuf (dense and sparse)
and CSV file formats. For CSV, the data must be dense and have dimension equal to number of records *
vocabulary size. LDA can be trained in File or Pipe mode when using recordIO-wrapped protobuf, but only
in File mode for the CSV format.

For inference, text/csv, application/json, and application/x-recordio-protobuf content
types are supported. Sparse data can also be passed for application/json and application/x-
recordio-protobuf. LDA inference returns application/json or application/x-recordio-
protobuf predictions, which include the topic_mixture vector for each observation.

Please see the LDA Sample LDA Notebooks (p. 158) for more detail on training and inference formats.

EC2 Instance Recommendation for the LDA Algorithm
LDA currently only supports single-instance CPU training. CPU instances are recommended for hosting/
inference.

LDA Sample LDA Notebooks
For a sample notebook that shows how to train the Amazon SageMaker Latent Dirichlet Allocation
algorithm on a dataset and then how to deploy the trained model to perform inferences about the topic
mixtures in input documents, see the An Introduction to SageMaker LDA. For instructions how to create
and access Jupyter notebook instances that you can use to run the example in Amazon SageMaker,
see Use Notebook Instances (p. 36). Once you have created a notebook instance and opened it, select
the SageMaker Examples tab to see a list of all the Amazon SageMaker samples. The topic modeling
example notebooks using the NTM algorithms are located in the Introduction to Amazon algorithms
section. To open a notebook, click on its Use tab and select Create copy.

How LDA Works
Amazon SageMaker LDA is an unsupervised learning algorithm that attempts to describe a set of
observations as a mixture of different categories. These categories are themselves a probability
distribution over the features. LDA is a generative probability model, which means it attempts to
provide a model for the distribution of outputs and inputs based on latent variables. This is opposed to
discriminative models, which attempt to learn how inputs map to outputs.

You can use LDA for a variety of tasks, from clustering customers based on product purchases to
automatic harmonic analysis in music. However, it is most commonly associated with topic modeling in
text corpuses. Observations are referred to as documents. The feature set is referred to as vocabulary. A
feature is referred to as a word. And the resulting categories are referred to as topics.

Note
Lemmatization significantly increases algorithm performance and accuracy. Consider pre-
processing any input text data.

An LDA model is defined by two parameters:

• α—A prior estimate on topic probability (in other words, the average frequency that each topic within
a given document occurs).

• β—a collection of k topics where each topic is given a probability distribution over the vocabulary used
in a document corpus, also called a "topic-word distribution."

158

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/lda_topic_modeling/LDA-Introduction.ipynb

Amazon SageMaker Developer Guide
Latent Dirichlet Allocation (LDA)

LDA is a "bag-of-words" model, which means that the order of words does not matter. LDA is a
generative model where each document is generated word-by-word by choosing a topic mixture θ ∼
Dirichlet(α).

For each word in the document:

• Choose a topic z ∼ Multinomial(θ)

• Choose the corresponding topic-word distribution β_z.

• Draw a word w ∼ Multinomial(β_z).

When training the model, the goal is to find parameters α and β, which maximize the probability that the
text corpus is generated by the model.

The most popular methods for estimating the LDA model use Gibbs sampling or Expectation
Maximization (EM) techniques. The Amazon SageMaker LDA uses tensor spectral decomposition. This
provides several advantages:

• Theoretical guarantees on results. The standard EM-method is guaranteed to converge only to local
optima, which are often of poor quality.

• Embarrassingly parallelizable. The work can be trivially divided over input documents in both training
and inference. The EM-method and Gibbs Sampling approaches can be parallelized, but not as easily.

• Fast. Although the EM-method has low iteration cost it is prone to slow convergence rates. Gibbs
Sampling is also subject to slow convergence rates and also requires a large number of samples.

At a high-level, the tensor decomposition algorithm follows this process:

1. The goal is to calculate the spectral decomposition of a V x V x V tensor, which summarizes the
moments of the documents in our corpus. V is vocabulary size (in other words, the number of distinct
words in all of the documents). The spectral components of this tensor are the LDA parameters α and
β, which maximize the overall likelihood of the document corpus. However, because vocabulary size
tends to be large, this V x V x V tensor is prohibitively large to store in memory.

2. Instead, it uses a V x V moment matrix, which is the two-dimensional analog of the tensor from step
1, to find a whitening matrix of dimension V x k. This matrix can be used to convert the V x V moment
matrix into a k x k identity matrix. k is the number of topics in the model.

3. This same whitening matrix can then be used to find a smaller k x k x k tensor. When spectrally
decomposed, this tensor has components that have a simple relationship with the components of the
V x V x V tensor.

4. Alternating Least Squares is used to decompose the smaller k x k x k tensor. This provides a substantial
improvement in memory consumption and speed. The parameters α and β can be found by
“unwhitening” these outputs in the spectral decomposition.

After the LDA model’s parameters have been found, you can find the topic mixtures for each document.
You use stochastic gradient descent to maximize the likelihood function of observing a given topic
mixture corresponding to these data.

Topic quality can be improved by increasing the number of topics to look for in training and then
filtering out poor quality ones. This is in fact done automatically in Amazon SageMaker LDA: 25% more
topics are computed and only the ones with largest associated Dirichlet priors are returned. To perform
further topic filtering and analysis, you can increase the topic count and modify the resulting LDA model
as follows:

> import mxnet as mx
> alpha, beta = mx.ndarray.load(‘model.tar.gz’)

159

Amazon SageMaker Developer Guide
Latent Dirichlet Allocation (LDA)

> # modify alpha and beta
> mx.nd.save(‘new_model.tar.gz’, [new_alpha, new_beta])
> # upload to S3 and create new SageMaker model using the console

For more information about algorithms for LDA and the Amazon SageMaker implementation, see the
following:

• Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
Decompositions for Learning Latent Variable Models, Journal of Machine Learning Research, 15:2773–
2832, 2014.

• David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3(Jan):993–1022, 2003.

• Thomas L Griffiths and Mark Steyvers. Finding Scientific Topics. Proceedings of the National Academy
of Sciences, 101(suppl 1):5228–5235, 2004.

• Tamara G Kolda and Brett W Bader. Tensor Decompositions and Applications. SIAM Review, 51(3):455–
500, 2009.

LDA Hyperparameters
In the CreateTrainingJob request, you specify the training algorithm. You can also specify algorithm-
specific hyperparameters as string-to-string maps. The following table lists the hyperparameters
for the LDA training algorithm provided by Amazon SageMaker. For more information, see How LDA
Works (p. 158).

Parameter Name Description

num_topics The number of topics for LDA to find within the data.

Required

Valid values: positive integer

feature_dim The size of the vocabulary of the input document corpus.

Required

Valid values: positive integer

mini_batch_size The total number of documents in the input document corpus.

Required

Valid values: positive integer

alpha0 Initial guess for the concentration parameter: the sum of the
elements of the Dirichlet prior. Small values are more likely to
generate sparse topic mixtures and large values (greater than 1.0)
produce more uniform mixtures.

Optional

Valid values: Positive float

Default value: 0.1

max_restarts The number of restarts to perform during the Alternating Least
Squares (ALS) spectral decomposition phase of the algorithm.

160

Amazon SageMaker Developer Guide
Latent Dirichlet Allocation (LDA)

Parameter Name Description

Can be used to find better quality local minima at the expense of
additional computation, but typically should not be adjusted.

Optional

Valid values: Positive integer

Default value: 10

max_iterations The maximum number of iterations to perform during the ALS
phase of the algorithm. Can be used to find better quality minima
at the expense of additional computation, but typically should not
be adjusted.

Optional

Valid values: Positive integer

Default value: 1000

tol Target error tolerance for the ALS phase of the algorithm. Can be
used to find better quality minima at the expense of additional
computation, but typically should not be adjusted.

Optional

Valid values: Positive float

Default value: 1e-8

Tune an LDA Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

LDA is an unsupervised topic modeling algorithm that attempts to describe a set of observations
(documents) as a mixture of different categories (topics). The “per-word log-likelihood” (PWLL) metric
measures the likelihood that a learned set of topics (an LDA model) accurately describes a test document
dataset. Larger values of PWLL indicate that the test data is more likely to be described by the LDA
model.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the LDA Algorithm

The LDA algorithm reports on a single metric during training: test:pwll. When tuning a model, choose
this metric as the objective metric.

Metric Name Description Optimization Direction

test:pwll Per-word log-likelihood on the test dataset. The
likelihood that the test dataset is accurately
described by the learned LDA model.

Maximize

161

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Tunable LDA Hyperparameters

You can tune the following hyperparameters for the LDA algorithm. Both hyperparameters, alpha0 and
num_topics, can affect the LDA objective metric (test:pwll). If you don't already know the optimal
values for these hyperparameters, which maximize per-word log-likelihood and produce an accurate LDA
model, automatic model tuning can help find them.

Parameter Name Parameter Type Recommended Ranges

alpha0 ContinuousParameterRanges MinValue: 0.1,
MaxValue: 10

num_topics IntegerParameterRanges MinValue: 1, MaxValue:
150

Linear Learner Algorithm
Linear models are supervised learning algorithms used for solving either classification or regression
problems. For input, you give the model labeled examples (x, y). x is a high-dimensional vector and y
is a numeric label. For binary classification problems, the label must be either 0 or 1. For multiclass
classification problems, the labels must be from 0 to num_classes - 1. For regression problems, y is
a real number. The algorithm learns a linear function, or, for classification problems, a linear threshold
function, and maps a vector x to an approximation of the label y.

The Amazon SageMaker linear learner algorithm provides a solution for both classification and
regression problems. With the Amazon SageMaker algorithm, you can simultaneously explore different
training objectives and choose the best solution from a validation set. You can also explore a large
number of models and choose the best. The best model optimizes either of the following:

• Continuous objectives, such as mean square error, cross entropy loss, absolute error.

• Discrete objectives suited for classification, such as F1 measure, precision, recall, or accuracy.

Compared with methods that provide a solution for only continuous objectives, the Amazon SageMaker
linear learner algorithm provides a significant increase in speed over naive hyperparameter optimization
techniques. It is also more convenient.

The linear learner algorithm requires a data matrix, with rows representing the observations, and
columns representing the dimensions of the features. It also requires an additional column that contains
the labels that match the data points. At a minimum, Amazon SageMaker linear learner requires you to
specify input and output data locations, and objective type (classification or regression) as arguments.
The feature dimension is also required. For more information, see CreateTrainingJob (p. 667). You
can specify additional parameters in the HyperParameters string map of the request body. These
parameters control the optimization procedure, or specifics of the objective function that you train on.
For example, the number of epochs, regularization, and loss type.

Topics

• Input/Output Interface for the Linear Learner Algorithm (p. 163)

• EC2 Instance Recommendation for the Linear Learner Algorithm (p. 163)

• Linear Learner Sample Notebooks (p. 163)

• How Linear Learner Works (p. 164)

• Linear Learner Hyperparameters (p. 164)

• Tune a Linear Learner Model (p. 173)

162

Amazon SageMaker Developer Guide
Linear Learner Algorithm

• Linear Learner Response Formats (p. 175)

Input/Output Interface for the Linear Learner Algorithm
The Amazon SageMaker linear learner algorithm supports three data channels: train, validation
(optional), and test (optional). If you provide validation data, it should be FullyReplicated. The
algorithm logs validation loss at every epoch, and uses a sample of the validation data to calibrate and
select the best model. If you don't provide validation data, the algorithm uses a sample of the training
data to calibrate and select the model. If you provide test data, the algorithm logs include the test score
for the final model.

For training, the linear learner algorithm supports both recordIO-wrapped protobuf and CSV
formats. For the application/x-recordio-protobuf input type, only Float32 tensors are
supported. For the text/csv input type, the first column is assumed to be the label, which is the target
variable for prediction. You can use either File mode or Pipe mode to train linear learner models on data
that is formatted as recordIO-wrapped-protobuf or as CSV.

For inference, the linear learner algorithm supports the application/json,
application/x-recordio-protobuf, and text/csv formats. When you make
predictions on new data, the format of the response depends on the type of model. For
regression (predictor_type='regressor'), the score is the prediction produced
by the model. For classification (predictor_type='binary_classifier' or
predictor_type='multiclass_classifier'), the model returns a score and also a
predicted_label. The predicted_label is the class predicted by the model and the score
measures the strength of that prediction.

• For binary classification, predicted_label is 0 or 1, and score is a single floating point number
correspond class.

• For multiclass classification, the predicted_class will be an integer from 0 to num_classes-1,
and the score will be a list of one floating point number per class.

To interpret the score in classification problems, you have to consider the loss function used. If the
loss hyperparameter value is logistic for binary classification or softmax_loss for multiclass
classification, then the score can be interpreted as the probability of the corresponding class. These
are the loss values used by the linear learner when the loss value is auto default value. But if the loss
is set to hinge_loss, then the score cannot be interpreted as a probability. This is because hinge loss
corresponds to a Support Vector Classifier, which does not produce probability estimates.

For more information on input and output file formats, see Linear Learner Response Formats (p. 175).
For more information on inference formats, and the Linear Learner Sample Notebooks (p. 163).

EC2 Instance Recommendation for the Linear Learner Algorithm
You can train the linear learner algorithm on single- or multi-machine CPU and GPU instances. During
testing, we have not found substantial evidence that multi-GPU computers are faster than single-GPU
computers. Results can vary, depending on your specific use case.

Linear Learner Sample Notebooks
For a sample notebook that uses the Amazon SageMaker linear learner algorithm to analyze the images
of handwritten digits from zero to nine in the MNIST dataset, see An Introduction to Linear Learner with
MNIST. For instructions on how to create and access Jupyter notebook instances that you can use to
run the example in Amazon SageMaker, see Use Notebook Instances (p. 36). After you have created a
notebook instance and opened it, choose the SageMaker Examples tab to see a list of all of the Amazon
SageMaker samples. The topic modeling example notebooks using the linear learning algorithm are

163

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/linear_learner_mnist/linear_learner_mnist.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/linear_learner_mnist/linear_learner_mnist.ipynb

Amazon SageMaker Developer Guide
Linear Learner Algorithm

located in the Introduction to Amazon algorithms section. To open a notebook, choose its Use tab and
choose Create copy.

How Linear Learner Works

There are three steps involved in the implementation of the linear learner algorithm: preprocess, train,
and validate.

Step 1: Preprocess

Normalization, or feature scaling, is an important preprocessing step for certain loss functions that
ensures the model being trained on a dataset does not become dominated by the weight of a single
feature. The Amazon SageMaker Linear Learner algorithm has a normalization option to assist with this
preprocessing step. If normalization is turned on, the algorithm first goes over a small sample of the data
to learn the mean value and standard deviation for each feature and for the label. Each of the features in
the full dataset is then shifted to have mean of zero and scaled to have a unit standard deviation.

Note
For best results, ensure your data is shuffled before training. Training with unshuffled data may
cause training to fail.

You can configure whether the linear learner algorithm normalizes the feature data and the labels using
the normalize_data and normalize_label) hyperparameters respectively. Normalization is enabled
by default for both features and labels for regression. Only the features can be normalized for binary
classification and this is the default behavior.

Step 2: Train

With the linear learner algorithm, you train with a distributed implementation of stochastic gradient
descent (SGD). You can control the optimization process by choosing the optimization algorithm. For
example, you can choose to use Adam, AdaGrad, stochastic gradient descent, or other optimization
algorithms. You also specify their hyperparameters, such as momentum, learning rate, and the learning
rate schedule. If you aren't sure which algorithm or hyperparameter value to use, choose a default that
works for the majority of datasets.

During training, you simultaneously optimize multiple models, each with slightly different objectives. For
example, you vary L1 or L2 regularization and try out different optimizer settings.

Step 3: Validate and Set the Threshold

When training multiple models in parallel, the models are evaluated against a validation set to select the
most optimal model once training is complete. For regression, the most optimal model is the one that
achieves the best loss on the validation set. For classification, a sample of the validation set is used to
calibrate the classification threshold. The most optimal model selected is the one that achieves the best
binary classification selection criteria on the validation set. Examples of such such criteria include the F1
measure, accuracy, and cross-entropy loss.

Note
If the algorithm is not provided a validation set, then evaluating and selecting the most optimal
model is not possible. To take advantage of parallel training and model selection ensure you
provide a validation set to the algorithm.

Linear Learner Hyperparameters

The following table contains the hyperparameters for the learner learner algorithm. These are
parameters that are set by users to facilitate the estimation of model parameters from data. The

164

Amazon SageMaker Developer Guide
Linear Learner Algorithm

required hyperparameters that must be set are listed first, in alphabetical order. The optional
hyperparameters that can be set are listed next, also in alphabetical order.

Parameter Name Description

feature_dim The number of features in the input data.

Required

Valid values: Positive integer

num_classes The number of classes for the response variable. The algorithm assumes
that classes are labeled 0, ..., num_classes - 1.

Required when predictor_type is multiclass_classifier.
Otherwise, the algorithm ignores it.

Valid values: Integers from 3 to 1,000,000

predictor_type Specifies the type of target variable as a binary classification, multiclass
classification, or regression.

Required

Valid values: binary_classifier, multiclass_classifier, or
regressor

accuracy_top_k When computing the top-k accuracy metric for multiclass classification,
the value of k. If the model assigns one of the top-k scores to the true
label, an example is scored as correct.

Optional

Valid values: Positive integers

Default value: 3

balance_multiclass_weightsSpecifies whether to use class weights, which give each class equal
importance in the loss function. Used only when the predictor_type is
multiclass_classifier.

Optional

Valid values: true, false

Default value: false

beta_1 The exponential decay rate for first-moment estimates. Applies only when
the optimizer value is adam.

Optional

Valid values: auto or floating-point value between 0 and 1.0

Default value: auto

beta_2 The exponential decay rate for second-moment estimates. Applies only
when the optimizer value is adam.

Optional

165

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

Valid values: auto or floating-point integer between 0 and 1.0

Default value: auto

bias_lr_mult Allows a different learning rate for the bias term. The actual learning rate
for the bias is learning_rate * bias_lr_mult.

Optional

Valid values: auto or positive floating-point integer

Default value: auto

bias_wd_mult Allows different regularization for the bias term. The actual L2
regularization weight for the bias is wd * bias_wd_mult. By default, there
is no regularization on the bias term.

Optional

Valid values: auto or non-negative floating-point integer

Default value: auto

binary_classifier_model_selection_criteriaWhen predictor_type is set to binary_classifier, the model
evaluation criteria for the validation dataset (or for the training dataset if
you don't provide a validation dataset). Criteria include:

• accuracy—The model with the highest accuracy.
• f_beta—The model with the highest F1 score. The default is F1.
• precision_at_target_recall—The model with the highest

precision at a given recall target.
• recall_at_target_precision—The model with the highest recall

at a given precision target.
• loss_function—The model with the lowest value of the loss function

used in training.

Optional

Valid values: accuracy, f_beta, precision_at_target_recall,
recall_at_target_precision, or loss_function

Default value: accuracy

166

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

early_stopping_patienceIf no improvement is made in the relevant metric, the number of
epochs to wait before ending training. If you have provided a value for
binary_classifier_model_selection_criteria. the metric is that
value. Otherwise, the metric is the same as the value specified for the
loss hyperparameter.

The metric is evaluated on the validation data. If you haven't provided
validation data, the metric is always the same as the value specified
for the loss hyperparameter and is evaluated on the training data. To
disable early stopping, set early_stopping_patience to a value
greater than the value specified for epochs.

Optional

Valid values: Positive integer

Default value: 3

early_stopping_toleranceThe relative tolerance to measure an improvement in loss. If the ratio of
the improvement in loss divided by the previous best loss is smaller than
this value, early stopping considers the improvement to be zero.

Optional

Valid values: Positive floating-point integer

Default value: 0.001

epochs The maximum number of passes over the training data.

Optional

Valid values: Positive integer

Default value: 15

f_beta The value of beta to use when calculating F score metrics for binary
or multiclass classification. Also used if the value specified for
binary_classifier_model_selection_criteria is f_beta.

Optional

Valid values: Positive floating-point integers

Default value: 1.0

huber_delta The parameter for Huber loss. During training and metric evaluation,
compute L2 loss for errors smaller than delta and L1 loss for errors larger
than delta.

Optional

Valid values: Positive floating-point integer

Default value: 1.0

167

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

init_bias Initial weight for the bias term.

Optional

Valid values: Floating-point integer

Default value: 0

init_method Sets the initial distribution function used for model weights. Functions
include:

• uniform—Uniformly distributed between (-scale, +scale)
• normal—Normal distribution, with mean 0 and sigma

Optional

Valid values: uniform or normal

Default value: uniform

init_scale Scales an initial uniform distribution for model weights. Applies only
when the init_method hyperparameter is set to uniform.

Optional

Valid values: Positive floating-point integer

Default value: 0.07

init_sigma The initial standard deviation for the normal distribution. Applies only
when the init_method hyperparameter is set to normal.

Optional

Valid values: Positive floating-point integer

Default value: 0.01

l1 The L1 regularization parameter. If you don't want to use L1
regularization, set the value to 0.

Optional

Valid values: auto or non-negative float

Default value: auto

learning_rate The step size used by the optimizer for parameter updates.

Optional

Valid values: auto or positive floating-point integer

Default value: auto, whose value depends on the optimizer chosen.

168

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

loss Specifies the loss function.

The available loss functions and their default values depend on the value
of predictor_type:

• If the predictor_type is set to regressor,
the available options are auto, squared_loss,
absolute_loss, eps_insensitive_squared_loss,
eps_insensitive_absolute_loss, quantile_loss, and
huber_loss. The default value for auto is squared_loss.

• If the predictor_type is set to binary_classifier, the available
options are auto,logistic, and hinge_loss. The default value for
auto is logistic.

• If the predictor_type is set to multiclass_classifier, the
available options are auto and softmax_loss. The default value for
auto is softmax_loss.

Valid values: auto, logistic, squared_loss, absolute_loss,
hinge_loss, eps_insensitive_squared_loss,
eps_insensitive_absolute_loss, quantile_loss, or huber_loss

Optional

Default value: auto

loss_insensitivity The parameter for the epsilon-insensitive loss type. During training and
metric evaluation, any error smaller than this value is considered to be
zero.

Optional

Valid values: Positive floating-point integer

Default value: 0.01

lr_scheduler_factor For every lr_scheduler_step hyperparameter, the learning rate
decreases by this quantity. Applies only when the use_lr_scheduler
hyperparameter is set to true.

Optional

Valid values: auto or positive floating-point integer between 0 and 1

Default value: auto

lr_scheduler_minimum_lrThe learning rate never decreases to a value lower than the value
set for lr_scheduler_minimum_lr. Applies only when the
use_lr_scheduler hyperparameter is set to true.

Optional

Valid values: auto or positive floating-point integer

Default values: auto

169

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

lr_scheduler_step The number of steps between decreases of the learning rate. Applies only
when the use_lr_scheduler hyperparameter is set to true.

Optional

Valid values: auto or positive integer

Default value: auto

margin The margin for the hinge_loss function.

Optional

Valid values: Positive floating-point integer

Default value: 1.0

mini_batch_size The number of observations per mini-batch for the data iterator.

Optional

Valid values: Positive integer

Default value: 1000

momentum The momentum of the sgd optimizer.

Optional

Valid values: auto or a floating-point integer between 0 and 1.0

Default value: auto

normalize_data Normalizes the feature data before training. Data normalization shifts
the data for each feature to have a mean of zero and scales it to have unit
standard deviation.

Optional

Valid values: auto, true, or false

Default value: true

normalize_label Normalizes the label. Label normalization shifts the label to have a mean
of zero and scales it to have unit standard deviation.

The auto default value normalizes the label for regression problems but
does not for classification problems. If you set the normalize_label
hyperparameter to true for classification problems, the algorithm ignores
it.

Optional

Valid values: auto, true, or false

Default value: auto

170

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

num_calibration_samplesThe number of observations from the validation dataset to use for model
calibration (when finding the best threshold).

Optional

Valid values: auto or positive integer

Default value: auto

num_models The number of models to train in parallel. For the default, auto, the
algorithm decides the number of parallel models to train. One model
is trained according to the given training parameter (regularization,
optimizer, loss), and the rest by close parameters.

Optional

Valid values: auto or positive integer

Default values: auto

num_point_for_scaler The number of data points to use for calculating normalization or
unbiasing of terms.

Optional

Valid values: Positive integer

Default value: 10,000

optimizer The optimization algorithm to use.

Optional

Valid values:

• auto—The default value.
• sgd—Stochastic gradient descent.
• adam—Adaptive momentum estimation.
• rmsprop—A gradient-based optimization technique that uses a moving

average of squared gradients to normalize the gradient.

Default value: auto. The default setting for auto is adam.

positive_example_weight_multThe weight assigned to positive examples when training a binary classifier.
The weight of negative examples is fixed at 1. If you want the algorithm
to choose a weight so that errors in classifying negative vs. positive
examples have equal impact on training loss, specify balanced. If you
want the algorithm to choose the weight that optimizes performance,
specify auto.

Optional

Valid values: balanced, auto, or a positive floating-point integer

Default value: 1.0

171

https://arxiv.org/pdf/1412.6980.pdf

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

quantile The quantile for quantile loss. For quantile q, the model attempts to
produce predictions so that the value of true_label is greater than the
prediction with probability q.

Optional

Valid values: Floating-point integer between 0 and 1

Default value: 0.5

target_precision The target precision. If
binary_classifier_model_selection_criteria is
recall_at_target_precision, then precision is held at this value
while recall is maximized.

Optional

Valid values: Floating-point integer between 0 and 1.0

Default value: 0.8

target_recall The target recall. If
binary_classifier_model_selection_criteria is
precision_at_target_recall, then recall is held at this value while
precision is maximized.

Optional

Valid values: Floating-point integer between 0 and 1.0

Default value: 0.8

unbias_data Unbiases the features before training so that the mean is 0. By default.
data is unbiased if the use_bias hyperparameter is set to true.

Optional

Valid values: auto, true, or false

Default value: auto

unbias_label Unbiases labels before training so that the mean is 0. Applies to
regression only if the use_bias hyperparameter is set to true.

Optional

Valid values: auto, true, or false

Default value: auto

use_bias Specifies whether the model should include a bias term, which is the
intercept term in the linear equation.

Optional

Valid values: true or false

Default value: true

172

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Description

use_lr_scheduler Whether to use a scheduler for the learning rate. If you want to use a
scheduler, specify true.

Optional

Valid values: true or false

Default value: true

wd The weight decay parameter, also known as the L2 regularization
parameter. If you don't want to use L2 regularization, set the value to 0.

Optional

Valid values:auto or non-negative floating-point integer

Default value: auto

Tune a Linear Learner Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

The linear learner algorithm also has an internal mechanism for tuning hyperparameters separate
from the automatic model tuning feature described here. By default, the linear learner algorithm tunes
hyperparameters by training multiple models in parallel. When you use automatic model tuning, the
linear learner internal tuning mechanism is turned off automatically. This sets the number of parallel
models, num_models, to 1. The algorithm ignores any value that you set for num_models.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the Linear Learner Algorithm

The linear learner algorithm reports the metrics in the following table, which are computed during
training. Choose one of them as the objective metric. To avoid overfitting, we recommend tuning the
model against a validation metric instead of a training metric.

Metric Name Description Optimization Direction

test:objective_loss The mean value of the objective loss function
on the test dataset after the model is trained.
By default, the loss is logistic loss for binary
classification and squared loss for regression.
To set the loss to other types, use the loss
hyperparameter.

Minimize

test:binary_classification_
accuracy

The accuracy of the final model on the test
dataset.

Maximize

test:binary_f_beta The F_beta score of the final model on the test
dataset. By default, it is the F1 score, which is the
harmonic mean of precision and recall.

Maximize

173

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Metric Name Description Optimization Direction

test:precision The precision of the final model on the test
dataset. If you choose this metric as the objective,
we recommend setting a target recall by setting
the binary_classifier_model_selection
hyperparameter to
precision_at_target_recall and setting the
value for the target_recall hyperparameter.

Maximize

test:recall The recall of the final model on the test dataset.
If you choose this metric as the objective, we
recommend setting a target precision by setting
the binary_classifier_model_selection
hyperparameter to
recall_at_target_precision and setting the
value for the target_precison hyperparameter.

Maximize

validation:objective_lossThe mean value of the objective loss function on
the validation dataset every epoch. By default,
the loss is logistic loss for binary classification and
squared loss for regression. To set loss to other
types, use the loss hyperparameter.

Minimize

validation:binary_classific
ation_accuracy

The accuracy of the final model on the validation
dataset.

Maximize

validation:binary_f_betaThe F_beta score of the final model on the
validation dataset. By default, the F_beta
score is the F1 score, which is the harmonic
mean of the validation:precision and
validation:recall metrics.

Maximize

validation:precisionThe precision of the final model on the test
dataset. If you choose this metric as the objective,
we recommend setting a target recall by setting
the binary_classifier_model_selection
hyperparameter to
precision_at_target_recall and setting the
value for the target_recall hyperparameter.

Maximize

validation:recall The recall of the final model on the test dataset.
If you choose this metric as the objective, we
recommend setting a target precision by setting
the binary_classifier_model_selection
hyperparameter to
recall_at_target_precision and setting the
value for the target_precison hyperparameter.

Maximize

Tuning Linear Learner Hyperparameters

You can tune a linear learner model with the following hyperparameters.

174

Amazon SageMaker Developer Guide
Linear Learner Algorithm

Parameter Name Parameter Type Recommended Ranges

wd ContinuousParameterRanges MinValue: 1e-7,
MaxValue: 1

l1 ContinuousParameterRanges MinValue: 1e-7,
MaxValue: 1

learning_rate ContinuousParameterRanges MinValue: 1e-5,
MaxValue: 1

mini_batch_size IntegerParameterRanges MinValue: 100,
MaxValue: 5000

use_bias CategoricalParameterRanges [True, False]

positive_example_weight_multContinuousParameterRanges MinValue: 1e-5,
MaxValue: 1e5

Linear Learner Response Formats
JSON Response Format

All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. The following are the available output formats for the Amazon
SageMaker linear learner algorithm.

Binary Classification

let response = {
 "predictions": [
 {
 "score": 0.4,
 "predicted_label": 0
 }
]
}

Multiclass Classification

let response = {
 "predictions": [
 {
 "score": [0.1, 0.2, 0.4, 0.3],
 "predicted_label": 2
 }
]
}

Regression

let response = {
 "predictions": [
 {
 "score": 0.4
 }
]
}

175

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide
Linear Learner Algorithm

JSONLINES Response Format

Binary Classification

{"score": 0.4, "predicted_label": 0}

Multiclass Classification

{"score": [0.1, 0.2, 0.4, 0.3], "predicted_label": 2}

Regression

{"score": 0.4}

RECORDIO Response Format

Binary Classification

[
 Record = {
 features = {},
 label = {
 'score’: {
 keys: [],
 values: [0.4] # float32
 },
 'predicted_label': {
 keys: [],
 values: [0.0] # float32
 }
 }
 }
]

Multiclass Classification

[
 Record = {
 "features": [],
 "label": {
 "score": {
 "values": [0.1, 0.2, 0.3, 0.4]
 },
 "predicted_label": {
 "values": [3]
 }
 },
 "uid": "abc123",
 "metadata": "{created_at: '2017-06-03'}"
 }
]

Regression

[
 Record = {
 features = {},
 label = {
 'score’: {
 keys: [],

176

Amazon SageMaker Developer Guide
Neural Topic Model (NTM) Algorithm

 values: [0.4] # float32
 }
 }
 }
]

Neural Topic Model (NTM) Algorithm
Amazon SageMaker NTM is an unsupervised learning algorithm that is used to organize a corpus of
documents into topics that contain word groupings based on their statistical distribution. Documents
that contain frequent occurrences of words such as "bike", "car", "train", "mileage", and "speed" are likely
to share a topic on "transportation" for example. Topic modeling can be used to classify or summarize
documents based on the topics detected or to retrieve information or recommend content based on
topic similarities. The topics from documents that NTM learns are characterized as a latent representation
because the topics are inferred from the observed word distributions in the corpus. The semantics of
topics are usually inferred by examining the top ranking words they contain. Because the method is
unsupervised, only the number of topics, not the topics themselves, are prespecified. In addition, the
topics are not guaranteed to align with how a human might naturally categorize documents.

Topic modeling provides a way to visualize the contents of a large document corpus in terms of the
learned topics. Documents relevant to each topic might be indexed or searched for based on their soft
topic labels. The latent representations of documents might also be used to find similar documents in
the topic space. You can also use the latent representations of documents that the topic model learns for
input to another supervised algorithm such as a document classifier. Because the latent representations
of documents are expected to capture the semantics of the underlying documents, algorithms based in
part on these representations are expected to perform better than those based on lexical features alone.

Although you can use both the Amazon SageMaker NTM and LDA algorithms for topic modeling, they
are distinct algorithms and can be expected to produce different results on the same input data.

For more information on the mathematics behind NTM, see Neural Variational Inference for Text
Processing.

Topics
• Input/Output Interface for the NTM Algorithm (p. 177)
• EC2 Instance Recommendation for the NTM Algorithm (p. 178)
• NTM Sample Notebooks (p. 178)
• NTM Hyperparameters (p. 178)
• Tune an NTM Model (p. 181)
• NTM Response Formats (p. 182)

Input/Output Interface for the NTM Algorithm
Amazon SageMaker Neural Topic Model supports four data channels: train, validation, test, and auxiliary.
The validation, test, and auxiliary data channels are optional. If you specify any of these optional
channels, set the value of the S3DataDistributionType parameter for them to FullyReplicated. If
you provide validation data, the loss on this data is logged at every epoch, and the model stops training
as soon as it detects that the validation loss is not improving. If you don't provide validation data, the
algorithm stops early based on the training data, but this can be less efficient. If you provide test data,
the algorithm reports the test loss from the final model.

The train, validation, and test data channels for NTM support both recordIO-wrapped-protobuf
(dense and sparse) and CSV file formats. For CSV format, each row must be represented densely with
zero counts for words not present in the corresponding document, and have dimension equal to:
(number of records) * (vocabulary size). You can use either File mode or Pipe mode to train models on
data that is formatted as recordIO-wrapped-protobuf or as CSV. The auxiliary channel is used to

177

https://arxiv.org/pdf/1511.06038.pdf
https://arxiv.org/pdf/1511.06038.pdf

Amazon SageMaker Developer Guide
Neural Topic Model (NTM) Algorithm

supply a text file that contains vocabulary. By supplying the vocabulary file, users are able to see the top
words for each of the topics printed in the log instead of their integer IDs. Having the vocabulary file also
allows NTM to compute the Word Embedding Topic Coherence (WETC) scores, a new metric displayed in
the log that captures similarity among the top words in each topic effectively. The ContentType for the
auxiliary channel is text/plain, with each line containing a single word, in the order corresponding to
the integer IDs provided in the data. The vocabulary file must be named vocab.txt and currently only
UTF-8 encoding is supported.

For inference, text/csv, application/json, application/jsonlines, and application/x-
recordio-protobuf content types are supported. Sparse data can also be passed for application/
json and application/x-recordio-protobuf. NTM inference returns application/json or
application/x-recordio-protobuf predictions, which include the topic_weights vector for each
observation.

See the blog post and the companion notebook for more details on using the auxiliary channel and the
WETC scores. For more information on how to compute the WETC score, see Coherence-Aware Neural
Topic Modeling. We used the pairwise WETC described in this paper for the Amazon SageMaker Neural
Topic Model.

For more information on input and output file formats, see NTM Response Formats (p. 182) for
inference and the NTM Sample Notebooks (p. 178).

EC2 Instance Recommendation for the NTM Algorithm
NTM training supports both GPU and CPU instance types. We recommend GPU instances, but for certain
workloads, CPU instances may result in lower training costs. CPU instances should be sufficient for
inference.

NTM Sample Notebooks
For a sample notebook that uses the Amazon SageMaker NTM algorithm to uncover topics in documents
from a synthetic data source where the topic distributions are known, see the Introduction to Basic
Functionality of NTM. For instructions how to create and access Jupyter notebook instances that you
can use to run the example in Amazon SageMaker, see Use Notebook Instances (p. 36). Once you have
created a notebook instance and opened it, select the SageMaker Examples tab to see a list of all the
Amazon SageMaker samples. The topic modeling example notebooks using the NTM algorithms are
located in the Introduction to Amazon algorithms section. To open a notebook, click on its Use tab and
select Create copy.

NTM Hyperparameters

Parameter Name Description

feature_dim The vocabulary size of the dataset.

Required

Valid values: Positive integer (min: 1, max: 1,000,000)

num_topics The number of required topics.

Required

Valid values: Positive integer (min: 2, max: 1000)

batch_norm Whether to use batch normalization during training.

Optional

178

https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/scientific_details_of_algorithms/ntm_topic_modeling/ntm_wikitext.ipynb
https://arxiv.org/pdf/1809.02687.pdf
https://arxiv.org/pdf/1809.02687.pdf
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/ntm_synthetic/ntm_synthetic.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/ntm_synthetic/ntm_synthetic.ipynb

Amazon SageMaker Developer Guide
Neural Topic Model (NTM) Algorithm

Parameter Name Description

Valid values: true or false

Default value: false

clip_gradient The maximum magnitude for each gradient component.

Optional

Valid values: Float (min: 1e-3)

Default value: Infinity

encoder_layers The number of layers in the encoder and the output size of each
layer. When set to auto, the algorithm uses two layers of sizes 3 x
num_topics and 2 x num_topics respectively.

Optional

Valid values: Comma-separated list of positive integers or auto

Default value: auto

encoder_layers_activation The activation function to use in the encoder layers.

Optional

Valid values:

• sigmoid: Sigmoid function
• tanh: Hyperbolic tangent
• relu: Rectified linear unit

Default value: sigmoid

epochs The maximum number of passes over the training data.

Optional

Valid values: Positive integer (min: 1)

Default value: 50

learning_rate The learning rate for the optimizer.

Optional

Valid values: Float (min: 1e-6, max: 1.0)

Default value: 0.001

mini_batch_size The number of examples in each mini batch.

Optional

Valid values: Positive integer (min: 1, max: 10000)

Default value: 256

179

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Hyperbolic_function#Hyperbolic_tangent
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

Amazon SageMaker Developer Guide
Neural Topic Model (NTM) Algorithm

Parameter Name Description

num_patience_epochs The number of successive epochs over which early stopping
criterion is evaluated. Early stopping is triggered when the change
in the loss function drops below the specified tolerance within
the last num_patience_epochs number of epochs. To disable
early stopping, set num_patience_epochs to a value larger than
epochs.

Optional

Valid values: Positive integer (min: 1)

Default value: 3

optimizer The optimizer to use for training.

Optional

Valid values:

• sgd: Stochastic gradient descent
• adam: Adaptive momentum estimation
• adagrad: Adaptive gradient algorithm
• adadelta: An adaptive learning rate algorithm
• rmsprop: Root mean square propagation

Default value: adadelta

rescale_gradient The rescale factor for gradient.

Optional

Valid values: float (min: 1e-3, max: 1.0)

Default value: 1.0

sub_sample The fraction of the training data to sample for training per epoch.

Optional

Valid values: Float (min: 0.0, max: 1.0)

Default value: 1.0

tolerance The maximum relative change in the loss function. Early stopping is
triggered when change in the loss function drops below this value
within the last num_patience_epochs number of epochs.

Optional

Valid values: Float (min: 1e-6, max: 0.1)

Default value: 0.001

180

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://arxiv.org/pdf/1212.5701.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp

Amazon SageMaker Developer Guide
Neural Topic Model (NTM) Algorithm

Parameter Name Description

weight_decay The weight decay coefficient. Adds L2 regularization.

Optional

Valid values: Float (min: 0.0, max: 1.0)

Default value: 0.0

Tune an NTM Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

Amazon SageMaker NTM is an unsupervised learning algorithm that learns latent representations of
large collections of discrete data, such as a corpus of documents. Latent representations use inferred
variables that are not directly measured to model the observations in a dataset. Automatic model tuning
on NTM helps you find the model that minimizes loss over the training or validation data. Training loss
measures how well the model fits the training data. Validation loss measures how well the model can
generalize to data that it is not trained on. Low training loss indicates that a model is a good fit to the
training data. Low validation loss indicates that a model has not overfit the training data and so should
be able to model documents on which is has not been trained successfully. Usually, it's preferable to have
both losses be small. However, minimizing training loss too much might result in overfitting and increase
validation loss, which would reduce the generality of the model.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the NTM Algorithm

The NTM algorithm reports a single metric that is computed during training: validation:total_loss.
The total loss is the sum of the reconstruction loss and Kullback-Leibler divergence. When tuning
hyperparameter values, choose this metric as the objective.

Metric Name Description Optimization Direction

validation:total_lossTotal Loss on validation set Minimize

Tunable NTM Hyperparameters

You can tune the following hyperparameters for the NTM algorithm. Usually setting low
mini_batch_size and small learning_rate values results in lower validation losses, although it
might take longer to train. Low validation losses don't necessarily produce more coherent topics as
interpreted by humans. The effect of other hyperparameters on training and validation loss can vary
from dataset to dataset. To see which values are compatible, see NTM Hyperparameters (p. 178).

Parameter Name Parameter Type Recommended Ranges

encoder_layers_activationCategoricalParameterRanges ['sigmoid', 'tanh', 'relu']

learning_rate ContinuousParameterRange MinValue: 1e-4,
MaxValue: 0.1

181

Amazon SageMaker Developer Guide
Neural Topic Model (NTM) Algorithm

Parameter Name Parameter Type Recommended Ranges

mini_batch_size IntegerParameterRanges MinValue: 16,
MaxValue:2048

optimizer CategoricalParameterRanges ['sgd', 'adam', 'adadelta']

rescale_gradient ContinuousParameterRange MinValue: 0.1,
MaxValue: 1.0

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

NTM Response Formats

All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. This topic contains a list of the available output formats for the
Amazon SageMaker NTM algorithm.

JSON Response Format

{
 "predictions": [
 {"topic_weights": [0.02, 0.1, 0,...]},
 {"topic_weights": [0.25, 0.067, 0,...]}
]
}

JSONLINES Response Format

{"topic_weights": [0.02, 0.1, 0,...]}
{"topic_weights": [0.25, 0.067, 0,...]}

RECORDIO Response Format

[
 Record = {
 features = {},
 label = {
 'topic_weights': {
 keys: [],
 values: [0.25, 0.067, 0, ...] # float32
 }
 }
 },
 Record = {
 features = {},
 label = {
 'topic_weights': {
 keys: [],
 values: [0.25, 0.067, 0, ...] # float32
 }
 }
 }
]

182

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide
Object2Vec

Object2Vec Algorithm
The Amazon SageMaker Object2Vec algorithm is a general-purpose neural embedding algorithm
that is highly customizable. It can learn low-dimensional dense embeddings of high-dimensional
objects. The embeddings are learned in a way that preserves the semantics of the relationship between
pairs of objects in the original space in the embedding space. You can use the learned embeddings to
efficiently compute nearest neighbors of objects and to visualize natural clusters of related objects in
low-dimensional space, for example. You can also use the embeddings as features of the corresponding
objects in downstream supervised tasks, such as classification or regression.

Object2Vec generalizes the well-known Word2Vec embedding technique for words that is optimized in
the Amazon SageMaker BlazingText Algorithm (p. 74). For a blog post that discusses how to apply
Object2Vec to some practical use cases, see Introduction to Amazon SageMaker Object2Vec.

Topics
• I/O Interface for the Object2Vec Algorithm (p. 183)
• EC2 Instance Recommendation for the Object2Vec Algorithm (p. 184)
• Object2Vec Sample Notebooks (p. 184)
• How Object2Vec Works (p. 185)
• Object2Vec Hyperparameters (p. 186)
• Tune an Object2Vec Model (p. 194)
• Data Formats for Object2Vec Training (p. 196)
• Data Formats for Object2Vec Inference (p. 196)
• Encoder Embeddings for Object2Vec (p. 198)

I/O Interface for the Object2Vec Algorithm
You can use Object2Vec on many input data types, including the following examples.

Input Data Type Example

Sentence-sentence pairs "A soccer game with multiple males playing." and "Some men are
playing a sport."

Labels-sequence pairs The genre tags of the movie "Titanic", such as "Romance" and
"Drama", and its short description: "James Cameron's Titanic is
an epic, action-packed romance set against the ill-fated maiden
voyage of the R.M.S. Titanic. She was the most luxurious liner of her
era, a ship of dreams, which ultimately carried over 1,500 people to
their death in the ice cold waters of the North Atlantic in the early
hours of April 15, 1912."

Customer-customer pairs The customer ID of Jane and customer ID of Jackie.

Product-product pairs The product ID of football and product ID of basketball.

Item review user-item pairs A user's ID and the items she has bought, such as apple, pear, and
orange.

To transform the input data into the supported formats, you must preprocess it. Currently, Object2Vec
natively supports two types of input:

• A discrete token, which is represented as a list of a single integer-id. For example, [10].

183

https://aws.amazon.com/blogs/machine-learning/introduction-to-amazon-sagemaker-object2vec/

Amazon SageMaker Developer Guide
Object2Vec

• A sequences of discrete tokens, which is represented as a list of integer-ids. For example,
[0,12,10,13].

The object in each pair can be asymmetric. For example, the pairs can be (token, sequence) or (token,
token) or (sequence, sequence). For token inputs, the algorithm supports simple embeddings as
compatible encoders. For sequences of token vectors, the algorithm supports the following as encoders:

• Average-pooled embeddings
• Hierarchical convolutional neural networks (CNNs),
• Multi-layered bidirectional long short-term memory (BiLSTMs)

The input label for each pair can be one of the following:

• A categorical label that expresses the relationship between the objects in the pair
• A score that expresses the strength of the similarity between the two objects

For categorical labels used in classification, the algorithm supports the cross-entropy loss function. For
ratings/score-based labels used in regression, the algorithm supports the mean squared error (MSE) loss
function. Specify these loss functions with the output_layer hyperparameter when you create the
model training job.

EC2 Instance Recommendation for the Object2Vec Algorithm
The type of Amazon Elastic Compute Cloud (Amazon EC2) instance that you use depends on whether you
are training or running inferences.

Instance Recommendation for Training

When training a model using the Object2Vec algorithm on a CPU, start with an ml.m5.2xlarge instance.
For training on a GPU, start with an ml.p2.xlarge instance. If the training takes too long on this instance,
you can use a larger instance, such as an ml.m5.4xlarge or an ml.m5.12xlarge instance Currently, the
Object2Vec algorithm can train only on a single machine. However, it does offer support for multiple
GPUs.

Instance Recommendation for Inference

For inference with a trained Object2Vec model that has a deep neural network, we recommend
using ml.p3.2xlarge GPU instance. Due to GPU memory scarcity, the INFERENCE_PREFERRED_MODE
environment variable can be specified to optimize on whether the the section called “GPU
optimization: Classification or Regression” (p. 196) or the section called “GPU optimization: Encoder
Embeddings” (p. 198) inference network is loaded into GPU.

Object2Vec Sample Notebooks
For a sample notebook that uses the Amazon SageMaker Object2Vec algorithm to encode sequences
into fixed-length embeddings, see Using Object2Vec to Encode Sentences into Fixed Length
Embeddings. For a sample notebook that uses the Object2Vec algorithm in a multi-label prediction
setting to predict the genre of a movie from its plot description, see Movie genre prediction
with Object2Vec Algorithm. For a sample notebook that uses the Object2Vec algorithm to make
movie recommendations, see An Introduction to SageMaker ObjectToVec model for MovieLens
recommendation. For a sample notebook that uses the Object2Vec algorithm to learn document
embeddings, see Using Object2Vec to learn document embeddings. For instructions on how to create
and access Jupyter notebook instances that you can use to run the example in Amazon SageMaker,
see Use Notebook Instances (p. 36). After you have created a notebook instance and opened it, choose

184

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/object2vec_sentence_similarity/
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/object2vec_sentence_similarity/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object2vec_multilabel_genre_classification/object2vec_multilabel_genre_classification.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object2vec_multilabel_genre_classification/object2vec_multilabel_genre_classification.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object2vec_movie_recommendation/object2vec_movie_recommendation.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object2vec_movie_recommendation/object2vec_movie_recommendation.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_applying_machine_learning/object2vec_document_embedding/object2vec_document_embedding.ipynb

Amazon SageMaker Developer Guide
Object2Vec

SageMaker Examples to see a list of Amazon SageMaker samples. To open a notebook, choose its Use
tab and choose Create copy.

How Object2Vec Works

When using the Amazon SageMaker Object2Vec algorithm, you follow the standard workflow: process
the data, train the model, and produce inferences.

Topics

• Step 1: Process Data (p. 185)

• Step 2: Train a Model (p. 185)

• Step 3: Produce Inferences (p. 186)

Step 1: Process Data

During preprocessing, convert the data to the JSON Lines text file format specified in Data Formats
for Object2Vec Training (p. 196) . To get the highest accuracy during training, also randomly shuffle
the data before feeding it into the model. How you generate random permutations depends on the
language. For python, you could use np.randon.shuffle; for Unix, shuf.

Step 2: Train a Model

The Amazon SageMaker Object2Vec algorithm has the following main components:

• Two input channels – The input channels take a pair of objects of the same or different types as
inputs, and pass them to independent and customizable encoders.

• Two encoders – The two encoders, enc0 and enc1, convert each object into a fixed-length embedding
vector. The encoded embeddings of the objects in the pair are then passed into a comparator.

• A comparator – The comparator compares the embeddings in different ways and outputs scores that
indicate the strength of the relationship between the paired objects. In the output score for a sentence
pair. For example, 1 indicates a strong relationship between a sentence pair, and 0 represents a weak
relationship.

During training, the algorithm accepts pairs of objects and their relationship labels or scores as inputs.
The objects in each pair can be of different types, as described earlier. If the inputs to both encoders are
composed of the same token-level units, you can use a shared token embedding layer by setting the
tied_token_embedding_weight hyperparameter to True when you create the training job. This is
possible, for example, when comparing sentences that both have word token-level units. To generate
negative samples at a specified rate, set the negative_sampling_rate hyperparameter to the desired
ratio of negative to positive samples. This hyperparameter expedites learning how to discriminate
between the positive samples observed in the training data and the negative samples that are not likely
to be observed.

Pairs of objects are passed through independent, customizable encoders that are compatible with the
input types of corresponding objects. The encoders convert each object in a pair into a fixed-length
embedding vector of equal length. The pair of vectors are passed to a comparator operator, which
assembles the vectors into a single vector using the value specified in the he comparator_list
hyperparameter. The assembled vector then passes through a multilayer perceptron (MLP) layer, which
produces an output that the loss function compares with the labels that you provided. This comparison
evaluates the strength of the relationship between the objects in the pair as predicted by the model. The
following figure shows this workflow.

185

http://jsonlines.org/

Amazon SageMaker Developer Guide
Object2Vec

Architecture of the Object2Vec Algorithm from Data Inputs to Scores

Step 3: Produce Inferences

After the model is trained, you can use the trained encoder to preprocess input objects or to perform two
types of inference:

• To convert singleton input objects into fixed-length embeddings using the corresponding encoder
• To predict the relationship label or score between a pair of input objects

The inference server automatically figures out which of the types is requested based on the input data.
To get the embeddings as output, provide only one input. To predict the relationship label or score,
provide both inputs in the pair.

Object2Vec Hyperparameters
In the CreateTrainingJob request, you specify the training algorithm. You can also specify algorithm-
specific hyperparameters as string-to-string maps. The following table lists the hyperparameters for the
Object2Vec training algorithm.

Parameter Name Description

enc0_max_seq_len The maximum sequence length for the enc0 encoder.

Required

Valid values: 1 ≤ integer ≤ 5000

enc0_vocab_size The vocabulary size of enc0 tokens.

Required

Valid values: 2 ≤ integer ≤ 3000000

186

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

bucket_width The allowed difference between data sequence length when
bucketing is enabled. To enable bucketing, specify a non-zero value
for this parameter.

Optional

Valid values: 0 ≤ integer ≤ 100

Default value: 0 (no bucketing)

comparator_list A list used to customize the way in which two embeddings are
compared. The Object2Vec comparator operator layer takes the
encodings from both encoders as inputs and outputs a single
vector. This vector is a concatenation of subvectors. The string
values passed to the comparator_list and the order in which
they are passed determine how these subvectors are assembled. For
example, if comparator_list="hadamard, concat", then the
comparator operator constructs the vector by concatenating the
Hadamard product of two encodings and the concatenation of two
encodings. If, on the other hand, comparator_list="hadamard",
then the comparator operator constructs the vector as the
hadamard product of only two encodings.

Optional

Valid values: A string that contains any combination of the names
of the three binary operators: hadamard, concat, or abs_diff.
The Object2Vec algorithm currently requires that the two vector
encodings have the same dimension. These operators produce the
subvectors as follows:

• hadamard: Constructs a vector as the Hadamard (element-wise)
product of two encodings.

• concat: Constructs a vector as the concatenation of two
encodings.

• abs_diff: Constructs a vector as the absolute difference
between two encodings.

Default value: "hadamard, concat, abs_diff"

dropout The dropout probability for network layers. Dropout is a form of
regularization used in neural networks that reduces overfitting by
trimming codependent neurons.

Optional

Valid values: 0.0 ≤ float ≤ 1.0

Default value: 0.0

187

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

early_stopping_patience The number of consecutive epochs without improvement allowed
before early stopping is applied. Improvement is defined by with
the early_stopping_tolerance hyperparameter.

Optional

Valid values: 1 ≤ integer ≤ 5

Default value: 3

early_stopping_tolerance The reduction in the loss function that an algorithm must
achieve between consecutive epochs to avoid early stopping
after the number of consecutive epochs specified in the
early_stopping_patience hyperparameter concludes.

Optional

Valid values: 0.000001 ≤ float ≤ 0.1

Default value: 0.01

enc_dim The dimension of the output of the embedding layer.

Optional

Valid values: 4 ≤ integer ≤ 10000

Default value: 4096

enc0_network The network model for the enc0 encoder.

Optional

Valid values: hcnn, bilstm, or pooled_embedding

• hcnn: A hierarchical convolutional neural network.
• bilstm: A bidirectional long short-term memory network

(biLSTM), in which the signal propagates backward and forward
in time. This is an appropriate recurrent neural network (RNN)
architecture for sequential learning tasks.

• pooled_embedding: Averages the embeddings of all of the
tokens in the input.

Default value: hcnn

enc0_cnn_filter_width The filter width of the convolutional neural network (CNN) enc0
encoder.

Conditional

Valid values: 1 ≤ integer ≤ 9

Default value: 3

188

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

enc0_freeze_pretrained_embeddingWhether to freeze enc0 pretrained embedding weights.

Conditional

Valid values: True or False

Default value: True

enc0_layers The number of layers in the enc0 encoder.

Conditional

Valid values: auto or 1 ≤ integer ≤ 4

• For hcnn, auto means 4.
• For bilstm, auto means 1.
• For pooled_embedding, auto ignores the number of layers.

Default value: auto

enc0_pretrained_embedding_fileThe filename of the pretrained enc0 token embedding file in the
auxiliary data channel.

Conditional

Valid values: String with alphanumeric characters, underscore, or
period. [A-Za-z0-9\._]

Default value: "" (empty string)

enc0_token_embedding_dim The output dimension of the enc0 token embedding layer.

Conditional

Valid values: 2 ≤ integer ≤ 1000

Default value: 300

enc0_vocab_file The vocabulary file for mapping pretrained enc0 token embedding
vectors to numerical vocabulary IDs.

Conditional

Valid values: String with alphanumeric characters, underscore, or
period. [A-Za-z0-9\._]

Default value: "" (empty string)

189

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

enc1_network The network model for the enc1 encoder. If you want the enc1
encoder to use the same network model as enc0, including the
hyperparameter values, set the value to enc0.

Note
Even when the enc0 and enc1 encoder networks have
symmetric architectures, you can't shared parameter values
for these networks.

Optional

Valid values: enc0, hcnn, bilstm, or pooled_embedding

• enc0: The network model for the enc0 encoder.
• hcnn: A hierarchical convolutional neural network.
• bilstm: A bidirectional LSTM, in which the signal propagates

backward and forward in time. This is an appropriate recurrent
neural network (RNN) architecture for sequential learning tasks.

• pooled_embedding: The averages of the embeddings of all of
the tokens in the input.

Default value: enc0

enc1_cnn_filter_width The filter width of the CNN enc1 encoder.

Conditional

Valid values: 1 ≤ integer ≤ 9

Default value: 3

enc1_freeze_pretrained_embeddingWhether to freeze enc1 pretrained embedding weights.

Conditional

Valid values: True or False

Default value: True

enc1_layers The number of layers in the enc1 encoder.

Conditional

Valid values: auto or 1 ≤ integer ≤ 4

• For hcnn, auto means 4.
• For bilstm, auto means 1.
• For pooled_embedding, auto ignores the number of layers.

Default value: auto

enc1_max_seq_len The maximum sequence length for the enc1 encoder.

Conditional

Valid values: 1 ≤ integer ≤ 5000

190

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

enc1_pretrained_embedding_fileThe name of the enc1 pretrained token embedding file in the
auxiliary data channel.

Conditional

Valid values: String with alphanumeric characters, underscore, or
period. [A-Za-z0-9\._]

Default value: "" (empty string)

enc1_token_embedding_dim The output dimension of the enc1 token embedding layer.

Conditional

Valid values: 2 ≤ integer ≤ 1000

Default value: 300

enc1_vocab_file The vocabulary file for mapping pretrained enc1 token embeddings
to vocabulary IDs.

Conditional

Valid values: String with alphanumeric characters, underscore, or
period. [A-Za-z0-9\._]

Default value: "" (empty string)

enc1_vocab_size The vocabulary size of enc0 tokens.

Conditional

Valid values: 2 ≤ integer ≤ 3000000

epochs The number of epochs to run for training.

Optional

Valid values: 1 ≤ integer ≤ 100

Default value: 30

learning_rate The learning rate for training.

Optional

Valid values: 1.0E-6 ≤ float ≤ 1.0

Default value: 0.0004

mini_batch_size The batch size that the dataset is split into for an optimizer
during training.

Optional

Valid values: 1 ≤ integer ≤ 10000

Default value: 32

191

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

mlp_activation The type of activation function for the multilayer perceptron (MLP)
layer.

Optional

Valid values: tanh, relu, or linear

• tanh: Hyperbolic tangent
• relu: Rectified linear unit (ReLU)
• linear: Linear function

Default value: linear

mlp_dim The dimension of the output from MLP layers.

Optional

Valid values: 2 ≤ integer ≤ 10000

Default value: 512

mlp_layers The number of MLP layers in the network.

Optional

Valid values: 0 ≤ integer ≤ 10

Default value: 2

negative_sampling_rate The ratio of negative samples, generated to assist in training
the algorithm, to positive samples that are provided by users.
Negative samples represent data that is unlikely to occur in reality
and are labelled negatively for training. They facilitate training
a model to discriminate between the positive samples observed
and the negative samples that are not. To specify the ratio of
negative samples to positive samples used for training, set the
value to a positive integer. For example, if you train the algorithm
on input data in which all of the samples are positive and set
negative_sampling_rate to 2, the Object2Vec algorithm
internally generates two negative samples per positive sample. If
you don't want to generate or use negative samples during training,
set the value to 0.

Optional

Valid values: 0 ≤ integer

Default value: 0 (off)

num_classes The number of classes for classification training. Amazon
SageMaker ignores this hyperparameter for regression problems.

Optional

Valid values: 2 ≤ integer ≤ 30

Default value: 2

192

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

optimizer The optimizer type.

Optional

Valid values: adadelta, adagrad, adam, sgd, or rmsprop.

• adadelta: A per-dimension learning rate method for gradient
descent

• adagrad: The adaptive gradient algorithm
• adam: The adaptive moment estimation algorithm
• sgd: Stochastic gradient descent
• rmsprop: Root mean square propagation

Default value: adam

output_layer The type of output layer where you specify that the task is
regression or classification.

Optional

Valid values: softmax or mean_squared_error

• softmax: The Softmax function used for classification.
• mean_squared_error: The MSE used for regression.

Default value: softmax

tied_token_embedding_weightWhether to use a shared embedding layer for both encoders. If
the inputs to both encoders use the same token-level units, use
a shared token embedding layer. For example, for a collection of
documents, if one encoder encodes sentences and another encodes
whole documents, you can use a shared token embedding layer.
That's because both sentences and documents are composed of
word tokens from the same vocabulary.

Optional

Valid values: True or False

Default value: False

193

https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1212.5701.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Mean_squared_error

Amazon SageMaker Developer Guide
Object2Vec

Parameter Name Description

token_embedding_storage_typeThe mode of gradient update used during training: when the dense
mode is used, the optimizer calculates the full gradient matrix for
the token embedding layer even if most rows of the gradient are
zero-valued. When sparse mode is used, the optimizer only stores
rows of the gradient that are actually being used in the mini-batch.
If you want the algorithm to perform lazy gradient updates, which
calculate the gradients only in the non-zero rows and which speed
up training, specify row_sparse. Setting the value to row_sparse
constrains the values available for other hyperparameters, as
follows:

• The optimizer hyperparameter must be set to adam,
adagrad, or sgd. Otherwise, the algorithm throws a
CustomerValueError.

• The algorithm automatically disables bucketing, setting the
bucket_width hyperparameter to 0.

Optional

Valid values: dense or row_sparse

Default value: dense

weight_decay The weight decay parameter used for optimization.

Optional

Valid values: 0 ≤ float ≤ 10000

Default value: 0 (no decay)

Tune an Object2Vec Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. For the objective metric, you
use one of the metrics that the algorithm computes. Automatic model tuning searches the chosen
hyperparameters to find the combination of values that result in the model that optimizes the objective
metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the Object2Vec Algorithm

The Object2Vec algorithm has both classification and regression metrics. The output_layer type
determines which metric you can use for automatic model tuning.

Regressor Metrics Computed by the Object2Vec Algorithm

The algorithm reports a mean squared error regressor metric, which is computed during testing and
validation. When tuning the model for regression tasks, choose this metric as the objective.

194

Amazon SageMaker Developer Guide
Object2Vec

Metric Name Description Optimization Direction

test:mean_squared_errorRoot Mean Square Error Minimize

validation:mean_squared_errorRoot Mean Square Error Minimize

Classification Metrics Computed by the Object2Vec Algorithm

The Object2Vec algorithm reports accuracy and cross-entropy classification metrics, which are computed
during test and validation. When tuning the model for classification tasks, choose one of these as the
objective.

Metric Name Description Optimization Direction

test:accuracy Accuracy Maximize

test:cross_entropy Cross-entropy Minimize

validation:accuracy Accuracy Maximize

validation:cross_entropyCross-entropy Minimize

Tunable Object2Vec Hyperparameters

You can tune the following hyperparameters for the Object2Vec algorithm.

Hyperparameter
Name

Hyperparameter Type Recommended
Ranges and Values

dropout ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

early_stopping_patienceIntegerParameterRange MinValue: 1,
MaxValue: 5

early_stopping_toleranceContinuousParameterRange MinValue: 0.001,
MaxValue: 0.1

enc_dim IntegerParameterRange MinValue: 4,
MaxValue: 4096

enc0_cnn_filter_widthIntegerParameterRange MinValue: 1,
MaxValue: 5

enc0_layers IntegerParameterRange MinValue: 1,
MaxValue: 4

enc0_token_embedding_dimIntegerParameterRange MinValue: 5,
MaxValue: 300

enc1_cnn_filter_widthIntegerParameterRange MinValue: 1,
MaxValue: 5

enc1_layers IntegerParameterRange MinValue: 1,
MaxValue: 4

195

Amazon SageMaker Developer Guide
Object2Vec

Hyperparameter
Name

Hyperparameter Type Recommended
Ranges and Values

enc1_token_embedding_dimIntegerParameterRange MinValue: 5,
MaxValue: 300

epochs IntegerParameterRange MinValue: 4,
MaxValue: 20

learning_rate ContinuousParameterRange MinValue: 1e-6,
MaxValue: 1.0

mini_batch_size IntegerParameterRange MinValue: 1,
MaxValue: 8192

mlp_activation CategoricalParameterRanges [tanh, relu,
linear]

mlp_dim IntegerParameterRange MinValue: 16,
MaxValue: 1024

mlp_layers IntegerParameterRange MinValue: 1,
MaxValue: 4

optimizer CategoricalParameterRanges [adagrad, adam,
rmsprop, sgd,
adadelta]

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

Data Formats for Object2Vec Training

Input: JSON Lines Request Format

Content-type: application/jsonlines

{"label": 0, "in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15,
 69, 821, 4], "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]}
{"label": 1, "in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9,
 107, 4], "in1": [22, 32, 13, 25, 1016, 573, 3252, 4]}
{"label": 1, "in0": [774, 14, 21, 206], "in1": [21, 366, 125]}

The “in0” and “in1” are the inputs for encoder0 and encoder1, respectively. The same format is valid for
both classification and regression problems. For regression, the field "label" can accept real valued
inputs.

Data Formats for Object2Vec Inference

GPU optimization: Classification or Regression

Due to GPU memory scarcity, the INFERENCE_PREFERRED_MODE environment variable can be specified
to optimize on whether the classification/regression or the the section called “Output: Encoder
Embeddings” (p. 198) inference network is loaded into GPU. If the majority of your inference is for
classification or regression, specify INFERENCE_PREFERRED_MODE=classification. The following is
a Batch Transform example of using 4 instances of p3.2xlarge that optimizes for classification/regression
inference:

196

Amazon SageMaker Developer Guide
Object2Vec

transformer = o2v.transformer(instance_count=4,
 instance_type="ml.p2.xlarge",
 max_concurrent_transforms=2,
 max_payload=1, # 1MB
 strategy='MultiRecord',
 env={'INFERENCE_PREFERRED_MODE': 'classification'}, # only
 useful with GPU
 output_path=output_s3_path)

Input: Classification or Regression Request Format

Content-type: application/json

{
 "instances" : [
 {"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821,
 4], "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]},
 {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4],
 "in1": [22, 32, 13, 25, 1016, 573, 3252, 4]},
 {"in0": [774, 14, 21, 206], "in1": [21, 366, 125]}
]
}

Content-type: application/jsonlines

{"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821, 4],
 "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]}
{"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4], "in1":
 [22, 32, 13, 25, 1016, 573, 3252, 4]}
{"in0": [774, 14, 21, 206], "in1": [21, 366, 125]}

For classification problems, the length of the scores vector corresponds to num_classes. For regression
problems, the length is 1.

Ouput: Classification or Regression Response Format

Accept: application/json

{
 "predictions": [
 {
 "scores": [
 0.6533935070037842,
 0.07582679390907288,
 0.2707797586917877
]
 },
 {
 "scores": [
 0.026291321963071823,
 0.6577019095420837,
 0.31600672006607056
]
 }
]
}

Accept: application/jsonlines

{"scores":[0.195667684078216,0.395351558923721,0.408980727195739]}

197

Amazon SageMaker Developer Guide
Object2Vec

{"scores":[0.251988261938095,0.258233487606048,0.489778339862823]}
{"scores":[0.280087798833847,0.368331134319305,0.351581096649169]}

In both the classification and regression formats, the scores apply to individual labels.

Encoder Embeddings for Object2Vec

GPU optimization: Encoder Embeddings

Due to GPU memory scarcity, the INFERENCE_PREFERRED_MODE environment variable can be specified
to optimize on whether the the section called “Inference Formats: Scoring” (p. 196) or the encoder
embedding inference network is loaded into GPU. If the majority of your inference is for encoder
embeddings, specify INFERENCE_PREFERRED_MODE=embedding. The following is a Batch Transform
example of using 4 instances of p3.2xlarge that optimizes for encoder embedding inference:

transformer = o2v.transformer(instance_count=4,
 instance_type="ml.p2.xlarge",
 max_concurrent_transforms=2,
 max_payload=1, # 1MB
 strategy='MultiRecord',
 env={'INFERENCE_PREFERRED_MODE': 'embedding'}, # only useful
 with GPU
 output_path=output_s3_path)

Input: Encoder Embeddings

Content-type: application/json

{
 "instances" : [
 {"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821,
 4]},
 {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4]},
 {"in0": [774, 14, 21, 206]}
]
}

Content-type: application/jsonlines

{"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821, 4]}
{"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4]}
{"in0": [774, 14, 21, 206]}

In both of these formats, you specify only one input type: “in0” or “in1.” The inference service then
invokes the corresponding encoder and outputs the embeddings for each of the instances.

Output: Encoder Embeddings

Content-type: application/json

{
 "predictions": [
 {"embeddings":
[0.057368703186511,0.030703511089086,0.099890425801277,0.063688032329082,0.026327300816774,0.003637571120634,0.021305780857801,0.004316598642617,0.0,0.003397724591195,0.0,0.000378780066967,0.0,0.0,0.0,0.007419463712722]},
 {"embeddings":
[0.150190666317939,0.05145975202322,0.098204270005226,0.064249359071254,0.056249320507049,0.01513972133398,0.047553978860378,0.0,0.0,0.011533712036907,0.011472506448626,0.010696629062294,0.0,0.0,0.0,0.008508535102009]}
]

198

Amazon SageMaker Developer Guide
Object Detection Algorithm

}

Content-type: application/jsonlines

{"embeddings":
[0.057368703186511,0.030703511089086,0.099890425801277,0.063688032329082,0.026327300816774,0.003637571120634,0.021305780857801,0.004316598642617,0.0,0.003397724591195,0.0,0.000378780066967,0.0,0.0,0.0,0.007419463712722]}
{"embeddings":
[0.150190666317939,0.05145975202322,0.098204270005226,0.064249359071254,0.056249320507049,0.01513972133398,0.047553978860378,0.0,0.0,0.011533712036907,0.011472506448626,0.010696629062294,0.0,0.0,0.0,0.008508535102009]}

The vector length of the embeddings output by the inference service is equal to the value of one of
the following hyperparameters that you specify at training time: enc0_token_embedding_dim,
enc1_token_embedding_dim, or enc_dim.

Object Detection Algorithm
The Amazon SageMaker Object Detection algorithm detects and classifies objects in images using a
single deep neural network. It is a supervised learning algorithm that takes images as input and identifies
all instances of objects within the image scene. The object is categorized into one of the classes in a
specified collection with a confidence score that it belongs to the class. Its location and scale in the
image are indicated by a rectangular bounding box. It uses the Single Shot multibox Detector (SSD)
framework and supports two base networks: VGG and ResNet. The network can be trained from scratch,
or trained with models that have been pre-trained on the ImageNet dataset.

Topics
• Input/Output Interface for the Object Detection Algorithm (p. 199)
• EC2 Instance Recommendation for the Object Detection Algorithm (p. 214)
• Object Detection Sample Notebooks (p. 214)
• How Object Detection Works (p. 214)
• Object Detection Hyperparameters (p. 215)
• Tune an Object Detection Model (p. 220)
• Object Detection Request and Response Formats (p. 221)

Input/Output Interface for the Object Detection Algorithm
The Amazon SageMaker Object Detection algorithm supports both RecordIO (application/x-
recordio) and image (image/png, image/jpeg, and application/x-image) content types
for training in file mode and supports RecordIO (application/x-recordio) for training in pipe
mode. However you can also train in pipe mode using the image files (image/png, image/jpeg, and
application/x-image), without creating RecordIO files, by using the augmented manifest format. The
recommended input format for the Amazon SageMaker object detection algorithms is Apache MXNet
RecordIO. However, you can also use raw images in .jpg or .png format. The algorithm supports only
application/x-image for inference.

Note
To maintain better interoperability with existing deep learning frameworks, this differs from the
protobuf data formats commonly used by other Amazon SageMaker algorithms.

See the Object Detection Sample Notebooks (p. 214) for more details on data formats.

Train with the RecordIO Format

If you use the RecordIO format for training, specify both train and validation channels as values for
the InputDataConfig parameter of the CreateTrainingJob (p. 667) request. Specify one RecordIO
(.rec) file in the train channel and one RecordIO file in the validation channel. Set the content type for

199

https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1603.05027.pdf
http://www.image-net.org/
https://mxnet.incubator.apache.org/architecture/note_data_loading.html
https://mxnet.incubator.apache.org/architecture/note_data_loading.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

both channels to application/x-recordio. An example of how to generate RecordIO file can be
found in the object detection sample notebook. You can also use tools from the MXNet example to
generate RecordIO files for popular datasets like the PASCAL Visual Object Classes and Common Objects
in Context (COCO).

Train with the Image Format

If you use the image format for training, specify train, validation, train_annotation,
and validation_annotation channels as values for the InputDataConfig parameter of
CreateTrainingJob (p. 667) request. Specify the individual image data (.jpg or .png) files for the
train and validation channels. For annotation data, you can use the JSON format. Specify the
corresponding .json files in the train_annotation and validation_annotation channels. Set the
content type for all four channels to image/png or image/jpeg based on the image type. You can also
use the content type application/x-image when your dataset contains both .jpg and .png images.
The following is an example of a .json file.

{
 "file": "your_image_directory/sample_image1.jpg",
 "image_size": [
 {
 "width": 500,
 "height": 400,
 "depth": 3
 }
],
 "annotations": [
 {
 "class_id": 0,
 "left": 111,
 "top": 134,
 "width": 61,
 "height": 128
 },
 {
 "class_id": 0,
 "left": 161,
 "top": 250,
 "width": 79,
 "height": 143
 },
 {
 "class_id": 1,
 "left": 101,
 "top": 185,
 "width": 42,
 "height": 130
 }
],
 "categories": [
 {
 "class_id": 0,
 "name": "dog"
 },
 {
 "class_id": 1,
 "name": "cat"
 }
]
}

Each image needs a .json file for annotation, and the .json file should have the same name as the
corresponding image. The name of above .json file should be "sample_image1.json". There are four

200

https://github.com/apache/incubator-mxnet/tree/master/example/ssd
http://host.robots.ox.ac.uk/pascal/VOC/
http://cocodataset.org/#home
http://cocodataset.org/#home

Amazon SageMaker Developer Guide
Object Detection Algorithm

properties in the annotation .json file. The property "file" specifies the relative path of the image file.
For example, if your training images and corresponding .json files are stored in s3://your_bucket/
train/sample_image and s3://your_bucket/train_annotation, specify the path for your train and
train_annotation channels as s3://your_bucket/train and s3://your_bucket/train_annotation,
respectively.

In the .json file, the relative path for an image named sample_image1.jpg should be sample_image/
sample_image1.jpg. The "image_size" property specifies the overall image dimensions. The
SageMaker object detection algorithm currently only supports 3-channel images. The "annotations"
property specifies the categories and bounding boxes for objects within the image. Each object is
annotated by a "class_id" index and by four bounding box coordinates ("left", "top", "width",
"height"). The "left" (x-coordinate) and "top" (y-coordinate) values represent the upper-left corner
of the bounding box. The "width" (x-coordinate) and "height" (y-coordinate) values represent the
dimensions of the bounding box. The origin (0, 0) is the upper-left corner of the entire image. If you
have multiple objects within one image, all the annotations should be included in a single .json file. The
"categories" property stores the mapping between the class index and class name. The class indices
should be numbered successively and the numbering should start with 0. The "categories" property is
optional for the annotation .json file

Train with Augmented Manifest Image Format

The augmented manifest format enables you to do training in pipe mode using image files without
needing to create RecordIO files. You need to specify both train and validation channels as values for the
InputDataConfig parameter of the

Starts a model training job. After training completes, Amazon SageMaker saves the resulting
model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the
resulting model artifacts as part of the model. You can also use the artifacts in a machine
learning service other than Amazon SageMaker, provided that you know how to use them for
inferences.

In the request body, you provide the following:

• AlgorithmSpecification - Identifies the training algorithm to use.
• HyperParameters - Specify these algorithm-specific parameters to enable the estimation

of model parameters during training. Hyperparameters can be tuned to optimize this
learning process. For a list of hyperparameters for each training algorithm provided by
Amazon SageMaker, see Algorithms.

• InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx
location where it is stored.

• OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon
SageMaker to save the results of model training.

• ResourceConfig - Identifies the resources, ML compute instances, and ML storage
volumes to deploy for model training. In distributed training, you specify more than one
instance.

• EnableManagedSpotTraining - Optimize the cost of training machine learning models
by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed
Spot Training.

• RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to
perform tasks on your behalf during model training. You must grant this role the necessary
permissions so that Amazon SageMaker can successfully complete model training.

• StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a
time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing
to to wait for a managed spot training job to complete.

201

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

For more information about Amazon SageMaker, see How It Works.

Request Syntax

{

 "AlgorithmSpecification": {

 "AlgorithmName": "string",

 "MetricDefinitions": [

 {

 "Name": "string",

 "Regex": "string"

 }

],

 "TrainingImage": "string",

 "TrainingInputMode": "string"

 },

 "CheckpointConfig": {

 "LocalPath": "string",

 "S3Uri": "string"

 },

 "EnableInterContainerTrafficEncryption": boolean,

 "EnableManagedSpotTraining": boolean,

 "EnableNetworkIsolation": boolean,

 "HyperParameters": {

 "string" : "string"

 },

 "InputDataConfig": [

 {

 "ChannelName": "string",

 "CompressionType": "string",

 "ContentType": "string",

 "DataSource": {

 "FileSystemDataSource": {

 "DirectoryPath": "string",

 "FileSystemAccessMode": "string",

 "FileSystemId": "string",

 "FileSystemType": "string"

 },

 "S3DataSource": {

 "AttributeNames": ["string"],

 "S3DataDistributionType": "string",

 "S3DataType": "string",

 "S3Uri": "string"

 }

 },

 "InputMode": "string",

 "RecordWrapperType": "string",

 "ShuffleConfig": {

 "Seed": number

 }

 }

],

 "OutputDataConfig": {

 "KmsKeyId": "string",

 "S3OutputPath": "string"

 },

 "ResourceConfig": {

 "InstanceCount": number,

 "InstanceType": "string",

 "VolumeKmsKeyId": "string",

 "VolumeSizeInGB": number

 },

 "RoleArn": "string",

 "StoppingCondition": {

 "MaxRuntimeInSeconds": number,

202

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

 "MaxWaitTimeInSeconds": number

 },

 "Tags": [

 {

 "Key": "string",

 "Value": "string"

 }

],

 "TrainingJobName": "string",

 "VpcConfig": {

 "SecurityGroupIds": ["string"],

 "Subnets": ["string"]

 }

}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AlgorithmSpecification (p. 667)

The registry path of the Docker image that contains the training algorithm and
algorithm-specific metadata, including the input mode. For more information
about algorithms provided by Amazon SageMaker, see Algorithms. For information
about providing your own algorithms, see Using Your Own Algorithms with Amazon
SageMaker.

Type: AlgorithmSpecification (p. 863) object

Required: Yes
CheckpointConfig (p. 667)

Contains information about the output location for managed spot training checkpoint
data.

Type: CheckpointConfig (p. 880) object

Required: No
EnableInterContainerTrafficEncryption (p. 667)

To encrypt all communications between ML compute instances in distributed training,
choose True. Encryption provides greater security for distributed training, but training
might take longer. How long it takes depends on the amount of communication between
compute instances, especially if you use a deep learning algorithm in distributed training.
For more information, see Protect Communications Between ML Compute Instances in a
Distributed Training Job.

Type: Boolean

Required: No
EnableManagedSpotTraining (p. 667)

To train models using managed spot training, choose True. Managed spot training
provides a fully managed and scalable infrastructure for training machine learning
models. this option is useful when training jobs can be interrupted and when there is
flexibility when the training job is run.

The complete and intermediate results of jobs are stored in an Amazon S3 bucket,
and can be used as a starting point to train models incrementally. Amazon SageMaker

203

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

provides metrics and logs in CloudWatch. They can be used to see when managed spot
training jobs are running, interrupted, resumed, or completed.

Type: Boolean

Required: No
EnableNetworkIsolation (p. 667)

Isolates the training container. No inbound or outbound network calls can be made,
except for calls between peers within a training cluster for distributed training. If you
enable network isolation for training jobs that are configured to use a VPC, Amazon
SageMaker downloads and uploads customer data and model artifacts through the
specified VPC, but the training container does not have network access.

Note
The Semantic Segmentation built-in algorithm does not support network
isolation.

Type: Boolean

Required: No
HyperParameters (p. 667)

Algorithm-specific parameters that influence the quality of the model. You set
hyperparameters before you start the learning process. For a list of hyperparameters for
each training algorithm provided by Amazon SageMaker, see Algorithms.

You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-
value pair. Each key and value is limited to 256 characters, as specified by the Length
Constraint.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
InputDataConfig (p. 667)

An array of Channel objects. Each channel is a named input source. InputDataConfig
describes the input data and its location.

Algorithms can accept input data from one or more channels. For example, an algorithm
might have two channels of input data, training_data and validation_data. The
configuration for each channel provides the S3, EFS, or FSx location where the input data
is stored. It also provides information about the stored data: the MIME type, compression
method, and whether the data is wrapped in RecordIO format.

Depending on the input mode that the algorithm supports, Amazon SageMaker either
copies input data files from an S3 bucket to a local directory in the Docker container, or
makes it available as input streams. For example, if you specify an EFS location, input
data files will be made available as input streams. They do not need to be downloaded.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

204

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

Required: No
OutputDataConfig (p. 667)

Specifies the path to the S3 location where you want to store model artifacts. Amazon
SageMaker creates subfolders for the artifacts.

Type: OutputDataConfig (p. 976) object

Required: Yes
ResourceConfig (p. 667)

The resources, including the ML compute instances and ML storage volumes, to use for
model training.

ML storage volumes store model artifacts and incremental states. Training algorithms
might also use ML storage volumes for scratch space. If you want Amazon SageMaker
to use the ML storage volume to store the training data, choose File as the
TrainingInputMode in the algorithm specification. For distributed training algorithms,
specify an instance count greater than 1.

Type: ResourceConfig (p. 991) object

Required: Yes
RoleArn (p. 667)

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to
perform tasks on your behalf.

During model training, Amazon SageMaker needs your permission to read input data
from an S3 bucket, download a Docker image that contains training code, write model
artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics
to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For
more information, see Amazon SageMaker Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must
have the iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StoppingCondition (p. 667)

Specifies a limit to how long a model training job can run. When the job reaches the time
limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays
job termination for 120 seconds. Algorithms can use this 120-second window to save the
model artifacts, so the results of training are not lost.

Type: StoppingCondition (p. 1004) object

Required: Yes
Tags (p. 667)

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the
AWS Billing and Cost Management User Guide.

205

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Object Detection Algorithm

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TrainingJobName (p. 667)

The name of the training job. The name must be unique within an AWS Region in an AWS
account.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
VpcConfig (p. 667)

A VpcConfig (p. 1039) object that specifies the VPC that you want your training job to
connect to. Control access to and from your training container by configuring the VPC.
For more information, see Protect Training Jobs by Using an Amazon Virtual Private
Cloud.

Type: VpcConfig (p. 1039) object

Required: No
Response Syntax

{

 "TrainingJobArn": "string"

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TrainingJobArn (p. 672)

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-
job/.*

Errors

For information about the errors that are common to all actions, see Common
Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.206

https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

HTTP Status Code: 400

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have
too many training jobs created.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

 (p.) request. While using the format, an S3 manifest file needs to be generated that contains
the list of images and their corresponding annotations. The manifest file format should be in JSON
Lines format in which each line represents one sample. The images are specified using the 'source-
ref' tag that points to the S3 location of the image. The annotations are provided under the
"AttributeNames" parameter value as specified in the

Starts a model training job. After training completes, Amazon SageMaker saves the resulting
model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the
resulting model artifacts as part of the model. You can also use the artifacts in a machine
learning service other than Amazon SageMaker, provided that you know how to use them for
inferences.

In the request body, you provide the following:

• AlgorithmSpecification - Identifies the training algorithm to use.
• HyperParameters - Specify these algorithm-specific parameters to enable the estimation

of model parameters during training. Hyperparameters can be tuned to optimize this
learning process. For a list of hyperparameters for each training algorithm provided by
Amazon SageMaker, see Algorithms.

• InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx
location where it is stored.

• OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon
SageMaker to save the results of model training.

• ResourceConfig - Identifies the resources, ML compute instances, and ML storage
volumes to deploy for model training. In distributed training, you specify more than one
instance.

207

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateTrainingJob
http://jsonlines.org/
http://jsonlines.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

• EnableManagedSpotTraining - Optimize the cost of training machine learning models
by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed
Spot Training.

• RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to
perform tasks on your behalf during model training. You must grant this role the necessary
permissions so that Amazon SageMaker can successfully complete model training.

• StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a
time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing
to to wait for a managed spot training job to complete.

For more information about Amazon SageMaker, see How It Works.

Request Syntax

{

 "AlgorithmSpecification": {

 "AlgorithmName": "string",

 "MetricDefinitions": [

 {

 "Name": "string",

 "Regex": "string"

 }

],

 "TrainingImage": "string",

 "TrainingInputMode": "string"

 },

 "CheckpointConfig": {

 "LocalPath": "string",

 "S3Uri": "string"

 },

 "EnableInterContainerTrafficEncryption": boolean,

 "EnableManagedSpotTraining": boolean,

 "EnableNetworkIsolation": boolean,

 "HyperParameters": {

 "string" : "string"

 },

 "InputDataConfig": [

 {

 "ChannelName": "string",

 "CompressionType": "string",

 "ContentType": "string",

 "DataSource": {

 "FileSystemDataSource": {

 "DirectoryPath": "string",

 "FileSystemAccessMode": "string",

 "FileSystemId": "string",

 "FileSystemType": "string"

 },

 "S3DataSource": {

 "AttributeNames": ["string"],

 "S3DataDistributionType": "string",

 "S3DataType": "string",

 "S3Uri": "string"

 }

 },

 "InputMode": "string",

 "RecordWrapperType": "string",

 "ShuffleConfig": {

 "Seed": number

 }

 }

],

208

https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

 "OutputDataConfig": {

 "KmsKeyId": "string",

 "S3OutputPath": "string"

 },

 "ResourceConfig": {

 "InstanceCount": number,

 "InstanceType": "string",

 "VolumeKmsKeyId": "string",

 "VolumeSizeInGB": number

 },

 "RoleArn": "string",

 "StoppingCondition": {

 "MaxRuntimeInSeconds": number,

 "MaxWaitTimeInSeconds": number

 },

 "Tags": [

 {

 "Key": "string",

 "Value": "string"

 }

],

 "TrainingJobName": "string",

 "VpcConfig": {

 "SecurityGroupIds": ["string"],

 "Subnets": ["string"]

 }

}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AlgorithmSpecification (p. 667)

The registry path of the Docker image that contains the training algorithm and
algorithm-specific metadata, including the input mode. For more information
about algorithms provided by Amazon SageMaker, see Algorithms. For information
about providing your own algorithms, see Using Your Own Algorithms with Amazon
SageMaker.

Type: AlgorithmSpecification (p. 863) object

Required: Yes
CheckpointConfig (p. 667)

Contains information about the output location for managed spot training checkpoint
data.

Type: CheckpointConfig (p. 880) object

Required: No
EnableInterContainerTrafficEncryption (p. 667)

To encrypt all communications between ML compute instances in distributed training,
choose True. Encryption provides greater security for distributed training, but training
might take longer. How long it takes depends on the amount of communication between
compute instances, especially if you use a deep learning algorithm in distributed training.
For more information, see Protect Communications Between ML Compute Instances in a
Distributed Training Job.

209

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

Type: Boolean

Required: No
EnableManagedSpotTraining (p. 667)

To train models using managed spot training, choose True. Managed spot training
provides a fully managed and scalable infrastructure for training machine learning
models. this option is useful when training jobs can be interrupted and when there is
flexibility when the training job is run.

The complete and intermediate results of jobs are stored in an Amazon S3 bucket,
and can be used as a starting point to train models incrementally. Amazon SageMaker
provides metrics and logs in CloudWatch. They can be used to see when managed spot
training jobs are running, interrupted, resumed, or completed.

Type: Boolean

Required: No
EnableNetworkIsolation (p. 667)

Isolates the training container. No inbound or outbound network calls can be made,
except for calls between peers within a training cluster for distributed training. If you
enable network isolation for training jobs that are configured to use a VPC, Amazon
SageMaker downloads and uploads customer data and model artifacts through the
specified VPC, but the training container does not have network access.

Note
The Semantic Segmentation built-in algorithm does not support network
isolation.

Type: Boolean

Required: No
HyperParameters (p. 667)

Algorithm-specific parameters that influence the quality of the model. You set
hyperparameters before you start the learning process. For a list of hyperparameters for
each training algorithm provided by Amazon SageMaker, see Algorithms.

You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-
value pair. Each key and value is limited to 256 characters, as specified by the Length
Constraint.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
InputDataConfig (p. 667)

An array of Channel objects. Each channel is a named input source. InputDataConfig
describes the input data and its location.

Algorithms can accept input data from one or more channels. For example, an algorithm
might have two channels of input data, training_data and validation_data. The

210

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

configuration for each channel provides the S3, EFS, or FSx location where the input data
is stored. It also provides information about the stored data: the MIME type, compression
method, and whether the data is wrapped in RecordIO format.

Depending on the input mode that the algorithm supports, Amazon SageMaker either
copies input data files from an S3 bucket to a local directory in the Docker container, or
makes it available as input streams. For example, if you specify an EFS location, input
data files will be made available as input streams. They do not need to be downloaded.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
OutputDataConfig (p. 667)

Specifies the path to the S3 location where you want to store model artifacts. Amazon
SageMaker creates subfolders for the artifacts.

Type: OutputDataConfig (p. 976) object

Required: Yes
ResourceConfig (p. 667)

The resources, including the ML compute instances and ML storage volumes, to use for
model training.

ML storage volumes store model artifacts and incremental states. Training algorithms
might also use ML storage volumes for scratch space. If you want Amazon SageMaker
to use the ML storage volume to store the training data, choose File as the
TrainingInputMode in the algorithm specification. For distributed training algorithms,
specify an instance count greater than 1.

Type: ResourceConfig (p. 991) object

Required: Yes
RoleArn (p. 667)

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to
perform tasks on your behalf.

During model training, Amazon SageMaker needs your permission to read input data
from an S3 bucket, download a Docker image that contains training code, write model
artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics
to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For
more information, see Amazon SageMaker Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must
have the iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StoppingCondition (p. 667)

Specifies a limit to how long a model training job can run. When the job reaches the time
limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

211

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays

job termination for 120 seconds. Algorithms can use this 120-second window to save the
model artifacts, so the results of training are not lost.

Type: StoppingCondition (p. 1004) object

Required: Yes
Tags (p. 667)

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the
AWS Billing and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TrainingJobName (p. 667)

The name of the training job. The name must be unique within an AWS Region in an AWS
account.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
VpcConfig (p. 667)

A VpcConfig (p. 1039) object that specifies the VPC that you want your training job to
connect to. Control access to and from your training container by configuring the VPC.
For more information, see Protect Training Jobs by Using an Amazon Virtual Private
Cloud.

Type: VpcConfig (p. 1039) object

Required: No
Response Syntax

{

 "TrainingJobArn": "string"

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TrainingJobArn (p. 672)

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-
job/.*

212

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

Errors

For information about the errors that are common to all actions, see Common
Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have
too many training jobs created.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

 (p.) request. It can also contain additional metadata under the metadata tag, but these are
ignored by the algorithm. In the following example, the "AttributeNames are contained in the list
["source-ref", "bounding-box"]:

{"source-ref": "s3://your_bucket/image1.jpg", "bounding-box":{"image_size":[{ "width":
 500, "height": 400, "depth":3}], "annotations":[{"class_id": 0, "left": 111, "top":
 134, "width": 61, "height": 128}, {"class_id": 5, "left": 161, "top": 250, "width": 80,
 "height": 50}]}, "bounding-box-metadata":{"class-map":{"0": "dog", "5": "horse"}, "type":
 "groundtruth/object_detection"}}
{"source-ref": "s3://your_bucket/image2.jpg", "bounding-box":{"image_size":[{ "width":
 400, "height": 300, "depth":3}], "annotations":[{"class_id": 1, "left": 100, "top": 120,
 "width": 43, "height": 78}]}, "bounding-box-metadata":{"class-map":{"1": "cat"}, "type":
 "groundtruth/object_detection"}}

The order of "AttributeNames" in the input files matters when training the Object Detection
algorithm. It accepts piped data in a specific order, with image first, followed by annotations. So the
"AttributeNames" in this example are provided with "source-ref" first, followed by "bounding-box".
When using Object Detection with Augmented Manifest, the value of parameter RecordWrapperType
must be set as "RecordIO".

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs with
an Augmented Manifest File (p. 308).

213

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateTrainingJob

Amazon SageMaker Developer Guide
Object Detection Algorithm

Incremental Training

You can also seed the training of a new model with the artifacts from a model that you trained
previously with Amazon SageMaker. Incremental training saves training time when you want to train a
new model with the same or similar data. Amazon SageMaker object detection models can be seeded
only with another built-in object detection model trained in Amazon SageMaker.

To use a pretrained model, in the CreateTrainingJob (p. 667) request, specify the ChannelName
as "model" in the InputDataConfig parameter. Set the ContentType for the model channel to
application/x-sagemaker-model. The input hyperparameters of both the new model and
the pretrained model that you upload to the model channel must have the same settings for the
base_network and num_classes input parameters. These parameters define the network architecture.
For the pretrained model file, use the compressed model artifacts (in .tar.gz format) output by Amazon
SageMaker. You can use either RecordIO or image formats for input data.

For a sample notebook that shows how to use incremental training with the Amazon SageMaker object
detection algorithm, see Amazon SageMaker Object Detection Incremental Training sample notebook.
For more information on incremental training and for instructions on how to use it, see Incremental
Training in Amazon SageMaker (p. 282).

EC2 Instance Recommendation for the Object Detection
Algorithm
For object detection, we support the following GPU instances for training: ml.p2.xlarge,
ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge and ml.p3.16xlarge. We
recommend using GPU instances with more memory for training with large batch sizes. You can also
run the algorithm on multi-GPU and multi-machine settings for distributed training. However, both
CPU (such as C5 and M5) and GPU (such as P2 and P3) instances can be used for the inference. All the
supported instance types for inference are itemized on Amazon SageMaker ML Instance Types.

Object Detection Sample Notebooks
For a sample notebook that shows how to use the Amazon SageMaker Object Detection algorithm to
train and host a model on the COCO dataset using the Single Shot multibox Detector algorithm, see
Object Detection using the Image and JSON format. For instructions how to create and access Jupyter
notebook instances that you can use to run the example in Amazon SageMaker, see Use Notebook
Instances (p. 36). Once you have created a notebook instance and opened it, select the SageMaker
Examples tab to see a list of all the Amazon SageMaker samples. The topic modeling example notebooks
using the NTM algorithms are located in the Introduction to Amazon algorithms section. To open a
notebook, click on its Use tab and select Create copy.

How Object Detection Works
The object detection algorithm identifies and locates all instances of objects in an image from a known
collection of object categories. The algorithm takes an image as input and outputs the category that
the object belongs to, along with a confidence score that it belongs to the category. The algorithm
also predicts the object's location and scale with a rectangular bounding box. Amazon SageMaker
Object Detection uses the Single Shot multibox Detector (SSD) algorithm that takes a convolutional
neural network (CNN) pretrained for classification task as the base network. SSD uses the output of
intermediate layers as features for detection.

Various CNNs such as VGG and ResNet have achieved great performance on the image classification task.
Object detection in Amazon SageMaker supports both VGG-16 and ResNet-50 as a base network for SSD.
The algorithm can be trained in full training mode or in transfer learning mode. In full training mode, the
base network is initialized with random weights and then trained on user data. In transfer learning mode,
the base network weights are loaded from pretrained models.

214

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object_detection_pascalvoc_coco/object_detection_incremental_training.ipynb
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object_detection_pascalvoc_coco/object_detection_image_json_format.ipynb
https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1603.05027.pdf

Amazon SageMaker Developer Guide
Object Detection Algorithm

The object detection algorithm uses standard data augmentation operations, such as flip, rescale, and
jitter, on the fly internally to help avoid overfitting.

Object Detection Hyperparameters

In the CreateTrainingJob (p. 667) request, you specify the training algorithm that you want to use. You
can also specify algorithm-specific hyperparameters that are used to help estimate the parameters of
the model from a training dataset. The following table lists the hyperparameters provided by Amazon
SageMaker for training the object detection algorithm. For more information about how object training
works, see How Object Detection Works (p. 214).

Parameter Name Description

num_classes The number of output classes. This parameter defines the
dimensions of the network output and is typically set to the
number of classes in the dataset.

Required

Valid values: positive integer

num_training_samples The number of training examples in the input dataset.

Note
If there is a mismatch between this value and the number
of samples in the training set, then the behavior of the
lr_scheduler_step parameter will be undefined and
distributed training accuracy may be affected.

Required

Valid values: positive integer

base_network The base network architecture to use.

Optional

Valid values: 'vgg-16' or 'resnet-50'

Default value: 'vgg-16'

early_stopping True to use early stopping logic during training. False not to use
it.

Optional

Valid values: True or False

Default value: False

early_stopping_min_epochs The minimum number of epochs that must be run before
the early stopping logic can be invoked. It is used only when
early_stopping = True.

Optional

Valid values: positive integer

Default value: 10

215

Amazon SageMaker Developer Guide
Object Detection Algorithm

Parameter Name Description

early_stopping_patience The number of epochs to wait before ending training if no
improvement, as defined by the early_stopping_tolerance
hyperparameter, is made in the relevant metric. It is used only when
early_stopping = True.

Optional

Valid values: positive integer

Default value: 5

early_stopping_tolerance The tolerance value that the relative improvement in
validation:mAP, the mean average precision (mAP), is required
to exceed to avoid early stopping. If the ratio of the change
in the mAP divided by the previous best mAP is smaller than
the early_stopping_tolerance value set, early stopping
considers that there is no improvement. It is used only when
early_stopping = True.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.0

image_shape The image size for input images. We rescale the input image to a
square image with this size. We recommend using 300 and 512 for
better performance.

Optional

Valid values: positive integer ≥300

Default: 300

epochs The number of training epochs.

Optional

Valid values: positive integer

Default: 30

216

Amazon SageMaker Developer Guide
Object Detection Algorithm

Parameter Name Description

freeze_layer_pattern The regular expression (regex) for freezing layers in the base
network. For example, if we set freeze_layer_pattern =
"^(conv1_|conv2_).*", then any layers with a name that
contains "conv1_" or "conv2_" are frozen, which means that
the weights for these layers are not updated during training. The
layer names can be found in the network symbol files vgg16-
symbol.json and resnet-50-symbol.json. Freezing a layer means that
its weights can not be modified further. This can reduce training
time significantly in exchange for modest losses in accuracy. This
technique is commonly used in transfer learning where the lower
layers in the base network do not need to be retrained.

Optional

Valid values: string

Default: No layers frozen.

kv_store The weight update synchronization mode used for distributed
training. The weights can be updated either synchronously or
asynchronously across machines. Synchronous updates typically
provide better accuracy than asynchronous updates but can be
slower. See the Distributed Training MXNet tutorial for details.

Note
This parameter is not applicable to single machine training.

Optional

Valid values: 'dist_sync' or 'dist_async'

• 'dist_sync': The gradients are synchronized after every batch
with all the workers. With 'dist_sync', batch-size now means
the batch size used on each machine. So if there are n machines
and we use batch size b, then dist_sync behaves like a single
machine with batch size n*b.

• 'dist_async': Performs asynchronous updates. The weights
are updated whenever gradients are received from any machine
and the weight updates are atomic. However, the order is not
guaranteed.

Default: -

217

http://data.mxnet.io/models/imagenet/vgg/vgg16-symbol.json
http://data.mxnet.io/models/imagenet/vgg/vgg16-symbol.json
http://data.mxnet.io/models/imagenet/resnet/50-layers/resnet-50-symbol.json
https://mxnet.incubator.apache.org/versions/master/faq/distributed_training.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

Parameter Name Description

label_width The force padding label width used to sync across training and
validation data. For example, if one image in the data contains at
most 10 objects, and each object's annotation is specified with 5
numbers, [class_id, left, top, width, height], then the label_width
should be no smaller than (10*5 + header information length). The
header information length is usually 2. We recommend using a
slightly larger label_width for the training, such as 60 for this
example.

Optional

Valid values: Positive integer large enough to accommodate the
largest annotation information length in the data.

Default: 350

learning_rate The initial learning rate.

Optional

Valid values: float in (0, 1]

Default: 0.001

lr_scheduler_factor The ratio to reduce learning rate. Used in conjunction with the
lr_scheduler_step parameter defined as lr_new = lr_old *
lr_scheduler_factor.

Optional

Valid values: float in (0, 1)

Default: 0.1

lr_scheduler_step The epochs at which to reduce the learning rate. The learning rate is
reduced by lr_scheduler_factor at epochs listed in a comma-
delimited string: "epoch1, epoch2, ...". For example, if the value is
set to "10, 20" and the lr_scheduler_factor is set to 1/2, then
the learning rate is halved after 10th epoch and then halved again
after 20th epoch.

Optional

Valid values: string

Default: empty string

218

Amazon SageMaker Developer Guide
Object Detection Algorithm

Parameter Name Description

mini_batch_size The batch size for training. In a single-machine multi-gpu setting,
each GPU handles mini_batch_size/num_gpu training samples.
For the multi-machine training in dist_sync mode, the actual
batch size is mini_batch_size*number of machines. A large
mini_batch_size usually leads to faster training, but it may
cause out of memory problem. The memory usage is related
to mini_batch_size, image_shape, and base_network
architecture. For example, on a single p3.2xlarge instance,
the largest mini_batch_size without an out of memory
error is 32 with the base_network set to "resnet-50" and an
image_shape of 300. With the same instance, you can use 64 as
the mini_batch_size with the base network vgg-16 and an
image_shape of 300.

Optional

Valid values: positive integer

Default: 32

momentum The momentum for sgd. Ignored for other optimizers.

Optional

Valid values: float in (0, 1]

Default: 0.9

nms_threshold The non-maximum suppression threshold.

Optional

Valid values: float in (0, 1]

Default: 0.45

optimizer The optimizer types. For details on optimizer values, see MXNet's
API.

Optional

Valid values: ['sgd', 'adam', 'rmsprop', 'adadelta']

Default: 'sgd'

overlap_threshold The evaluation overlap threshold.

Optional

Valid values: float in (0, 1]

Default: 0.5

219

https://mxnet.incubator.apache.org/api/python/index.html
https://mxnet.incubator.apache.org/api/python/index.html

Amazon SageMaker Developer Guide
Object Detection Algorithm

Parameter Name Description

use_pretrained_model Indicates whether to use a pre-trained model for training. If set
to 1, then the pre-trained model with corresponding architecture
is loaded and used for training. Otherwise, the network is trained
from scratch.

Optional

Valid values: 0 or 1

Default: 1

weight_decay The weight decay coefficient for sgd and rmsprop. Ignored for
other optimizers.

Optional

Valid values: float in (0, 1)

Default: 0.0005

Tune an Object Detection Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the Object Detection Algorithm

The object detection algorithm reports on a single metric during training: validation:mAP. When
tuning a model, choose this metric as the objective metric.

Metric Name Description Optimization Direction

validation:mAP Mean Average Precision (mAP) computed on the
validation set.

Maximize

Tunable Object Detection Hyperparameters

Tune the Amazon SageMaker object detection model with the following hyperparameters. The
hyperparameters that have the greatest impact on the object detection objective metric are:
mini_batch_size, learning_rate, and optimizer.

Parameter Name Parameter Type Recommended Ranges

learning_rate ContinuousParameterRange MinValue: 1e-6,
MaxValue: 0.5

mini_batch_size IntegerParameterRanges MinValue: 8, MaxValue:
64

220

Amazon SageMaker Developer Guide
Object Detection Algorithm

Parameter Name Parameter Type Recommended Ranges

momentum ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.999

optimizer CategoricalParameterRanges ['sgd', 'adam', 'rmsprop',
'adadelta']

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.999

Object Detection Request and Response Formats
Request Format

Query a trained model by using the model's endpoint. The endpoint takes .jpg and .png image formats
with image/jpeg and image/png content-types.

Response Formats

The response is the class index with a confidence score and bounding box coordinates for all objects
within the image encoded in JSON format. The following is an example of response .json file:

{"prediction":[
 [4.0, 0.86419455409049988, 0.3088374733924866, 0.07030484080314636, 0.7110607028007507,
 0.9345266819000244],
 [0.0, 0.73376623392105103, 0.5714187026023865, 0.40427327156066895, 0.827075183391571,
 0.9712159633636475],
 [4.0, 0.32643985450267792, 0.3677481412887573, 0.034883320331573486, 0.6318609714508057,
 0.5967587828636169],
 [8.0, 0.22552496790885925, 0.6152569651603699, 0.5722782611846924, 0.882301390171051,
 0.8985623121261597],
 [3.0, 0.42260299175977707, 0.019305512309074402, 0.08386176824569702,
 0.39093565940856934, 0.9574796557426453]
]}

Each row in this .json file contains an array that represents a detected object. Each of these object
arrays consists of a list of six numbers. The first number is the predicted class label. The second
number is the associated confidence score for the detection. The last four numbers represent the
bounding box coordinates [xmin, ymin, xmax, ymax]. These output bounding box corner indices
are normalized by the overall image size. Note that this encoding is different than that use by the
input .json format. For example, in the first entry of the detection result, 0.3088374733924866 is the
left coordinate (x-coordinate of upper-left corner) of the bounding box as a ratio of the overall image
width, 0.07030484080314636 is the top coordinate (y-coordinate of upper-left corner) of the bounding
box as a ratio of the overall image height, 0.7110607028007507 is the right coordinate (x-coordinate of
lower-right corner) of the bounding box as a ratio of the overall image width, and 0.9345266819000244
is the bottom coordinate (y-coordinate of lower-right corner) of the bounding box as a ratio of the
overall image height.

To avoid unreliable detection results, you might want to filter out the detection results with low
confidence scores. In the object detection sample notebook, we provide scripts to remove the low
confidence detections. Scripts are also provided to plot the bounding boxes on the original image.

For batch transform, the response is in JSON format, where the format is identical to the JSON format
described above. The detection results of each image is represented as a JSON file. For example:

{"prediction": [[label_id, confidence_score, xmin, ymin, xmax, ymax], [label_id,
 confidence_score, xmin, ymin, xmax, ymax]]}

221

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/object_detection_pascalvoc_coco

Amazon SageMaker Developer Guide
Principal Component Analysis (PCA) Algorithm

For more details on training and inference, see the Object Detection Sample Notebooks (p. 214).

OUTPUT: JSON Response Format

accept: application/json;annotation=1

{
 "image_size": [
 {
 "width": 500,
 "height": 400,
 "depth": 3
 }
],
 "annotations": [
 {
 "class_id": 0,
 "score": 0.943,
 "left": 111,
 "top": 134,
 "width": 61,
 "height": 128
 },
 {
 "class_id": 0,
 "score": 0.0013,
 "left": 161,
 "top": 250,
 "width": 79,
 "height": 143
 },
 {
 "class_id": 1,
 "score": 0.0133,
 "left": 101,
 "top": 185,
 "width": 42,
 "height": 130
 }
]
}

Principal Component Analysis (PCA) Algorithm
PCA is an unsupervised machine learning algorithm that attempts to reduce the dimensionality (number
of features) within a dataset while still retaining as much information as possible. This is done by
finding a new set of features called components, which are composites of the original features that are
uncorrelated with one another. They are also constrained so that the first component accounts for the
largest possible variability in the data, the second component the second most variability, and so on.

In Amazon SageMaker, PCA operates in two modes, depending on the scenario:

• regular: For datasets with sparse data and a moderate number of observations and features.
• randomized: For datasets with both a large number of observations and features. This mode uses an

approximation algorithm.

PCA uses tabular data.

The rows represent observations you want to embed in a lower dimensional space. The columns
represent features that you want to find a reduced approximation for. The algorithm calculates the

222

Amazon SageMaker Developer Guide
Principal Component Analysis (PCA) Algorithm

covariance matrix (or an approximation thereof in a distributed manner), and then performs the singular
value decomposition on this summary to produce the principal components.

Topics
• Input/Output Interface for the PCA Algorithm (p. 223)
• EC2 Instance Recommendation for the PCA Algorithm (p. 223)
• PCA Sample Notebooks (p. 223)
• How PCA Works (p. 223)
• PCA Hyperparameters (p. 225)
• PCA Response Formats (p. 226)

Input/Output Interface for the PCA Algorithm
For training, PCA expects data provided in the train channel, and optionally supports a dataset passed to
the test dataset, which is scored by the final algorithm. Both recordIO-wrapped-protobuf and CSV
formats are supported for training. You can use either File mode or Pipe mode to train models on data
that is formatted as recordIO-wrapped-protobuf or as CSV.

For inference, PCA supports text/csv, application/json, and application/x-recordio-
protobuf. Results are returned in either application/json or application/x-recordio-
protobuf format with a vector of "projections."

For more details on training and inference file formats, see the PCA Sample Notebooks (p. 223) and the
PCA Response Formats (p. 226).

For more information on input and output file formats, see PCA Response Formats (p. 226) for
inference and the PCA Sample Notebooks (p. 223).

EC2 Instance Recommendation for the PCA Algorithm
PCA supports both GPU and CPU computation. Which instance type is most performant depends heavily
on the specifics of the input data.

PCA Sample Notebooks
For a sample notebook that shows how to use the Amazon SageMaker Principal Component Analysis
algorithm to analyze the images of handwritten digits from zero to nine in the MNIST dataset, see An
Introduction to PCA with MNIST. For instructions how to create and access Jupyter notebook instances
that you can use to run the example in Amazon SageMaker, see Use Notebook Instances (p. 36). Once
you have created a notebook instance and opened it, select the SageMaker Examples tab to see a list of
all the Amazon SageMaker samples. The topic modeling example notebooks using the NTM algorithms
are located in the Introduction to Amazon algorithms section. To open a notebook, click on its Use tab
and select Create copy.

How PCA Works
Principal Component Analysis (PCA) is a learning algorithm that reduces the dimensionality (number of
features) within a dataset while still retaining as much information as possible.

PCA reduces dimensionality by finding a new set of features called components, which are composites of
the original features, but are uncorrelated with one another. The first component accounts for the largest
possible variability in the data, the second component the second most variability, and so on.

It is an unsupervised dimensionality reduction algorithm. In unsupervised learning, labels that might be
associated with the objects in the training dataset aren't used.

223

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/pca_mnist/pca_mnist.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/pca_mnist/pca_mnist.ipynb

Amazon SageMaker Developer Guide
Principal Component Analysis (PCA) Algorithm

Given the input of a matrix with rows each of dimension 1 * d, the data is partitioned into
mini-batches of rows and distributed among the training nodes (workers). Each worker then computes a
summary of its data. The summaries of the different workers are then unified into a single solution at the
end of the computation.

Modes

The Amazon SageMaker PCA algorithm uses either of two modes to calculate these summaries,
depending on the situation:

• regular: for datasets with sparse data and a moderate number of observations and features.
• randomized: for datasets with both a large number of observations and features. This mode uses an

approximation algorithm.

As the algorithm's last step, it performs the singular value decomposition on the unified solution, from
which the principal components are then derived.

Mode 1: Regular

The workers jointly compute both and .

Note
Because are 1 * d row vectors, is a matrix (not a scalar). Using row vectors within the
code allows us to obtain efficient caching.

The covariance matrix is computed as , and its top num_components singular
vectors form the model.

Note
If subtract_mean is False, we avoid computing and subtracting .

Use this algorithm when the dimension d of the vectors is small enough so that can fit in memory.

Mode 2: Randomized

When the number of features in the input dataset is large, we use a method to approximate
the covariance metric. For every mini-batch of dimension b * d, we randomly initialize a
(num_components + extra_components) * b matrix that we multiply by each mini-batch,
to create a (num_components + extra_components) * d matrix. The sum of these matrices
is computed by the workers, and the servers perform SVD on the final (num_components +
extra_components) * d matrix. The top right num_components singular vectors of it are the
approximation of the top singular vectors of the input matrix.

Let = num_components + extra_components. Given a mini-batch of dimension b * d, the
worker draws a random matrix of dimension . Depending on whether the environment uses a
GPU or CPU and the dimension size, the matrix is either a random sign matrix where each entry is +-1
or a FJLT (fast Johnson Lindenstrauss transform; for information, see FJLT Transforms and the follow-
up papers). The worker then computes and maintains . The worker also maintains ,
the sum of columns of (T being the total number of mini-batches), and s, the sum of all input
rows. After processing the entire shard of data, the worker sends the server B, h, s, and n (the number of
input rows).

Denote the different inputs to the server as The server computes B, h, s, n the sums of the

respective inputs. It then computes , and finds its singular value decomposition. The top-
right singular vectors and singular values of C are used as the approximate solution to the problem.

224

https://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf

Amazon SageMaker Developer Guide
Principal Component Analysis (PCA) Algorithm

PCA Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm. You can also specify algorithm-
specific HyperParameters as string-to-string maps. The following table lists the hyperparameters for the
PCA training algorithm provided by Amazon SageMaker. For more information about how PCA works, see
How PCA Works (p. 223).

Parameter Name Description

feature_dim Input dimension.

Required

Valid values: positive integer

mini_batch_size Number of rows in a mini-batch.

Required

Valid values: positive integer

num_components The number of principal components to compute.

Required

Valid values: positive integer

algorithm_mode Mode for computing the principal components.

Optional

Valid values: regular or randomized

Default value: regular

extra_components As the value increases, the solution becomes more accurate but the
runtime and memory consumption increase linearly. The default,
-1, means the maximum of 10 and num_components. Valid for
randomized mode only.

Optional

Valid values: Non-negative integer or -1

Default value: -1

subtract_mean Indicates whether the data should be unbiased both during training
and at inference.

Optional

Valid values: One of true or false

Default value: true

225

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

PCA Response Formats
All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. This topic contains a list of the available output formats for the
Amazon SageMaker PCA algorithm.

JSON Response Format

Accept—application/json

{
 "projections": [
 {
 "projection": [1.0, 2.0, 3.0, 4.0, 5.0]
 },
 {
 "projection": [6.0, 7.0, 8.0, 9.0, 0.0]
 },

]
}

JSONLINES Response Format

Accept—application/jsonlines

{ "projection": [1.0, 2.0, 3.0, 4.0, 5.0] }
{ "projection": [6.0, 7.0, 8.0, 9.0, 0.0] }

RECORDIO Response Format

Accept—application/x-recordio-protobuf

[
 Record = {
 features = {},
 label = {
 'projection': {
 keys: [],
 values: [1.0, 2.0, 3.0, 4.0, 5.0]
 }
 }
 },
 Record = {
 features = {},
 label = {
 'projection': {
 keys: [],
 values: [1.0, 2.0, 3.0, 4.0, 5.0]
 }
 }
 }
]

Random Cut Forest (RCF) Algorithm
Amazon SageMaker Random Cut Forest (RCF) is an unsupervised algorithm for detecting anomalous
data points within a data set. These are observations which diverge from otherwise well-structured or

226

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

patterned data. Anomalies can manifest as unexpected spikes in time series data, breaks in periodicity, or
unclassifiable data points. They are easy to describe in that, when viewed in a plot, they are often easily
distinguishable from the "regular" data. Including these anomalies in a data set can drastically increase
the complexity of a machine learning task since the "regular" data can often be described with a simple
model.

With each data point, RCF associates an anomaly score. Low score values indicate that the data point
is considered "normal." High values indicate the presence of an anomaly in the data. The definitions of
"low" and "high" depend on the application but common practice suggests that scores beyond three
standard deviations from the mean score are considered anomalous.

While there are many applications of anomaly detection algorithms to one-dimensional time series data
such as traffic volume analysis or sound volume spike detection, RCF is designed to work with arbitrary-
dimensional input. Amazon SageMaker RCF scales well with respect to number of features, data set size,
and number of instances.

Topics
• Input/Output Interface for the RCF Algorithm (p. 227)
• Instance Recommendations for the RCF Algorithm (p. 228)
• RCF Sample Notebooks (p. 228)
• How RCF Works (p. 228)
• RCF Hyperparameters (p. 231)
• Tune an RCF Model (p. 231)
• RCF Response Formats (p. 232)

Input/Output Interface for the RCF Algorithm
Amazon SageMaker Random Cut Forest supports the train and test data channels. The optional test
channel is used to compute accuracy, precision, recall, and F1-score metrics on labeled data. Train and
test data content types can be either application/x-recordio-protobuf or text/csv formats.
For the test data, when using text/csv format, the content must be specified as text/csv;label_size=1
where the first column of each row represents the anomaly label: "1" for an anomalous data point and
"0" for a normal data point. You can use either File mode or Pipe mode to train RCF models on data that
is formatted as recordIO-wrapped-protobuf or as CSV

Also note that the train channel only supports S3DataDistributionType=ShardedByS3Key and the
test channel only supports S3DataDistributionType=FullyReplicated. The S3 distribution type
can be specified using the Python SDK as follows:

 import sagemaker

 # specify Random Cut Forest training job information and hyperparameters
 rcf = sagemaker.estimator.Estimator(...)

 # explicitly specify "SharededByS3Key" distribution type
 train_data = sagemaker.s3_input(
 s3_data=s3_training_data_location,
 content_type='text/csv;label_size=0',
 distribution='ShardedByS3Key')

 # run the training job on input data stored in S3
 rcf.fit({'train': train_data})

See the Amazon SageMaker Data Types documentation for more information on customizing the S3 data
source attributes. Finally, in order to take advantage of multi-instance training the training data must be
partitioned into at least as many files as instances.

227

https://docs.aws.amazon.com/sagemaker/latest/dg/API_S3DataSource.html

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

For inference, RCF supports application/x-recordio-protobuf, text/csv and application/
json input data content types. See the Common Data Formats for Built-in Algorithms (p. 64)
documentation for more information. RCF inference returns application/x-recordio-protobuf
or application/json formatted output. Each record in these output data contains the corresponding
anomaly scores for each input data point. See Common Data Formats--Inference for more information.

For more information on input and output file formats, see RCF Response Formats (p. 232) for
inference and the RCF Sample Notebooks (p. 228).

Instance Recommendations for the RCF Algorithm
For training, we recommend the ml.m4, ml.c4, and ml.c5 instance families. For inference we
recommend using a ml.c5.xl instance type in particular, for maximum performance as well as
minimized cost per hour of usage. Although the algorithm could technically run on GPU instance types it
does not take advantage of GPU hardware.

RCF Sample Notebooks
For an example of how to train an RCF model and perform inferences with it, see the Introduction to
SageMaker Random Cut Forests notebook. For a sample notebook that uses the Amazon SageMaker
Random Cut Forest algorithm for anomaly detection, see An Introduction to SageMaker Random Cut
Forests. For instructions how to create and access Jupyter notebook instances that you can use to run the
example in Amazon SageMaker, see Use Notebook Instances (p. 36). Once you have created a notebook
instance and opened it, select the SageMaker Examples tab to see a list of all the Amazon SageMaker
samples. To open a notebook, click on its Use tab and select Create copy.

How RCF Works
Amazon SageMaker Random Cut Forest (RCF) is an unsupervised algorithm for detecting anomalous
data points within a dataset. These are observations which diverge from otherwise well-structured or
patterned data. Anomalies can manifest as unexpected spikes in time series data, breaks in periodicity, or
unclassifiable data points. They are easy to describe in that, when viewed in a plot, they are often easily
distinguishable from the "regular" data. Including these anomalies in a dataset can drastically increase
the complexity of a machine learning task since the "regular" data can often be described with a simple
model.

The main idea behind the RCF algorithm is to create a forest of trees where each tree is obtained using
a partition of a sample of the training data. For example, a random sample of the input data is first
determined. The random sample is then partitioned according to the number of trees in the forest. Each
tree is given such a partition and organizes that subset of points into a k-d tree. The anomaly score
assigned to a data point by the tree is defined as the expected change in complexity of the tree as a
result adding that point to the tree; which, in approximation, is inversely proportional to the resulting
depth of the point in the tree. The random cut forest assigns an anomaly score by computing the
average score from each constituent tree and scaling the result with respect to the sample size. The RCF
algorithm is based on the one described in reference [1].

Sample Data Randomly

The first step in the RCF algorithm is to obtain a random sample of the training data. In particular,
suppose we want a sample of size from total data points. If the training data is small enough,
the entire dataset can be used, and we could randomly draw elements from this set. However,
frequently the training data is too large to fit all at once, and this approach isn't feasible. Instead, we use
a technique called reservoir sampling.

Reservoir sampling is an algorithm for efficiently drawing random samples from a dataset
where the elements in the dataset can only be observed one at a time or in batches. In fact, reservoir
sampling works even when is not known a priori. If only one sample is requested, such as when ,
the algorithm is like this:

228

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb
https://en.wikipedia.org/wiki/Reservoir_sampling

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

Algorithm: Reservoir Sampling

• Input: dataset or data stream
• Initialize the random sample
• For each observed sample :

• Pick a uniform random number
• If

• Set
• Return

This algorithm selects a random sample such that for all . When the
algorithm is more complicated. Additionally, a distinction must be made between random sampling that
is with and without replacement. RCF performs an augmented reservoir sampling without replacement
on the training data based on the algorithms described in [2].

Train a RCF Model and Produce Inferences

The next step in RCF is to construct a random cut forest using the random sample of data. First, the
sample is partitioned into a number of equal-sized partitions equal to the number of trees in the forest.
Then, each partition is sent to an individual tree. The tree recursively organizes its partition into a binary
tree by partitioning the data domain into bounding boxes.

This procedure is best illustrated with an example. Suppose a tree is given the following two-dimensional
dataset. The corresponding tree is initialized to the root node:

A two-dimensional dataset where the majority of data lies in a cluster (blue) except for one anomalous
data point (orange). The tree is initialized with a root node.

The RCF algorithm organizes these data in a tree by first computing a bounding box of the data,
selecting a random dimension (giving more weight to dimensions with higher "variance"), and then
randomly determining the position of a hyperplane "cut" through that dimension. The two resulting
subspaces define their own sub tree. In this example, the cut happens to separate a lone point from the
remainder of the sample. The first level of the resulting binary tree consists of two nodes, one which will
consist of the subtree of points to the left of the initial cut and the other representing the single point on
the right.

229

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

A random cut partitioning the two-dimensional dataset. An anomalous data point is more likely to lie
isolated in a bounding box at a smaller tree depth than other points.

Bounding boxes are then computed for the left and right halves of the data and the process is repeated
until every leaf of the tree represents a single data point from the sample. Note that if the lone point
is sufficiently far away then it is more likely that a random cut would result in point isolation. This
observation provides the intuition that tree depth is, loosely speaking, inversely proportional to the
anomaly score.

When performing inference using a trained RCF model the final anomaly score is reported as the average
across scores reported by each tree. Note that it is often the case that the new data point does not
already reside in the tree. To determine the score associated with the new point the data point is inserted
into the given tree and the tree is efficiently (and temporarily) reassembled in a manner equivalent
to the training process described above. That is, the resulting tree is as if the input data point were
a member of the sample used to construct the tree in the first place. The reported score is inversely
proportional to the depth of the input point within the tree.

Choose Hyperparameters

The primary hyperparameters used to tune the RCF model are num_trees and
num_samples_per_tree. Increasing num_trees has the effect of reducing the noise observed in
anomaly scores since the final score is the average of the scores reported by each tree. While the optimal
value is application-dependent we recommend using 100 trees to begin with as a balance between score
noise and model complexity. Note that inference time is proportional to the number of trees. Although
training time is also affected it is dominated by the reservoir sampling algorithm describe above.

The parameter num_samples_per_tree is related to the expected density of anomalies in the dataset.
In particular, num_samples_per_tree should be chosen such that 1/num_samples_per_tree
approximates the ratio of anomalous data to normal data. For example, if 256 samples are used in each
tree then we expect our data to contain anomalies 1/256 or approximately 0.4% of the time. Again, an
optimal value for this hyperparameter is dependent on the application.

References

1. Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. "Robust random cut forest based
anomaly detection on streams." In International Conference on Machine Learning, pp. 2712-2721.
2016.

230

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

2. Byung-Hoon Park, George Ostrouchov, Nagiza F. Samatova, and Al Geist. "Reservoir-based random
sampling with replacement from data stream." In Proceedings of the 2004 SIAM International
Conference on Data Mining, pp. 492-496. Society for Industrial and Applied Mathematics, 2004.

RCF Hyperparameters
In the CreateTrainingJob request, you specify the training algorithm. You can also specify algorithm-
specific hyperparameters as string-to-string maps. The following table lists the hyperparameters for the
Amazon SageMaker RCF algorithm. For more information, including recommendations on how to choose
hyperparameters, see How RCF Works (p. 228).

Parameter Name Description

feature_dim The number of features in the data set. (If you are using the client libraries
through a notebook, this value is calculated for you and need not be
specified.)

Required (When the job is run through the console.)

Valid values: Positive integer (min: 1, max: 10000)

eval_metrics A list of metrics used to score a labeled test data set. The following
metrics can be selected for output:

• accuracy - returns fraction of correct predictions.
• precision_recall_fscore - returns the positive and negative

precision, recall, and F1-scores.

Optional

Valid values: a list with possible values taken from accuracy or
precision_recall_fscore.

Default value: Both accuracy, precision_recall_fscore are
calculated.

num_samples_per_tree Number of random samples given to each tree from the training data set.

Optional

Valid values: Positive integer (min: 1, max: 2048)

Default value: 256

num_trees Number of trees in the forest.

Optional

Valid values: Positive integer (min: 50, max: 1000)

Default value: 100

Tune an RCF Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable

231

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

The Amazon SageMaker RCF algorithm is an unsupervised anomaly-detection algorithm that requires a
labeled test dataset for hyperparameter optimization. It calculates anomaly scores for test datapoints
and then labels the datapoints as anomalous if their scores are beyond three standard deviations from
the mean score. This is known as the three-sigma limit heuristic. The F1 score is emitted based on the
difference between calculated labels and actual labels. The hyperparameter tuning job finds the model
that maximizes that score. The success of hyperparameter optimization depends on the applicability of
the three-sigma limit heuristic to the test dataset.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the RCF Algorithm

The RCF algorithm computes the following metric during training. When tuning the model, choose this
metric as the objective metric.

Metric Name Description Optimization Direction

test:f1 F1 score on the test dataset, based on the
difference between calculated labels and actual
labels.

Maximize

Tunable RCF Hyperparameters

You can tune a RCF model with the following hyperparameters.

Parameter Name Parameter Type Recommended Ranges

num_samples_per_treeIntegerParameterRanges MinValue: 1,
MaxValue:2048

num_trees IntegerParameterRanges MinValue: 50,
MaxValue:1000

RCF Response Formats
All Amazon SageMaker built-in algorithms adhere to the common input inference format described in
Common Data Formats - Inference. Note that Amazon SageMaker Random Cut Forest supports both
dense and sparse JSON and RecordIO formats. This topic contains a list of the available output formats
for the Amazon SageMaker RCF algorithm.

JSON Response Format

ACCEPT: application/json.

 {

 "scores": [

232

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide
Random Cut Forest (RCF) Algorithm

 {"score": 0.02},

 {"score": 0.25}

]

 }

JSONLINES Response Format

ACCEPT: application/jsonlines.

{"score": 0.02},
{"score": 0.25}

RECORDIO Response Format

ACCEPT: application/x-recordio-protobuf.

 [

 Record = {

 features = {},

 label = {

 'score': {

 keys: [],

 values: [0.25] # float32

 }

 }

233

Amazon SageMaker Developer Guide
Semantic Segmentation

 },

 Record = {

 features = {},

 label = {

 'score': {

 keys: [],

 values: [0.23] # float32

 }

 }

 }

]

Semantic Segmentation Algorithm
The Amazon SageMaker semantic segmentation algorithm provides a fine-grained, pixel-level approach
to developing computer vision applications. It tags every pixel in an image with a class label from a
predefined set of classes. Tagging is fundamental for understanding scenes, which is critical to an
increasing number of computer vision applications, such as self-driving vehicles, medical imaging
diagnostics, and robot sensing.

For comparison, the Amazon SageMaker Image Classification Algorithm (p. 108) is a supervised
learning algorithm that analyzes only whole images, classifying them into one of multiple output
categories. The Object Detection Algorithm (p. 199) is a supervised learning algorithm that detects and
classifies all instances of an object in an image. It indicates the location and scale of each object in the
image with a rectangular bounding box.

Because the semantic segmentation algorithm classifies every pixel in an image, it also provides
information about the shapes of the objects contained in the image. The segmentation output is
represented as an RGB or grayscale image, called a segmentation mask. A segmentation mask is an RGB
(or grayscale) image with the same shape as the input image.

234

Amazon SageMaker Developer Guide
Semantic Segmentation

Amazon SageMaker semantic segmentation algorithm is built using the MXNet Gluon framework and the
Gluon CV toolkit provides you with a choice of three build-in algorithms to train a deep neural network.
You can use the Fully-Convolutional Network (FCN) algorithm , Pyramid Scene Parsing (PSP) algorithm,
or DeepLabV3.

Each of the three algorithms has two distinct components:

• The backbone (or encoder)—A network that produces reliable activation maps of features.

• The decoder—A network that constructs the segmentation mask from the encoded activation maps.

You also have a choice of backbones for the FCN, PSP, and DeepLabV3 algorithms: ResNet50 or
ResNet101. These backbones include pretrained artifacts that were originally trained on the ImageNet
classification task. You can fine-tune these backbones for segmentation using your own data. Or, you
can initialize and train these networks from scratch using only your own data. The decoders are never
pretrained.

To deploy the trained model for inference, use the Amazon SageMaker hosting service. During inference,
you can request the segmentation mask either as a PNG image or as a set of probabilities for each class
for each pixel. You can use these masks as part of a larger pipeline that includes additional downstream
image processing or other applications.

Topics

• Semantic Segmentation Sample Notebooks (p. 235)

• Input/Output Interface for the Semantic Segmentation Algorithm (p. 235)

• EC2 Instance Recommendation for the Semantic Segmentation Algorithm (p. 238)

• Semantic Segmentation Hyperparameters (p. 238)

Semantic Segmentation Sample Notebooks

For a sample Jupyter notebook that uses the Amazon SageMaker semantic segmentation algorithm
to train a model and deploy it to perform inferences, see the Semantic Segmentation Example. For
instructions on how to create and access Jupyter notebook instances that you can use to run the example
in Amazon SageMaker, see Use Notebook Instances (p. 36).

To see a list of all of the Amazon SageMaker samples, create and open a notebook instance, and choose
the SageMaker Examples tab. The example semantic segmentation notebooks are located under
Introduction to Amazon algorithms. To open a notebook, choose its Use tab, and choose Create copy.

Input/Output Interface for the Semantic Segmentation
Algorithm

Amazon SageMaker semantic segmentation expects the customer's training dataset to be on Amazon
Simple Storage Service (Amazon S3). Once trained, it produces the resulting model artifacts on Amazon
S3. The input interface format for the Amazon SageMaker semantic segmentation is similar to that
of most standardized semantic segmentation benchmarking datasets. The dataset in Amazon S3
is expected to be presented in two channels, one for train and one for validation using four
directories, two for images and two for annotations. Annotations are expected to be uncompressed
PNG images. The dataset might also have a label map that describes how the annotation mappings are
established. If not, the algorithm uses a default. It also supports the augmented manifest image format
(application/x-image) for training in Pipe input mode straight from Amazon S3. For inference, an
endpoint accepts images with an image/jpeg content type.

235

https://github.com/dmlc/gluon-cv
https://github.com/dmlc/gluon-cv
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1706.05587
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://www.image-net.org/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/semantic_segmentation_pascalvoc/semantic_segmentation_pascalvoc.ipynb
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Amazon SageMaker Developer Guide
Semantic Segmentation

How Training Works

The training data is split into four directories: train, train_annotation, validation, and
validation_annotation. There is a channel for each of these directories. The dataset also expected
to have one label_map.json file per channel for train_annotation and validation_annotation
respectively. If you don't provide these JSON files, Amazon SageMaker provides the default set label
map.

The dataset specifying these files should look similar to the following example:

s3://bucket_name
 |
 |- train
 |
 | - 0000.jpg
 | - coffee.jpg
 |- validation
 |
 | - 00a0.jpg
 | - bananna.jpg
 |- train_annotation
 |
 | - 0000.png
 | - coffee.png
 |- validation_annotation
 |
 | - 00a0.png
 | - bananna.png
 |- label_map
 | - train_label_map.json
 | - validation_label_map.json

Every JPG image in the train and validation directories has a corresponding PNG label image with
the same name in the train_annotation and validation_annotation directories. This naming
convention helps the algorithm to associate a label with its corresponding image during training. The
train, train_annotation, validation, and validation_annotation channels are mandatory.
The annotations are single-channel PNG images. The format works as long as the metadata (modes) in
the image helps the algorithm read the annotation images into a single-channel 8-bit unsigned integer.
For more information on our support for modes, see the Python Image Library documentation. We
recommend using the 8-bit pixel, true color P mode.

The image that is encoded is a simple 8-bit integer when using modes. To get from this mapping to a
map of a label, the algorithm uses one mapping file per channel, called the label map. The label map is
used to map the values in the image with actual label indices. In the default label map, which is provided
by default if you don’t provide one, the pixel value in an annotation matrix (image) directly index the
label. These images can be grayscale PNG files or 8-bit indexed PNG files. The label map file for the
unscaled default case is the following:

{
 "scale": "1"
}

To provide some contrast for viewing, some annotation software scales the label images by a constant
amount. To support this, the Amazon SageMaker semantic segmentation algorithm provides a rescaling
option to scale down the values to actual label values. When scaling down doesn’t convert the value
to an appropriate integer, the algorithm defaults to the greatest integer less than or equal to the scale
value. The following code shows how to set the scale value to rescale the label values:

{
 "scale": "3"

236

https://pillow.readthedocs.io/en/3.0.x/handbook/concepts.html#modes

Amazon SageMaker Developer Guide
Semantic Segmentation

}

The following example shows how this "scale" value is used to rescale the encoded_label values of
the input annotation image when they are mapped to the mapped_label values to be used in training.
The label values in the input annotation image are 0, 3, 6, with scale 3, so they are mapped to 0, 1, 2 for
training:

encoded_label = [0, 3, 6]
mapped_label = [0, 1, 2]

In some cases, you might need to specify a particular color mapping for each class. Use the map option
in the label mapping as shown in the following example of a label_map file:

{
 "map": {
 "0": 5,
 "1": 0,
 "2": 2
 }
}

This label mapping for this example is:

encoded_label = [0, 5, 2]
mapped_label = [1, 0, 2]

With label mappings, you can use different annotation systems and annotation software to obtain data
without a lot of preprocessing. You can provide one label map per channel. The files for a label map in
the label_map channel must follow the naming conventions for the four directory structure. If you
don't provide a label map, the algorithm assumes a scale of 1 (the default).

Training with the Augmented Manifest Format

The augmented manifest format enables you to do training in Pipe mode using image files without
needing to create RecordIO files. The augmented manifest file contains data objects and should be in
JSON Lines format, as described in the CreateTrainingJob (p. 667) request API. Each line in the manifest
is an entry containing the Amazon S3 URI for the image and the URI for the annotation image.

Each JSON object in the manifest file must contain a source-ref key. The source-ref key
should contain the value of the Amazon S3 URI to the image. The labels are provided under the
AttributeNames parameter value as specified in the CreateTrainingJob (p. 667) request. It can
also contain additional metadata under the metadata tag, but these are ignored by the algorithm.
In the example below, the AttributeNames are contained in the list of image and annotation
references ["source-ref", "city-streets-ref"]. These names must have -ref appended to
them. When using the Semantic Segmentation algorithm with Augmented Manifest, the value of the
RecordWrapperType parameter must be "RecordIO" and value of the ContentType parameter must
be application/x-recordio.

{"source-ref": "S3 bucket location", "city-streets-ref": "S3 bucket location", "city-
streets-metadata": {"job-name": "label-city-streets", }}

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs with
an Augmented Manifest File (p. 308).

Incremental Training

You can also seed the training of a new model with a model that you trained previously using Amazon
SageMaker. This incremental training saves training time when you want to train a new model with the

237

http://jsonlines.org/

Amazon SageMaker Developer Guide
Semantic Segmentation

same or similar data. Currently, incremental training is supported only for models trained with the built-
in Amazon SageMaker Semantic Segmentation.

To use your own pre-trained model, specify the ChannelName as "model" in the InputDataConfig
for the CreateTrainingJob (p. 667) request. Set the ContentType for the model channel to
application/x-sagemaker-model. The backbone, algorithm, crop_size, and num_classes
input parameters that define the network architecture must be consistently specified in the input
hyperparameters of the new model and the pre-trained model that you upload to the model channel.
For the pretrained model file, you can use the compressed (.tar.gz) artifacts from Amazon SageMaker
outputs. You can use either RecordIO or Image formats for input data. For more information on
incremental training and for instructions on how to use it, see Incremental Training in Amazon
SageMaker (p. 282).

Produce Inferences

To query a trained model that is deployed to an endpoint, you need to provide an image and an
AcceptType that denotes the type of output required. The endpoint takes JPEG images with an
image/jpeg content type. If you request an AcceptType of image/png, the algorithm outputs a PNG
file with a segmentation mask in the same format as the labels themselves. If you request an accept
type ofapplication/x-recordio-protobuf, the algorithm returns class probabilities encoded in
recordio-protobuf format. The latter format outputs a 3D tensor where the third dimension is the same
size as the number of classes. This component denotes the probability of each class label for each pixel.

EC2 Instance Recommendation for the Semantic Segmentation
Algorithm
The Amazon SageMaker semantic segmentation algorithm only supports GPU instances for training,
and we recommend using GPU instances with more memory for training with large batch sizes. The
algorithm can be trained using P2/P3 EC2 Amazon Elastic Compute Cloud (Amazon EC2) instances in
single machine configurations. It supports the following GPU instances for training:

• ml.p2.xlarge

• ml.p2.8xlarge

• ml.p2.16xlarge

• ml.p3.2xlarge

• ml.p3.8xlarge

• ml.p3.16xlarge

For inference, you can use either CPU instances (such as c5 and m5) and GPU instances (such as p2 and
p3) or both. For information about the instance types that provide varying combinations of CPU, GPU,
memory, and networking capacity for inference, see Amazon SageMaker ML Instance Types.

Semantic Segmentation Hyperparameters
The following tables list the hyperparameters supported by the Amazon SageMaker semantic
segmentation algorithm for network architecture, data inputs, and training. You specify Semantic
Segmentation for training in the AlgorithmName of the CreateTrainingJob (p. 667) request.

Network Architecture Hyperparameters

Parameter Name Description

backbone The backbone to use for the algorithm's encoder component.

238

https://aws.amazon.com/ec2/
https://aws.amazon.com/sagemaker/pricing/instance-types/

Amazon SageMaker Developer Guide
Semantic Segmentation

Parameter Name Description

Optional

Valid values: resnet-50, resnet-101

Default value: resnet-50

use_pretrained_model Whether a pretrained model is to be used for the backbone.

Optional

Valid values: True, False

Default value: True

algorithm The algorithm to use for semantic segmentation.

Optional

Valid values:

• fcn: Fully-Convolutional Network (FCN) algorithm
• psp: Pyramid Scene Parsing (PSP) algorithm
• deeplab: DeepLab V3 algorithm

Default value: fcn

Data Hyperparameters

Parameter Name Description

num_classes The number of classes to segment.

Required

Valid values: 2 ≤ positive integer ≤ 254

num_training_samples The number of samples in the training data. The algorithm uses this value
to set up the learning rate scheduler.

Required

Valid values: positive integer

crop_size The image size for input images. We rescale the input image to a square
image to this crop_size. We do this by rescaling the shorter side to
match this parameter while maintaining the aspect ratio, and then take a
random crop along the longer side.

Optional

Valid values: positive integer > 16

Default value: 480

Training Hyperparameters

239

https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1706.05587

Amazon SageMaker Developer Guide
Semantic Segmentation

Parameter Name Description

early_stopping Whether to use early stopping logic during training.

Optional

Valid values: True, False

Default value: False

early_stopping_min_epochsThe minimum number of epochs that must be run.

Optional

Valid values: integer

Default value: 5

early_stopping_patienceThe number of epochs that meet the tolerance for lower performance
before the algorithm enforces an early stop.

Optional

Valid values: integer

Default value: 4

early_stopping_toleranceIf the relative improvement of the score of the training job, the mIOU,
is smaller than this value, early stopping considers the epoch as not
improved. This is used only when early_stopping = True.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.0

epochs The number of epochs with which to train.

Optional

Valid values: positive integer

Default value: 30

gamma1 The decay factor for the moving average of the squared gradient for
rmsprop. Used only for rmsprop.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.9

gamma2 The momentum factor for rmsprop.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.9

240

Amazon SageMaker Developer Guide
Semantic Segmentation

Parameter Name Description

learning_rate The initial learning rate.

Optional

Valid values: 0 < float ≤ 1

Default value: 0.001

lr_scheduler The shape of the learning rate schedule that controls its decrease over
time.

Optional

Valid values:

• step: A stepwise decay, where the learning rate is reduced by a factor
at certain intervals.

• poly: A smooth decay using a polynomial function.
• cosine: A smooth decay using a cosine function.

Default value: poly

mini_batch_size The batch size for training. Using a large mini_batch_size usually
results in faster training, but it might cause you to run out of memory.
Memory usage is affected by the values of the mini_batch_size and
image_shape parameters, and the backbone architecture.

Optional

Valid values: positive integer

Default value: 4

momentum The momentum for the sgd optimizer. When you use other optimizers,
the semantic segmentation algorithm ignores this parameter.

Optional

Valid values: 0 < float ≤ 1

Default value: 0.9

241

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

optimizer The type of optimizer. For more information about an optimizer, choose
the appropriate link:

• adam: Adaptive momentum estimation
• adagrad: Adaptive gradient descent
• nag: Nesterov accelerated gradient
• rmsprop: Root mean square propagation
• sgd: Stochastic gradient descent

Optional

Valid values: adam, adagrad, nag, rmsprop, sgd

Default value: sgd

validation_mini_batch_sizeThe batch size for validation. A large mini_batch_size usually
results in faster training, but it might cause you to run out of memory.
Memory usage is affected by the values of the mini_batch_size and
image_shape parameters, and the backbone architecture.

• To score the validation on the entire image without cropping the
images, set this parameter to 1. Use this option if you want to measure
performance on the entire image as a whole.

Note
Setting the validation_mini_batch_size parameter to 1
causes the algorithm to create a new network model for every
image. This might slow validation and training.

• To crop images to the size specified in the crop_size parameter, even
during evaluation, set this parameter to a value greater than 1.

Optional

Valid values: positive integer

Default value: 4

weight_decay The weight decay coefficient for the sgd optimizer. When you use other
optimizers, the algorithm ignores this parameter.

Optional

Valid values: 0 < float < 1

Default value: 0.0001

Sequence-to-Sequence Algorithm
Amazon SageMaker Sequence to Sequence is a supervised learning algorithm where the input is a
sequence of tokens (for example, text, audio) and the output generated is another sequence of tokens.
Example applications include: machine translation (input a sentence from one language and predict what
that sentence would be in another language), text summarization (input a longer string of words and
predict a shorter string of words that is a summary), speech-to-text (audio clips converted into output

242

https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://calculus.subwiki.org/wiki/Nesterov%27s_gradient_acceleration
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

sentences in tokens). Recently, problems in this domain have been successfully modeled with deep neural
networks that show a significant performance boost over previous methodologies. Amazon SageMaker
seq2seq uses Recurrent Neural Networks (RNNs) and Convolutional Neural Network (CNN) models with
attention as encoder-decoder architectures.

Topics

• Input/Output Interface for the Sequence-to-Sequence Algorithm (p. 243)

• EC2 Instance Recommendation for the Sequence-to-Sequence Algorithm (p. 244)

• Sequence-to-Sequence Sample Notebooks (p. 244)

• How Sequence-to-Sequence Works (p. 244)

• Sequence-to-Sequence Hyperparameters (p. 245)

• Tune a Sequence-to-Sequence Model (p. 253)

Input/Output Interface for the Sequence-to-Sequence
Algorithm
Training

Amazon SageMaker seq2seq expects data in RecordIO-Protobuf format. However, the tokens are
expected as integers, not as floating points, as is usually the case.

A script to convert data from tokenized text files to the protobuf format is included in the seq2seq
example notebook. In general, it packs the data into 32-bit integer tensors and generates the necessary
vocabulary files, which are needed for metric calculation and inference.

After preprocessing is done, the algorithm can be invoked for training. The algorithm expects three
channels:

• train: It should contain the training data (for example, the train.rec file generated by the
preprocessing script).

• validation: It should contain the validation data (for example, the val.rec file generated by the
preprocessing script).

• vocab: It should contain two vocabulary files (vocab.src.json and vocab.trg.json)

If the algorithm doesn't find data in any of these three channels, training results in an error.

Inference

For hosted endpoints, inference supports two data formats. To perform inference using space separated
text tokens, use the application/json format. Otherwise, use the recordio-protobuf format to
work with the integer encoded data. Both mode supports batching of input data. application/json
format also allows you to visualize the attention matrix.

• application/json: Expects the input in JSON format and returns the output in JSON format. Both
content and accept types should be application/json. Each sequence is expected to be a string
with whitespace separated tokens. This format is recommended when the number of source sequences
in the batch is small. It also supports the following additional configuration options:

configuration: {attention_matrix: true}: Returns the attention matrix for the particular input
sequence.

• application/x-recordio-protobuf: Expects the input in recordio-protobuf format and
returns the output in recordio-protobuf format. Both content and accept types should be
applications/x-recordio-protobuf. For this format, the source sequences must be converted

243

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.ipynb

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

into a list of integers for subsequent protobuf encoding. This format is recommended for bulk
inference.

For batch transform, inference supports JSON Lines format. Batch transform expects the input in JSON
Lines format and returns the output in JSON Lines format. Both content and accept types should be
application/jsonlines. The format for input is as follows:

content-type: application/jsonlines

{"source": "source_sequence_0"}
{"source": "source_sequence_1"}

The format for response is as follows:

accept: application/jsonlines

{"target": "predicted_sequence_0"}
{"target": "predicted_sequence_1"}

For additional details on how to serialize and deserialize the inputs and outputs to specific formats for
inference, see the Sequence-to-Sequence Sample Notebooks (p. 244) .

EC2 Instance Recommendation for the Sequence-to-Sequence
Algorithm
Currently Amazon SageMaker seq2seq is only supported on GPU instance types and is only set up to
train on a single machine. But it does also offer support for multiple GPUs.

Sequence-to-Sequence Sample Notebooks
For a sample notebook that shows how to use the Amazon SageMaker Sequence to Sequence algorithm
to train a English-German translation model, see Machine Translation English-German Example Using
SageMaker Seq2Seq. For instructions how to create and access Jupyter notebook instances that you
can use to run the example in Amazon SageMaker, see Use Notebook Instances (p. 36). Once you have
created a notebook instance and opened it, select the SageMaker Examples tab to see a list of all the
Amazon SageMaker samples. The topic modeling example notebooks using the NTM algorithms are
located in the Introduction to Amazon algorithms section. To open a notebook, click on its Use tab and
select Create copy.

How Sequence-to-Sequence Works
Typically, a neural network for sequence-to-sequence modeling consists of a few layers, including:

• An embedding layer. In this layer, the input matrix, which is input tokens encoded in a sparse way
(for example, one-hot encoded) are mapped to a dense feature layer. This is required because a high-
dimensional feature vector is more capable of encoding information regarding a particular token (word
for text corpora) than a simple one-hot-encoded vector. It is also a standard practice to initialize this
embedding layer with a pre-trained word vector like FastText or Glove or to initialize it randomly and
learn the parameters during training.

• An encoder layer. After the input tokens are mapped into a high-dimensional feature space,
the sequence is passed through an encoder layer to compress all the information from the input
embedding layer (of the entire sequence) into a fixed-length feature vector. Typically, an encoder is
made of RNN-type networks like long short-term memory (LSTM) or gated recurrent units (GRU). (
Colah's blog explains LSTM in a great detail.)

• A decoder layer. The decoder layer takes this encoded feature vector and produces the output
sequence of tokens. This layer is also usually built with RNN architectures (LSTM and GRU).

244

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.ipynb
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

The whole model is trained jointly to maximize the probability of the target sequence given the source
sequence. This model was first introduced by Sutskever et al. in 2014.

Attention mechanism. The disadvantage of an encoder-decoder framework is that model performance
decreases as and when the length of the source sequence increases because of the limit of how much
information the fixed-length encoded feature vector can contain. To tackle this problem, in 2015,
Bahdanau et al. proposed the attention mechanism. In an attention mechanism, the decoder tries to find
the location in the encoder sequence where the most important information could be located and uses
that information and previously decoded words to predict the next token in the sequence.

For more in details, see the whitepaper Effective Approaches to Attention-based Neural Machine
Translation by Luong, et al. that explains and simplifies calculations for various attention mechanisms.
Additionally, the whitepaper Google's Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation by Wu, et al. describes Google's architecture for machine translation,
which uses skip connections between encoder and decoder layers.

Sequence-to-Sequence Hyperparameters

Parameter Name Description

batch_size Mini batch size for gradient descent.

Optional

Valid values: positive integer

Default value: 64

beam_size Length of the beam for beam search. Used during training
for computing bleu and used during inference.

Optional

Valid values: positive integer

Default value: 5

bleu_sample_size Number of instances to pick from validation dataset
to decode and compute bleu score during training.
Set to -1 to use full validation set (if bleu is chosen as
optimized_metric).

Optional

Valid values: integer

Default value: 0

bucket_width Returns (source,target) buckets up to
(max_seq_len_source, max_seq_len_target). The
longer side of the data uses steps of bucket_width
while the shorter side uses steps scaled down by the
average target/source length ratio. If one sided reaches its
maximum length before the other, width of extra buckets
on that side is fixed to that side of max_len.

Optional

Valid values: positive integer

245

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

Default value: 10

bucketing_enabled Set to false to disable bucketing, unroll to maximum
length.

Optional

Valid values: true or false

Default value: true

checkpoint_frequency_num_batches Checkpoint and evaluate every x batches.

Optional

Valid values: positive integer

Default value: 1000

checkpoint_threshold Maximum number of checkpoints model is allowed to not
improve in optimized_metric on validation dataset
before training is stopped.

Optional

Valid values: positive integer

Default value: 3

clip_gradient Clip absolute gradient values greater than this. Set to
negative to disable.

Optional

Valid values: float

Default value: 1

cnn_activation_type The cnn activation type to be used.

Optional

Valid values: String. One of glu, relu, softrelu,
sigmoid, or tanh.

Default value: glu

cnn_hidden_dropout Dropout probability for dropout between convolutional
layers.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

246

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

cnn_kernel_width_decoder Kernel width for the cnn decoder.

Optional

Valid values: positive integer

Default value: 5

cnn_kernel_width_encoder Kernel width for the cnn encoder.

Optional

Valid values: positive integer

Default value: 3

cnn_num_hidden Number of cnn hidden units for encoder and decoder.

Optional

Valid values: positive integer

Default value: 512

decoder_type Decoder type.

Optional

Valid values: String. Either rnn or cnn.

Default value: rnn

embed_dropout_source Dropout probability for source side embeddings.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

embed_dropout_target Dropout probability for target side embeddings.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

encoder_type Encoder type. The rnn architecture is based on attention
mechanism by Bahdanau et al. and cnn architecture is
based on Gehring et al.

Optional

Valid values: String. Either rnn or cnn.

Default value: rnn

247

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

fixed_rate_lr_half_life Half life for learning rate in terms of number of
checkpoints for fixed_rate_* schedulers.

Optional

Valid values: positive integer

Default value: 10

learning_rate Initial learning rate.

Optional

Valid values: float

Default value: 0.0003

loss_type Loss function for training.

Optional

Valid values: String. cross-entropy

Default value: cross-entropy

lr_scheduler_type Learning rate scheduler type. plateau_reduce means
reduce the learning rate whenever optimized_metric on
validation_accuracy plateaus. inv_t is inverse time
decay. learning_rate/(1+decay_rate*t)

Optional

Valid values: String. One of plateau_reduce,
fixed_rate_inv_t, or fixed_rate_inv_sqrt_t.

Default value: plateau_reduce

max_num_batches Maximum number of updates/batches to process. -1 for
infinite.

Optional

Valid values: integer

Default value: -1

max_num_epochs Maximum number of epochs to pass through training
data before fitting is stopped. Training continues until
this number of epochs even if validation accuracy is not
improving if this parameter is passed. Ignored if not passed.

Optional

Valid values: Positive integer and less than or equal to
max_num_epochs.

Default value: none

248

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

max_seq_len_source Maximum length for the source sequence length.
Sequences longer than this length are truncated to this
length.

Optional

Valid values: positive integer

Default value: 100

max_seq_len_target Maximum length for the target sequence length. Sequences
longer than this length are truncated to this length.

Optional

Valid values: positive integer

Default value: 100

min_num_epochs Minimum number of epochs the training must run before it
is stopped via early_stopping conditions.

Optional

Valid values: positive integer

Default value: 0

momentum Momentum constant used for sgd. Don't pass this
parameter if you are using adam or rmsprop.

Optional

Valid values: float

Default value: none

num_embed_source Embedding size for source tokens.

Optional

Valid values: positive integer

Default value: 512

num_embed_target Embedding size for target tokens.

Optional

Valid values: positive integer

Default value: 512

249

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

num_layers_decoder Number of layers for Decoder rnn or cnn.

Optional

Valid values: positive integer

Default value: 1

num_layers_encoder Number of layers for Encoder rnn or cnn.

Optional

Valid values: positive integer

Default value: 1

optimized_metric Metrics to optimize with early stopping.

Optional

Valid values: String. One of perplexity, accuracy, or
bleu.

Default value: perplexity

optimizer_type Optimizer to choose from.

Optional

Valid values: String. One of adam, sgd, or rmsprop.

Default value: adam

plateau_reduce_lr_factor Factor to multiply learning rate with (for
plateau_reduce).

Optional

Valid values: float

Default value: 0.5

plateau_reduce_lr_threshold For plateau_reduce scheduler, multiply learning rate
with reduce factor if optimized_metric didn't improve
for this many checkpoints.

Optional

Valid values: positive integer

Default value: 3

250

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

rnn_attention_in_upper_layers Pass the attention to upper layers of rnn, like Google NMT
paper. Only applicable if more than one layer is used.

Optional

Valid values: boolean (true or false)

Default value: true

rnn_attention_num_hidden Number of hidden units for attention layers. defaults to
rnn_num_hidden.

Optional

Valid values: positive integer

Default value: rnn_num_hidden

rnn_attention_type Attention model for encoders. mlp refers to concat and
bilinear refers to general from the Luong et al. paper.

Optional

Valid values: String. One of dot, fixed, mlp, or bilinear.

Default value: mlp

rnn_cell_type Specific type of rnn architecture.

Optional

Valid values: String. Either lstm or gru.

Default value: lstm

rnn_decoder_state_init How to initialize rnn decoder states from encoders.

Optional

Valid values: String. One of last, avg, or zero.

Default value: last

rnn_first_residual_layer First rnn layer to have a residual connection, only
applicable if number of layers in encoder or decoder is
more than 1.

Optional

Valid values: positive integer

Default value: 2

251

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

rnn_num_hidden The number of rnn hidden units for encoder and decoder.
This must be a multiple of 2 because the algorithm uses
bi-directional Long Term Short Term Memory (LSTM) by
default.

Optional

Valid values: positive even integer

Default value: 1024

rnn_residual_connections Add residual connection to stacked rnn. Number of layers
should be more than 1.

Optional

Valid values: boolean (true or false)

Default value: false

rnn_decoder_hidden_dropout Dropout probability for hidden state that combines the
context with the rnn hidden state in the decoder.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

training_metric Metrics to track on training on validation data.

Optional

Valid values: String. Either perplexity or accuracy.

Default value: perplexity

weight_decay Weight decay constant.

Optional

Valid values: float

Default value: 0

weight_init_scale Weight initialization scale (for uniform and xavier
initialization).

Optional

Valid values: float

Default value: 2.34

252

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

Parameter Name Description

weight_init_type Type of weight initialization.

Optional

Valid values: String. Either uniform or xavier.

Default value: xavier

xavier_factor_type Xavier factor type.

Optional

Valid values: String. One of in, out, or avg.

Default value: in

Tune a Sequence-to-Sequence Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the Sequence-to-Sequence Algorithm

The sequence to sequence algorithm reports three metrics that are computed during training. Choose
one of them as an objective to optimize when tuning the hyperparameter values.

Metric Name Description Optimization Direction

validation:accuracy Accuracy computed on the validation dataset. Maximize

validation:bleu Bleu score computed on the validation dataset.
Because BLEU computation is expensive, you can
choose to compute BLEU on a random subsample
of the validation dataset to speed up the overall
training process. Use the bleu_sample_size
parameter to specify the subsample.

Maximize

validation:perplexityPerplexity, is a loss function computed on the
validation dataset. Perplexity measures the cross-
entropy between an empirical sample and the
distribution predicted by a model and so provides
a measure of how well a model predicts the
sample values, Models that are good at predicting
a sample have a low perplexity.

Minimize

Tunable Sequence-to-Sequence Hyperparameters

You can tune the following hyperparameters for the Amazon SageMaker Sequence to Sequence
algorithm. The hyperparameters that have the greatest impact on sequence to sequence objective

253

https://en.wikipedia.org/wiki/BLEU
https://en.wikipedia.org/wiki/Perplexity

Amazon SageMaker Developer Guide
Sequence to Sequence (seq2seq)

metrics are: batch_size, optimizer_type, learning_rate, num_layers_encoder, and
num_layers_decoder.

Parameter Name Parameter Type Recommended Ranges

num_layers_encoder IntegerParameterRange [1-10]

num_layers_decoder IntegerParameterRange [1-10]

batch_size CategoricalParameterRange [16,32,64,128,256,512,1024,2048]

optimizer_type CategoricalParameterRange ['adam', 'sgd', 'rmsprop']

weight_init_type CategoricalParameterRange ['xavier', 'uniform']

weight_init_scale ContinuousParameterRange For the xavier type:
MinValue: 2.0,
MaxValue: 3.0 For the
uniform type: MinValue:
-1.0, MaxValue: 1.0

learning_rate ContinuousParameterRange MinValue: 0.00005,
MaxValue: 0.2

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.1

momentum ContinuousParameterRange MinValue: 0.5,
MaxValue: 0.9

clip_gradient ContinuousParameterRange MinValue: 1.0,
MaxValue: 5.0

rnn_num_hidden CategoricalParameterRange Applicable only to
recurrent neural
networks (RNNs).
[128,256,512,1024,2048]

cnn_num_hidden CategoricalParameterRange Applicable only to
convolutional neural
networks (CNNs).
[128,256,512,1024,2048]

num_embed_source IntegerParameterRange [256-512]

num_embed_target IntegerParameterRange [256-512]

embed_dropout_sourceContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

embed_dropout_targetContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

rnn_decoder_hidden_dropoutContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

cnn_hidden_dropout ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

254

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Parameter Type Recommended Ranges

lr_scheduler_type CategoricalParameterRange ['plateau_reduce',
'fixed_rate_inv_t',
'fixed_rate_inv_sqrt_t']

plateau_reduce_lr_factorContinuousParameterRange MinValue: 0.1,
MaxValue: 0.5

plateau_reduce_lr_thresholdIntegerParameterRange [1-5]

fixed_rate_lr_half_lifeIntegerParameterRange [10-30]

XGBoost Algorithm
The XGBoost (eXtreme Gradient Boosting) is a popular and efficient open-source implementation of the
gradient boosted trees algorithm. Gradient boosting is a supervised learning algorithm that attempts to
accurately predict a target variable by combining an ensemble of estimates from a set of simpler, weaker
models. XGBoost has done remarkably well in machine learning competitions because it robustly handles
a variety of data types, relationships, and distributions, and the large number of hyperparameters
that can be tweaked and tuned for improved the fit. This flexibility makes XGBoost a solid choice for
problems in regression, classification (binary and multiclass), and ranking.

This current release of the XGBoost algorithm makes upgrades from the open source XGBoost code base
easy to install and use in Amazon SageMaker. Customers can use this release of the XGBoost algorithm
either as an Amazon SageMaker built-in algorithm, as with the previous 0.72-based version, or as a
framework to run training scripts in their local environments as they would typically do, for example,
with a TensorFlow deep learning framework. This implementation has a smaller memory footprint,
better logging, improved hyperparameter validation, and an expanded set of metrics than the original
0.72-based version. It also provides an XGBoost estimator that executes a training script in a managed
XGBoost environment. The current release of Amazon SageMaker XGBoost is based on version 0.90 and
will be upgradeable to future releases. The previous implementation XGBoost Release 0.72 (p. 266) is
still available to customers if they need to postpone migrating to the current version. But this previous
implementation will remain tied to the 0.72 release of XGBoost.

Topics
• How to Use Amazon SageMaker XGBoost (p. 255)
• Input/Output Interface for the XGBoost Algorithm (p. 256)
• EC2 Instance Recommendation for the XGBoost Algorithm (p. 257)
• XGBoost Sample Notebooks (p. 257)
• How XGBoost Works (p. 258)
• XGBoost Hyperparameters (p. 258)
• Tune an XGBoost Model (p. 264)
• XGBoost Previous Versions (p. 266)

How to Use Amazon SageMaker XGBoost
The XGBoost algorithm can be used as a built-in algorithm or as a framework such TensorFlow. Using
XGBoost as a framework provides more flexible than using it as a built-in algorithm as it enables more
advanced scenarios that allow pre-processing and post-processing scripts to be incorporated into your
training script. Using XGBoost as a built-in Amazon SageMaker algorithm is how you had to use the
original XGBoost Release 0.72 (p. 266) version and nothing changes here except the version of XGBoost
that you use.

255

https://github.com/dmlc/xgboost

Amazon SageMaker Developer Guide
XGBoost Algorithm

• Use XGBoost as a framework

Use XGBoost as a framework to run scripts that can incorporate additional data processing into your
training jobs. This way of using XGBoost should be to familiar to users who have worked with the open
source XGBoost and other Amazon SageMaker frameworks such as Scikit-learn. You use the Amazon
SageMaker Python SDK as you would for other frameworks such as TensorFlow. One change from
other Amazon SageMaker frameworks is that the framework_version field of the estimator for
XGBoost is mandatory and is not set by default. Note that the first part of the version refers to the
upstream module version (aka, 0.90), while the second part refers to the Amazon SageMaker version
for the container. An error is generated if the framework_version is not set.

import sagemaker.XGBoost
estimator = XGBoost(entry_point = ‘myscript.py’,
 source_dir, model_dir, train_instance_type,
 train_instance_count, hyperparameters, role, base_job_name,
 framework_version = ‘0.90-1’,
 py_version)
estimator.fit({‘train’:’s3://my-bucket/training’,
 ‘validation’:’s3://my-bucket/validation})

The AWS SDK for Python (Boto 3) and the CLI also require this field.

• Use XGBoost as a built-in algorithm

Use XGBoost to train and deploy a model as you would other built-in Amazon SageMaker algorithms.
Using the current version of XGBoost as a built-in algorithm will be familiar to users who have used the
original XGBoost Release 0.72 (p. 266) version with the Amazon SageMaker Python SDK and want to
continue using the same procedures.

import sagemaker
import sagemaker.xgboost_utils
get the URI for new container
container = get_image_uri(boto3.Session().region_name,
 ‘xgboost’,
 repo_version='0.90-1');
estimator = sagemaker.estimator.Estimator(container, role, instance_count, instance_type,
 train_volume_size, output_path, sagemaker.Session());
estimator.fit({‘train’:’s3://my-bucket/training’, ‘validation’:’s3://my-bucket/
validation})

If customers do not specify version in the get_image_uri function, they get the XGBoost Release
0.72 (p. 266) version by default. If you want to migrate to the current version, you have to specify
repo_version='0.90-1' in the get_image_uri function. If you use the current version, you must
update your code to use the new hyperparameters that are required by the 0.90 version of upstream
algorithm. The AWS SDK for Python (Boto 3) and the CLI usage is similar. You also have to choose the
version you want to run when using the Console to select the XGBoost algorithm.

Input/Output Interface for the XGBoost Algorithm

Gradient boosting operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

The Amazon SageMaker implementation of XGBoost supports CSV and libsvm formats for training and
inference:

• For Training ContentType, valid inputs are text/libsvm (default) or text/csv.

• For Inference ContentType, valid inputs are text/libsvm or (the default) text/csv.

256

https://github.com/dmlc/xgboost

Amazon SageMaker Developer Guide
XGBoost Algorithm

Note
For CSV training, the algorithm assumes that the target variable is in the first column and that
the CSV does not have a header record. For CSV inference, the algorithm assumes that CSV input
does not have the label column.
For libsvm training, the algorithm assumes that the label is in the first column. Subsequent
columns contain the zero-based index value pairs for features. So each row has the format:
<label> <index0>:<value0> <index1>:<value1> ... Inference requests for libsvm may or may not
have labels in the libsvm format.

This differs from other Amazon SageMaker algorithms, which use the protobuf training input format to
maintain greater consistency with standard XGBoost data formats.

For CSV training input mode, the total memory available to the algorithm (Instance Count * the memory
available in the InstanceType) must be able to hold the training dataset. For libsvm training input
mode, it's not required, but we recommend it.

SageMaker XGBoost uses the Python pickle module to serialize/deserialize the model, which can be used
for saving/loading the model.

To use a model trained with SageMaker XGBoost in open source XGBoost

• Use the following Python code:

import pickle as pkl
model = pkl.load(open(model_file_path, 'rb'))
prediction with test data
pred = model.predict(dtest)

To differentiate the importance of labelled data points use Instance Weight Supports

• Amazon SageMaker XGBoost allows customers to differentiate the importance of labelled data
points by assigning each instance a weight value. For text/libsvm input, customers can assign
weight values to data instances by attaching them after the labels. For example, label:weight
idx_0:val_0 idx_1:val_1.... For text/csv input, customers need to turn on the csv_weights
flag in the parameters and attach weight values in the column after labels. For example:
label,weight,val_0,val_1,...).

EC2 Instance Recommendation for the XGBoost Algorithm
Amazon SageMaker XGBoost currently only trains using CPUs. It is a memory-bound (as opposed to
compute-bound) algorithm. So, a general-purpose compute instance (for example, M4) is a better choice
than a compute-optimized instance (for example, C4). Further, we recommend that you have enough
total memory in selected instances to hold the training data. Although it supports the use of disk space
to handle data that does not fit into main memory (the out-of-core feature available with the libsvm
input mode), writing cache files onto disk slows the algorithm processing time.

XGBoost Sample Notebooks
For a sample notebook that shows how to use Amazon SageMaker XGBoost as a built-in algorithm to
train and host a regression model, see Regression with the Amazon SageMaker XGBoost algorithm. For
instructions how to create and access Jupyter notebook instances that you can use to run the example
in Amazon SageMaker, see Use Notebook Instances (p. 36). Once you have created a notebook instance
and opened it, select the SageMaker Examples tab to see a list of all the Amazon SageMaker samples.
The topic modeling example notebooks using the NTM algorithms are located in the Introduction to
Amazon algorithms section. To open a notebook, click on its Use tab and select Create copy.

257

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.ipynb

Amazon SageMaker Developer Guide
XGBoost Algorithm

How XGBoost Works
XGBoost is a popular and efficient open-source implementation of the gradient boosted trees algorithm.
Gradient boosting is a supervised learning algorithm, which attempts to accurately predict a target
variable by combining the estimates of a set of simpler, weaker models.

When using gradient boosting for regression, the weak learners are regression trees, and each regression
tree maps an input data point to one of its leafs that contains a continuous score. XGBoost minimizes a
regularized (L1 and L2) objective function that combines a convex loss function (based on the difference
between the predicted and target outputs) and a penalty term for model complexity (in other words, the
regression tree functions). The training proceeds iteratively, adding new trees that predict the residuals
or errors of prior trees that are then combined with previous trees to make the final prediction. It's called
gradient boosting because it uses a gradient descent algorithm to minimize the loss when adding new
models.

For more detail on XGBoost, see:

• XGBoost: A Scalable Tree Boosting System
• Introduction to Boosted Trees

XGBoost Hyperparameters
The following table contains the subset of hyperparameters that are required or most commonly used
for the Amazon SageMaker XGBoost algorithm. These are parameters that are set by users to facilitate
the estimation of model parameters from data. The required hyperparameters that must be set are
listed first, in alphabetical order. The optional hyperparameters that can be set are listed next, also in
alphabetical order. The Amazon SageMaker XGBoost algorithm is an implementation of the open-source
DLMC XGBoost package. Currently Amazon SageMaker supports version 0.90. For details about full set of
hyperparameter that can be configured for this version of XGBoost, see XGBoost Parameters.

Parameter Name Description

num_round The number of rounds to run the training.

Required

Valid values: integer

num_class The number of classes.

Required if objective is set to multi:softmax or multi:softprob.

Valid values: integer

Default value:

alpha L1 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: float

Default value: 0

base_score The initial prediction score of all instances, global bias.

Optional

258

https://github.com/dmlc/xgboost
https://en.wikipedia.org/wiki/Gradient_boosting
https://arxiv.org/pdf/1603.02754.pdf
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/release_0.90/parameter.html

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

Valid values: float

Default value: 0.5

booster Which booster to use. The gbtree and dart values use a tree-
based model, while gblinear uses a linear function.

Optional

Valid values: String. One of gbtree, gblinear, or dart.

Default value: gbtree

colsample_bylevel Subsample ratio of columns for each split, in each level.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

colsample_bynode Subsample ratio of columns from each node.

Optional

Valid values: Float. Range: (0,1].

Default value: 1

colsample_bytree Subsample ratio of columns when constructing each tree.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

csv_weights When this flag is enabled, XGBoost differentiates the importance
of instances for csv input by taking the second column (the column
after labels) in training data as the instance weights.

Optional

Valid values: 0 or 1

Default value: 0

early_stopping_rounds The model trains until the validation score stops
improving. Validation error needs to decrease at least every
early_stopping_rounds to continue training. Amazon
SageMaker hosting uses the best model for inference.

Optional

Valid values: integer

Default value: -

259

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

eta Step size shrinkage used in updates to prevent overfitting. After
each boosting step, you can directly get the weights of new
features. The eta parameter actually shrinks the feature weights to
make the boosting process more conservative.

Optional

Valid values: Float. Range: [0,1].

Default value: 0.3

eval_metric Evaluation metrics for validation data. A default metric is assigned
according to the objective:

• rmse: for regression
• error: for classification
• map: for ranking

For a list of valid inputs, see XGBoost Parameters.

Optional

Valid values: string

Default value: Default according to objective.

gamma Minimum loss reduction required to make a further partition on
a leaf node of the tree. The larger, the more conservative the
algorithm is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 0

grow_policy Controls the way that new nodes are added to the tree. Currently
supported only if tree_method is set to hist.

Optional

Valid values: String. Either depthwise or lossguide.

Default value: depthwise

lambda L2 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: float

Default value: 1

260

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

lambda_bias L2 regularization term on bias.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0

max_bin Maximum number of discrete bins to bucket continuous features.
Used only if tree_method is set to hist.

Optional

Valid values: integer

Default value: 256

max_delta_step Maximum delta step allowed for each tree's weight estimation.
When a positive integer is used, it helps make the update more
conservative. The preferred option is to use it in logistic regression.
Set it to 1-10 to help control the update.

Optional

Valid values: Integer. Range: [0,∞).

Default value: 0

max_depth Maximum depth of a tree. Increasing this value makes the model
more complex and likely to be overfit. 0 indicates no limit. A limit is
required when grow_policy=depth-wise.

Optional

Valid values: Integer. Range: [0,∞)

Default value: 6

max_leaves Maximum number of nodes to be added. Relevant only if
grow_policy is set to lossguide.

Optional

Valid values: integer

Default value: 0

min_child_weight Minimum sum of instance weight (hessian) needed in a child. If the
tree partition step results in a leaf node with the sum of instance
weight less than min_child_weight, the building process gives
up further partitioning. In linear regression models, this simply
corresponds to a minimum number of instances needed in each
node. The larger the algorithm, the more conservative it is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 1

261

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

normalize_type Type of normalization algorithm.

Optional

Valid values: Either tree or forest.

Default value: tree

nthread Number of parallel threads used to run xgboost.

Optional

Valid values: integer

Default value: Maximum number of threads.

objective Specifies the learning task and the corresponding learning
objective. Examples: reg:linear, reg:logistic,
multi:softmax. For a full list of valid inputs, refer to XGBoost
Parameters.

Optional

Valid values: string

Default value: reg:linear

one_drop When this flag is enabled, at least one tree is always dropped
during the dropout.

Optional

Valid values: 0 or 1

Default value: 0

process_type The type of boosting process to run.

Optional

Valid values: String. Either default or update.

Default value: default

rate_drop The dropout rate that specifies the fraction of previous trees to
drop during the dropout.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

262

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

refresh_leaf This is a parameter of the 'refresh' updater plug-in. When set to
true (1), tree leaves and tree node stats are updated. When set to
false(0), only tree node stats are updated.

Optional

Valid values: 0/1

Default value: 1

sample_type Type of sampling algorithm.

Optional

Valid values: Either uniform or weighted.

Default value: uniform

scale_pos_weight Controls the balance of positive and negative weights. It's useful
for unbalanced classes. A typical value to consider: sum(negative
cases) / sum(positive cases).

Optional

Valid values: float

Default value: 1

seed Random number seed.

Optional

Valid values: integer

Default value: 0

silent 0 means print running messages, 1 means silent mode.

Valid values: 0 or 1

Optional

Default value: 0

sketch_eps Used only for approximate greedy algorithm. This translates into
O(1 / sketch_eps) number of bins. Compared to directly select
number of bins, this comes with theoretical guarantee with sketch
accuracy.

Optional

Valid values: Float, Range: [0, 1].

Default value: 0.03

263

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

skip_drop Probability of skipping the dropout procedure during a boosting
iteration.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

subsample Subsample ratio of the training instance. Setting it to 0.5 means
that XGBoost randomly collects half of the data instances to grow
trees. This prevents overfitting.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

tree_method The tree construction algorithm used in XGBoost.

Optional

Valid values: One of auto, exact, approx, or hist.

Default value: auto

tweedie_variance_power Parameter that controls the variance of the Tweedie distribution.

Optional

Valid values: Float. Range: (1, 2).

Default value: 1.5

updater A comma-separated string that defines the sequence of tree
updaters to run. This provides a modular way to construct and to
modify the trees.

For a full list of valid inputs, please refer to XGBoost Parameters.

Optional

Valid values: comma-separated string.

Default value: grow_colmaker, prune

Tune an XGBoost Model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

Note
Automatic model tuning for XGBoost 0.90 is only available from the SDKs, not from the Amazon
SageMaker console.

264

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide
XGBoost Algorithm

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the XGBoost Algorithm

The XGBoost algorithm computes the following nine metrics during training. When tuning the model,
choose one of these metrics as the objective to evaluate the model.

Metric Name Description Optimization Direction

validation:accuracy Classification rate, calculated as #(right)/#(all
cases).

Maximize

validation:auc Area under the curve. Maximize

validation:error Binary classification error rate, calculated as
#(wrong cases)/#(all cases).

Minimize

validation:f1 Indicator of classification accuracy, calculated as
the harmonic mean of precision and recall.

Maximize

validation:logloss Negative log-likelihood. Minimize

validation:mae Mean absolute error. Minimize

validation:map Mean average precision. Maximize

validation:merror Multiclass classification error rate, calculated as
#(wrong cases)/#(all cases).

Minimize

validation:mlogloss Negative log-likelihood for multiclass
classification.

Minimize

validation:mse Mean squared error. Minimize

validation:ndcg Normalized Discounted Cumulative Gain. Maximize

validation:rmse Root mean square error. Minimize

Tunable XGBoost Hyperparameters

Tune the open-source XGBoost model with the following hyperparameters. The hyperparameters that
have the greatest effect on XGBoost objective metrics are: alpha, min_child_weight, subsample,
eta, and num_round.

Parameter Name Parameter Type Recommended Ranges

alpha ContinuousParameterRanges MinValue: 0, MaxValue:
1000

colsample_bylevel ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1

colsample_bynode ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1

colsample_bytree ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

265

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Parameter Type Recommended Ranges

eta ContinuousParameterRanges MinValue: 0.1,
MaxValue: 0.5

gamma ContinuousParameterRanges MinValue: 0, MaxValue:
5

lambda ContinuousParameterRanges MinValue: 0, MaxValue:
1000

max_delta_step IntegerParameterRanges [0, 10]

max_depth IntegerParameterRanges [0, 10]

min_child_weight ContinuousParameterRanges MinValue: 0, MaxValue:
120

num_round IntegerParameterRanges [1, 4000]

subsample ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

XGBoost Previous Versions
This page contains links to the documentation for previous versions of Amazon SageMaker XGBoost.

Topics
• XGBoost Release 0.72 (p. 266)

XGBoost Release 0.72

This previous release of the Amazon SageMaker XGBoost algorithm is based on the 0.72 release.
XGBoost (eXtreme Gradient Boosting) is a popular and efficient open-source implementation of the
gradient boosted trees algorithm. Gradient boosting is a supervised learning algorithm that attempts
to accurately predict a target variable by combining the estimates of a set of simpler, weaker models.
XGBoost has done remarkably well in machine learning competitions because it robustly handles a
variety of data types, relationships, and distributions, and the large number of hyperparameters that can
be tweaked and tuned for improved fits. This flexibility makes XGBoost a solid choice for problems in
regression, classification (binary and multiclass), and ranking.

Customers should consider using the new release of XGBoost Algorithm (p. 255). They can use it as
an Amazon SageMaker built-in algorithm or as a framework to run scripts in their local environments
as they would typically, for example, do with a Tensorflow deep learning framework. The new
implementation has a smaller memory footprint, better logging, improved hyperparameter validation,
and an expanded set of metrics. The earlier implementation of XGBoost remains available to customers
if they need to postpone migrating to the new version. But this previous implementation will remain tied
to the 0.72 release of XGBoost.

Topics
• Input/Output Interface for the XGBoost Release 0.72 (p. 267)

• EC2 Instance Recommendation for the XGBoost Release 0.72 (p. 267)

• XGBoost Release 0.72 Sample Notebooks (p. 268)

• XGBoost Release 0.72 Hyperparameters (p. 268)

• Tune an XGBoost Release 0.72 Model (p. 274)

266

https://github.com/dmlc/xgboost

Amazon SageMaker Developer Guide
XGBoost Algorithm

Input/Output Interface for the XGBoost Release 0.72

Gradient boosting operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

The Amazon SageMaker implementation of XGBoost supports CSV and libsvm formats for training and
inference:

• For Training ContentType, valid inputs are text/libsvm (default) or text/csv.
• For Inference ContentType, valid inputs are text/libsvm or (the default) text/csv.

Note
For CSV training, the algorithm assumes that the target variable is in the first column and that
the CSV does not have a header record. For CSV inference, the algorithm assumes that CSV input
does not have the label column.
For libsvm training, the algorithm assumes that the label is in the first column. Subsequent
columns contain the zero-based index value pairs for features. So each row has the format:
<label> <index0>:<value0> <index1>:<value1> ... Inference requests for libsvm may or may not
have labels in the libsvm format.

This differs from other Amazon SageMaker algorithms, which use the protobuf training input format to
maintain greater consistency with standard XGBoost data formats.

For CSV training input mode, the total memory available to the algorithm (Instance Count * the memory
available in the InstanceType) must be able to hold the training dataset. For libsvm training input
mode, it's not required, but we recommend it.

SageMaker XGBoost uses the Python pickle module to serialize/deserialize the model, which can be used
for saving/loading the model.

To use a model trained with SageMaker XGBoost in open source XGBoost

• Use the following Python code:

import pickle as pkl
model = pkl.load(open(model_file_path, 'rb'))
prediction with test data
pred = model.predict(dtest)

To differentiate the importance of labelled data points use Instance Weight Supports

• Amazon SageMaker XGBoost allows customers to differentiate the importance of labelled data
points by assigning each instance a weight value. For text/libsvm input, customers can assign
weight values to data instances by attaching them after the labels. For example, label:weight
idx_0:val_0 idx_1:val_1.... For text/csv input, customers need to turn on the csv_weights
flag in the parameters and attach weight values in the column after labels. For example:
label,weight,val_0,val_1,...).

EC2 Instance Recommendation for the XGBoost Release 0.72

Amazon SageMaker XGBoost currently only trains using CPUs. It is a memory-bound (as opposed to
compute-bound) algorithm. So, a general-purpose compute instance (for example, M4) is a better choice
than a compute-optimized instance (for example, C4). Further, we recommend that you have enough
total memory in selected instances to hold the training data. Although it supports the use of disk space
to handle data that does not fit into main memory (the out-of-core feature available with the libsvm
input mode), writing cache files onto disk slows the algorithm processing time.

267

Amazon SageMaker Developer Guide
XGBoost Algorithm

XGBoost Release 0.72 Sample Notebooks

For a sample notebook that shows how to use the latest version of Amazon SageMaker XGBoost as
a built-in algorithm to train and host a regression model, see Regression with Amazon SageMaker
XGBoost algorithm. To use the 0.72 version of XGBoost, you need to change the version in the sample
code to 0.72. For instructions how to create and access Jupyter notebook instances that you can use to
run the example in Amazon SageMaker, see Use Notebook Instances (p. 36). Once you have created a
notebook instance and opened it, select the SageMaker Examples tab to see a list of all the Amazon
SageMaker samples. The topic modeling example notebooks using the NTM algorithms are located in the
Introduction to Amazon algorithms section. To open a notebook, click on its Use tab and select Create
copy.

XGBoost Release 0.72 Hyperparameters

The following table contains the hyperparameters for the XGBoost algorithm. These are parameters
that are set by users to facilitate the estimation of model parameters from data. The required
hyperparameters that must be set are listed first, in alphabetical order. The optional hyperparameters
that can be set are listed next, also in alphabetical order. The Amazon SageMaker XGBoost algorithm is
an implementation of the open-source XGBoost package. Currently Amazon SageMaker supports version
0.72. For more detail about hyperparameter configuration for this version of XGBoost, see XGBoost
Parameters.

Parameter Name Description

num_class The number of classes.

Required if objective is set to multi:softmax or multi:softprob.

Valid values: integer

num_round The number of rounds to run the training.

Required

Valid values: integer

alpha L1 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: float

Default value: 0

base_score The initial prediction score of all instances, global bias.

Optional

Valid values: float

Default value: 0.5

booster Which booster to use. The gbtree and dart values use a tree-
based model, while gblinear uses a linear function.

Optional

Valid values: String. One of gbtree, gblinear, or dart.

268

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.ipynb
https://xgboost.readthedocs.io/en/release_0.72/parameter.html
https://xgboost.readthedocs.io/en/release_0.72/parameter.html

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

Default value: gbtree

colsample_bylevel Subsample ratio of columns for each split, in each level.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

colsample_bytree Subsample ratio of columns when constructing each tree.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

csv_weights When this flag is enabled, XGBoost differentiates the importance
of instances for csv input by taking the second column (the column
after labels) in training data as the instance weights.

Optional

Valid values: 0 or 1

Default value: 0

early_stopping_rounds The model trains until the validation score stops
improving. Validation error needs to decrease at least every
early_stopping_rounds to continue training. Amazon
SageMaker hosting uses the best model for inference.

Optional

Valid values: integer

Default value: -

eta Step size shrinkage used in updates to prevent overfitting. After
each boosting step, you can directly get the weights of new
features. The eta parameter actually shrinks the feature weights to
make the boosting process more conservative.

Optional

Valid values: Float. Range: [0,1].

Default value: 0.3

269

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

eval_metric Evaluation metrics for validation data. A default metric is assigned
according to the objective:

• rmse: for regression
• error: for classification
• map: for ranking

For a list of valid inputs, see XGBoost Parameters.

Optional

Valid values: string

Default value: Default according to objective.

gamma Minimum loss reduction required to make a further partition on
a leaf node of the tree. The larger, the more conservative the
algorithm is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 0

grow_policy Controls the way that new nodes are added to the tree. Currently
supported only if tree_method is set to hist.

Optional

Valid values: String. Either depthwise or lossguide.

Default value: depthwise

lambda L2 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: float

Default value: 1

lambda_bias L2 regularization term on bias.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0

270

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

max_bin Maximum number of discrete bins to bucket continuous features.
Used only if tree_method is set to hist.

Optional

Valid values: integer

Default value: 256

max_delta_step Maximum delta step allowed for each tree's weight estimation.
When a positive integer is used, it helps make the update more
conservative. The preferred option is to use it in logistic regression.
Set it to 1-10 to help control the update.

Optional

Valid values: Integer. Range: [0,∞).

Default value: 0

max_depth Maximum depth of a tree. Increasing this value makes the model
more complex and likely to be overfit. 0 indicates no limit. A limit is
required when grow_policy=depth-wise.

Optional

Valid values: Integer. Range: [0,∞)

Default value: 6

max_leaves Maximum number of nodes to be added. Relevant only if
grow_policy is set to lossguide.

Optional

Valid values: integer

Default value: 0

min_child_weight Minimum sum of instance weight (hessian) needed in a child. If the
tree partition step results in a leaf node with the sum of instance
weight less than min_child_weight, the building process gives
up further partitioning. In linear regression models, this simply
corresponds to a minimum number of instances needed in each
node. The larger the algorithm, the more conservative it is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 1

normalize_type Type of normalization algorithm.

Optional

Valid values: Either tree or forest.

Default value: tree

271

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

nthread Number of parallel threads used to run xgboost.

Optional

Valid values: integer

Default value: Maximum number of threads.

objective Specifies the learning task and the corresponding learning
objective. Examples: reg:linear, reg:logistic,
multi:softmax. For a full list of valid inputs, refer to XGBoost
Parameters.

Optional

Valid values: string

Default value: reg:linear

one_drop When this flag is enabled, at least one tree is always dropped
during the dropout.

Optional

Valid values: 0 or 1

Default value: 0

process_type The type of boosting process to run.

Optional

Valid values: String. Either default or update.

Default value: default

rate_drop The dropout rate that specifies the fraction of previous trees to
drop during the dropout.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

refresh_leaf This is a parameter of the 'refresh' updater plug-in. When set to
true (1), tree leaves and tree node stats are updated. When set to
false(0), only tree node stats are updated.

Optional

Valid values: 0/1

Default value: 1

272

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

sample_type Type of sampling algorithm.

Optional

Valid values: Either uniform or weighted.

Default value: uniform

scale_pos_weight Controls the balance of positive and negative weights. It's useful
for unbalanced classes. A typical value to consider: sum(negative
cases) / sum(positive cases).

Optional

Valid values: float

Default value: 1

seed Random number seed.

Optional

Valid values: integer

Default value: 0

silent 0 means print running messages, 1 means silent mode.

Valid values: 0 or 1

Optional

Default value: 0

sketch_eps Used only for approximate greedy algorithm. This translates into
O(1 / sketch_eps) number of bins. Compared to directly select
number of bins, this comes with theoretical guarantee with sketch
accuracy.

Optional

Valid values: Float, Range: [0, 1].

Default value: 0.03

skip_drop Probability of skipping the dropout procedure during a boosting
iteration.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

273

Amazon SageMaker Developer Guide
XGBoost Algorithm

Parameter Name Description

subsample Subsample ratio of the training instance. Setting it to 0.5 means
that XGBoost randomly collects half of the data instances to grow
trees. This prevents overfitting.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

tree_method The tree construction algorithm used in XGBoost.

Optional

Valid values: One of auto, exact, approx, or hist.

Default value: auto

tweedie_variance_power Parameter that controls the variance of the Tweedie distribution.

Optional

Valid values: Float. Range: (1, 2).

Default value: 1.5

updater A comma-separated string that defines the sequence of tree
updaters to run. This provides a modular way to construct and to
modify the trees.

For a full list of valid inputs, please refer to XGBoost Parameters.

Optional

Valid values: comma-separated string.

Default value: grow_colmaker, prune

Tune an XGBoost Release 0.72 Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective metric
from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters
chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic Model Tuning (p. 288).

Metrics Computed by the XGBoost Release 0.72 Algorithm

The XGBoost algorithm based on version 0.72 computes the following nine metrics during training.
When tuning the model, choose one of these metrics as the objective to evaluate the model.

Metric Name Description Optimization Direction

validation:auc Area under the curve. Maximize

274

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide
XGBoost Algorithm

Metric Name Description Optimization Direction

validation:error Binary classification error rate, calculated as
#(wrong cases)/#(all cases).

Minimize

validation:logloss Negative log-likelihood. Minimize

validation:mae Mean absolute error. Minimize

validation:map Mean average precision. Maximize

validation:merror Multiclass classification error rate, calculated as
#(wrong cases)/#(all cases).

Minimize

validation:mlogloss Negative log-likelihood for multiclass
classification.

Minimize

validation:ndcg Normalized Discounted Cumulative Gain. Maximize

validation:rmse Root mean square error. Minimize

Tunable XGBoost Release 0.72 Hyperparameters

Tune the XGBoost model with the following hyperparameters. The hyperparameters that have the
greatest effect on XGBoost objective metrics are: alpha, min_child_weight, subsample, eta, and
num_round.

Parameter Name Parameter Type Recommended Ranges

alpha ContinuousParameterRanges MinValue: 0, MaxValue:
1000

colsample_bylevel ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1

colsample_bytree ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

eta ContinuousParameterRanges MinValue: 0.1,
MaxValue: 0.5

gamma ContinuousParameterRanges MinValue: 0, MaxValue:
5

lambda ContinuousParameterRanges MinValue: 0, MaxValue:
1000

max_delta_step IntegerParameterRanges [0, 10]

max_depth IntegerParameterRanges [0, 10]

min_child_weight ContinuousParameterRanges MinValue: 0, MaxValue:
120

num_round IntegerParameterRanges [1, 4000]

subsample ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

275

Amazon SageMaker Developer Guide
Monitor and Analyze Training Jobs Using Metrics

Train a Model
For an overview on training a model with Amazon SageMaker, see Train a Model with Amazon SageMaker
 (p. 4).

Amazon SageMaker provides features to monitor and manage the training and validation of machine
learning models. For guidance on metrics available, incremental training, automatic model tuning, and
the use of augmented manifest files to label training data, see the following topics.

• For guidance on metrics used to monitor and train models, see Monitor and Analyze Training Jobs
Using Metrics (p. 276).

• For guidance on incremental training in Amazon SageMaker, see Incremental Training in Amazon
SageMaker (p. 282).

• For guidance on using managed spot training in Amazon SageMaker, see Managed Spot Training in
Amazon SageMaker (p. 287).

• For guidance on using training checkpoints in Amazon SageMaker, see Using Checkpoints in Amazon
SageMaker (p. 288).

• For guidance on automatic model tuning, also known as hyperparameter tuning, see Automatic Model
Tuning (p. 288).

• For guidance on using an augmented manifest file to label training data, see Provide Dataset Metadata
to Training Jobs with an Augmented Manifest File (p. 308).

Monitor and Analyze Training Jobs Using Metrics
An Amazon SageMaker training job is an iterative process that teaches a model to make predictions by
presenting examples from a training dataset. Typically, a training algorithm computes several metrics,
such as training error and prediction accuracy. These metrics help diagnose whether the model is
learning well and will generalize well for making predictions on unseen data. The training algorithm
writes the values of these metrics to logs, which Amazon SageMaker monitors and sends to Amazon
CloudWatch in real time. To analyze the performance of your training job, you can view graphs of these
metrics in CloudWatch. When a training job has completed, you can also get a list of the metric values
that it computes in its final iteration by calling the DescribeTrainingJob (p. 744) operation.

Topics

• Training Metrics Sample Notebooks (p. 276)

• Defining Training Metrics (p. 277)

• Monitoring Training Job Metrics (Console) (p. 279)

• Monitoring Training Job Metrics (Amazon SageMaker Console) (p. 279)

• Example: Viewing a Training and Validation Curve (p. 281)

Training Metrics Sample Notebooks
The following sample notebooks show how to view and plot training metrics:

• An Introduction to the Amazon SageMaker ObjectToVec Model for Sequence-to-sequence Embedding
(object2vec_sentence_similarity.ipynb)

276

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object2vec_sentence_similarity/object2vec_sentence_similarity.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object2vec_sentence_similarity/object2vec_sentence_similarity.ipynb

Amazon SageMaker Developer Guide
Defining Training Metrics

• Regression with the Amazon SageMaker XGBoost Algorithm (xgboost_abalone.ipynb)

For instructions how to create and access Jupyter notebook instances that you can use to run
the examples in Amazon SageMaker, see Use Example Notebooks (p. 42). To see a list of all
the Amazon SageMaker samples, after creating and opening a notebook instance, choose the
SageMaker Examples tab. To access the example notebooks that show how to use training metrics,
object2vec_sentence_similarity.ipynb and xgboost_abalone.ipynb., from the
Introduction to Amazon algorithms section. To open a notebook, choose its Use tab, then choose
Create copy.

Defining Training Metrics
Amazon SageMaker automatically parses the logs for metrics that built-in algorithms emit and sends
those metrics to CloudWatch. If you want Amazon SageMaker to parse logs from a custom algorithm
and send metrics that the algorithm emits to CloudWatch, you have to specify the metrics that you want
Amazon SageMaker to send to CloudWatch when you configure the training job. You specify the name of
the metrics that you want to send and the regular expressions that Amazon SageMaker uses to parse the
logs that your algorithm emits to find those metrics.

You can specify the metrics that you want to track with the Amazon SageMaker console;, the Amazon
SageMaker Python SDK (https://github.com/aws/sagemaker-python-sdk), or the low-level Amazon
SageMaker API.

Topics

• Defining Regular Expressions for Metrics (p. 277)

• Defining Training Metrics (Low-level Amazon SageMaker API) (p. 278)

• Defining Training Metrics (Amazon SageMaker Python SDK) (p. 278)

• Define Training Metrics (Console) (p. 279)

Defining Regular Expressions for Metrics
To find a metric, Amazon SageMaker searches the logs that your algorithm emits and finds logs that
match the regular expression that you specify for that metric. If you are using your own algorithm, do
the following:

• Make sure that the algorithm writes the metrics that you want to capture to logs

• Define a regular expression that accurately searches the logs to capture the values of the metrics that
you want to send to CloudWatch metrics.

For example, suppose your algorithm emits metrics for training error and validation error by writing logs
similar to the following to stdout or stderr:

Train_error=0.138318; Valid_error = 0.324557;

If you want to monitor both of those metrics in CloudWatch, your AlgorithmSpecification would
look like the following:

"AlgorithmSpecification": {
 "TrainingImage": ContainerName,
 "TrainingInputMode": "File",
 "MetricDefinitions" : [
 {

277

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.ipynb
https://github.com/aws/sagemaker-python-sdk

Amazon SageMaker Developer Guide
Defining Training Metrics

 "Name": "train:error",
 "Regex": "Train_error=(.*?);"
 },
 {
 "Name": "validation:error",
 "Regex": "Valid_error=(.*?);"
 }

]}

In the regex for the train:error metric defined above, the first part of the regex finds the exact
text "Train_error=", and the expression (.*?); captures zero or more of any character until the first
semicolon character. In this expression, the parenthesis tell the regex to capture what is inside them, .
means any character, * means zero or more, and ? means capture only until the first instance of the ;
character.

Defining Training Metrics (Low-level Amazon SageMaker API)
Define the metrics that you want to send to CloudWatch by specifying a list of metric names and regular
expressions in the MetricDefinitions field of the AlgorithmSpecification (p. 863) input parameter
that you pass to the CreateTrainingJob (p. 667) operation. For example, if you want to monitor both
the train:error and validation:error metrics in CloudWatch, your AlgorithmSpecification
would look like the following:

"AlgorithmSpecification": {
 "TrainingImage": ContainerName,
 "TrainingInputMode": "File",
 "MetricDefinitions" : [
 {
 "Name": "train:error",
 "Regex": "Train_error=(.*?);"
 },
 {
 "Name": "validation:error",
 "Regex": "Valid_error=(.*?);"
 }

]}

For more information about defining and running a training job by using the low-level Amazon
SageMaker API, see Create and Run a Training Job (AWS SDK for Python (Boto 3)) (p. 23).

Defining Training Metrics (Amazon SageMaker Python SDK)
Define the metrics that you want to send to CloudWatch by specifying a list of metric names and
regular expressions as the metric_definitions argument when you initialize an Estimator object.
For example, if you want to monitor both the train:error and validation:error metrics in
CloudWatch, your Estimator initialization would look like the following:

estimator =
 Estimator(image_name=ImageName,
 role='SageMakerRole', train_instance_count=1,
 train_instance_type='ml.c4.xlarge',
 train_instance_type='ml.c4.xlarge',
 k=10,
 sagemaker_session=sagemaker_session,
 metric_definitions=[
 {'Name': 'train:error', 'Regex': 'Train_error=(.*?);'},
 {'Name': 'validation:error', 'Regex': 'Valid_error=(.*?);'

278

Amazon SageMaker Developer Guide
Monitoring Training Job Metrics (Console)

]
)

For more information about training by using Amazon SageMaker Python SDK estimators, see https://
github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview.

Define Training Metrics (Console)

You can define metrics for a custom algorithm in the console when you create a training job by providing
the name and regular expression (regex) for Metrics.

For example, if you want to monitor both the train:error and validation:error metrics in
CloudWatch, your metric definitions would look like the following:

[
 {
 "Name": "train:error",
 "Regex": "Train_error=(.*?);"
 },
 {
 "Name": "validation:error",
 "Regex": "Valid_error=(.*?);"
 }

]}

Monitoring Training Job Metrics (Console)
You can monitor the metrics that a training job emits in real time in the CloudWatch console.

To monitor training job metrics (CloudWatch console)

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Metrics, then choose /aws/sagemaker/TrainingJobs.

3. Choose TrainingJobName.

4. On the All metrics tab, choose the names of the training metrics that you want to monitor.

5. On the Graphed metrics tab, configure the graph options. For more information about using
CloudWatch graphs, see Graph Metrics in the Amazon CloudWatch User Guide.

Monitoring Training Job Metrics (Amazon SageMaker
Console)
You can monitor the metrics that a training job emits in real time by using the Amazon SageMaker
console.

To monitor training job metrics (Amazon SageMaker console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Training jobs, then choose the training job whose metrics you want to see.

3. Choose TrainingJobName.

4. In the Monitor section, you can review the graphs of instance utilization and algorithm metrics.

279

https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview
https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/graph_metrics.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Monitoring Training Job Metrics
(Amazon SageMaker Console)

280

Amazon SageMaker Developer Guide
Example: Viewing a Training and Validation Curve

Example: Viewing a Training and Validation Curve
Typically, you split the data that you train your model on into training and validation datasets. You use
the training set to train the model parameters that are used to make predictions on the training dataset.
Then you test how well the model makes predictions by calculating predictions for the validation set. To
analyze the performance of a training job, you commonly plot a training curve against a validation curve.

Viewing a graph that shows the accuracy for both the training and validation sets over time can help you
to improve the performance of your model. For example, if training accuracy continues to increase over
time, but, at some point, validation accuracy starts to decrease, you are likely overfitting your model. To
address this, you can make adjustments to your model, such as increasing regularization.

For this example, you can use the Image-classification-full-training example that is in the Example
notebooks section of your Amazon SageMaker notebook instance. If you don't have an Amazon
SageMaker notebook instance, create one by following the instructions at Step 2: Create an Amazon
SageMaker Notebook Instance (p. 17). If you prefer, you can follow along with the End-to-End Multiclass
Image Classification Example in the example notebook on GitHub. You also need an Amazon S3 bucket
to store the training data and for the model output. If you haven't created a bucket to use with Amazon
SageMaker, create one by following the instructions at Step 1: Create an Amazon S3 Bucket (p. 17).

To view training and validation error curves

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebooks, and then choose Notebook instances.

3. Choose the notebook instance that you want to use, and then choose Open.

4. On the dashboard for your notebook instance, choose SageMaker Examples.

5. Expand the Introduction to Amazon Algorithms section, and then choose Use next to Image-
classification-full-training.ipynb.

6. Choose Create copy. Amazon SageMaker creates an editable copy of the Image-classification-full-
training.ipynb notebook in your notebook instance.

7. In the first code cell of the notebook, replace <<bucket-name>> with the name of your S3 bucket.

8. Run all of the cells in the notebook up to the Deploy section. You don't need to deploy an endpoint
or get inference for this example.

9. After the training job starts, open the CloudWatch console at https://console.aws.amazon.com/
cloudwatch/.

10. Choose Metrics, then choose /aws/sagemaker/TrainingJobs.

11. Choose TrainingJobName.

12. On the All metrics tab, choose the train:accuracy and validation:accuracy metrics for the training
job that you created in the notebook.

13. On the graph, choose an area that the metric's values to zoom in. You should see something like the
following:

281

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#regularization
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide
Incremental Training

Incremental Training in Amazon SageMaker
Over time, you might find that a model generates inference that are not as good as they were in the
past. With incremental training, you can use the artifacts from an existing model and use an expanded
dataset to train a new model. Incremental training saves both time and resources.

Use incremental training to:

• Train a new model using an expanded dataset that contains an underlying pattern that was not
accounted for in the previous training and which resulted in poor model performance.

• Use the model artifacts or a portion of the model artifacts from a popular publicly available model in a
training job. You don't need to train a new model from scratch.

282

Amazon SageMaker Developer Guide
Perform Incremental Training (Console)

• Resume a training job that was stopped.
• Train several variants of a model, either with different hyperparameter settings or using different

datasets.

For more information about training jobs, see Train a Model with Amazon SageMaker (p. 4).

You can train incrementally using the Amazon SageMaker console or the Amazon SageMaker Python
SDK.

Important
Only two built-in algorithms currently support incremental training: Object Detection
Algorithm (p. 199) and Image Classification Algorithm (p. 108).

Topics
• Perform Incremental Training (Console) (p. 283)
• Perform Incremental Training (API) (p. 285)

Perform Incremental Training (Console)
To complete this procedure, you need:

• The URL of the Amazon Simple Storage Service (Amazon S3) bucket where you've stored the training
data.

• The URL of the S3 bucket where you want to store the output of the job.
• The Amazon Elastic Container Registry path where the training code is stored. For more information,

see Common Parameters for Built-In Algorithms (p. 58).
• The URL of the S3 bucket where you've stored the model artifacts that you want to use in incremental

training. To find the URL for the model artifacts, see the details page of the training job used to create
the model. To find the details page, in the Amazon SageMaker console, choose Inference, choose
Models, and then choose the model.

To restart a stopped training job, use the URL to the model artifacts that are stored in the details page as
you would with a model or a completed training job.

To perform incremental training (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker.
2. In the navigation pane, choose Training, then choose Training jobs.
3. Choose Create training job.
4. Provide a name for the training job. The name must be unique within an AWS Region in an AWS

account. The training job name must have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and . : +
= @ _ % - (hyphen).

5. Choose the algorithm that you want to use. For information about algorithms, see Use Amazon
SageMaker Built-in Algorithms (p. 56).

6. (Optional) For Resource configuration, either leave the default values or increase the resource
consumption to reduce computation time.

a. (Optional) For Instance type, choose the ML compute instance type that you want to use. In
most cases, ml.m4.xlarge is sufficient.

b. For Instance count, use the default, 1.
c. (Optional) For Additional volume per instance (GB), choose the size of the ML storage volume

that you want to provision. In most cases, you can use the default, 1. If you are using a large
dataset, use a larger size.

283

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide
Perform Incremental Training (Console)

7. Provide information about the input data for the training dataset.

a. For Channel name, either leave the default (train) or enter a more meaningful name for the
training dataset, such as expanded-training-dataset.

b. For InputMode, choose File. For incremental training, you need to use file input mode.

c. For S3 data distribution type, choose FullyReplicated. This causes each ML compute instance
to use a full replicate of the expanded dataset when training incrementally.

d. If the expanded dataset is uncompressed, set the Compression type to None. If the expanded
dataset is compressed using Gzip, set it to Gzip.

e. (Optional) If you are using File input mode, leave Content type empty. For Pipe input mode,
specify the appropriate MIME type. Content type is the multipurpose internet mail extension
(MIME) type of the data.

f. For Record wrapper, if the dataset is saved in RecordIO format, choose RecordIO. If your
dataset is not saved as a RecordIO formatted file, choose None.

g. For S3 data type, if the dataset us stored as a single file, choose S3Prefix. If the dataset is
stored as several files in a folder, choose Manifest.

h. For S3 location, provide the URL to the path where you stored the expanded dataset.

i. Choose Done.

8. To use model artifacts in a training job, you need to add a new channel and provide the needed
information about the model artifacts.

a. For Input data configuration, choose Add channel.

b. For Channel name, enter model to identify this channel as the source of the model artifacts.

c. For InputMode, choose File. Model artifacts are stored as files.

d. For S3 data distribution type, choose FullyReplicated. This indicates that each ML compute
instance should use all of the model artifacts for training.

e. For Compression type, choose None because we are using a model for the channel.

f. Leave Content type empty. Content type is the multipurpose internet mail extension (MIME)
type of the data. For model artifacts, we leave it empty.

g. Set Record wrapper to None because model artifacts are not stored in RecordIO format.

h. For S3 data type, if you are using a built-in algorithm or an algorithm that stores the model as a
single file, choose S3Prefix. If you are using an algorithm that stores the model as several files,
choose Manifest.

i. For S3 location, provide the URL to the path where you stored the model artifacts. Typically,
the model is stored with the name model.tar.gz. To find the URL for the model artifacts, in
the navigation pane, choose Inference, then choose Models. From the list of models, choose
a model to display its details page. The URL for the model artifacts is listed under Primary
container .

j. Choose Done.

9. For Output data configuration, provide the following information:

a. For S3 location, type the path to the S3 bucket where you want to store the output data.

b. (Optional) For Encryption key, you can add your AWS Key Management Service (AWS KMS)
encryption key to encrypt the output data at rest. Provide the key ID or its Amazon Resource
Number (ARN). For more information, see KMS-Managed Encryption Keys.

10. (Optional) For Tags, add one or more tags to the training job. A tag is metadata that you can define
and assign to AWS resources. In this case, you can use tags to help you manage your training jobs. A
tag consists of a key and a value, which you define. For example, you might want to create a tag with
Project as a key and a value referring to a project that is related to the training job, such as Home
value forecasts.

11. Choose Create training job. Amazon SageMaker creates and runs training job.
284

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Amazon SageMaker Developer Guide
Perform Incremental Training (API)

After the training job has completed, the newly trained model artifacts are stored under the S3 output
path that you provided in the Output data configuration field. To deploy the model to get predictions,
see Step 6: Deploy the Model to Amazon SageMaker (p. 26).

Perform Incremental Training (API)
This example shows how to use Amazon SageMaker APIs to train a model using the Amazon SageMaker
image classification algorithm and the Caltech 256 Image Dataset, then train a new model using the
first one. It uses Amazon S3 for input and output sources. Please see the incremental training sample
notebook for more details on using incremental training.

Note
In this example we used the original datasets in the incremental training, however you can use
different datasets, such as ones that contain newly added samples. Upload the new datasets to
S3 and make adjustments to the data_channels variable used to train the new model.

Get an AWS Identity and Access Management (IAM) role that grants required permissions and initialize
environment variables:

import sagemaker
from sagemaker import get_execution_role

role = get_execution_role()
print(role)

sess = sagemaker.Session()

bucket=sess.default_bucket()
print(bucket)
prefix = 'ic-incr-training'

Get the training image for the image classification algorithm:

from sagemaker.amazon.amazon_estimator import get_image_uri

training_image = get_image_uri(sess.boto_region_name, 'image-classification',
 repo_version="latest")
#Display the training image
print (training_image)

Download the training and validation datasets, then upload them to Amazon Simple Storage Service
(Amazon S3):

import os
import urllib.request
import boto3

Define a download function
def download(url):
 filename = url.split("/")[-1]
 if not os.path.exists(filename):
 urllib.request.urlretrieve(url, filename)

Download the caltech-256 training and validation datasets
download('http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec')
download('http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec')

Create four channels: train, validation, train_lst, and validation_lst
s3train = 's3://{}/{}/train/'.format(bucket, prefix)

285

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object_detection_pascalvoc_coco/object_detection_incremental_training.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object_detection_pascalvoc_coco/object_detection_incremental_training.ipynb

Amazon SageMaker Developer Guide
Perform Incremental Training (API)

s3validation = 's3://{}/{}/validation/'.format(bucket, prefix)

Upload the first files to the train and validation channels
!aws s3 cp caltech-256-60-train.rec $s3train --quiet
!aws s3 cp caltech-256-60-val.rec $s3validation --quiet

Define the training hyperparameters:

Define hyperparameters for the estimator
hyperparams = { "num_layers": "18",
 "resize": "32",
 "num_training_samples": "50000",
 "num_classes": "10",
 "image_shape": "3,28,28",
 "mini_batch_size": "128",
 "epochs": "3",
 "learning_rate": "0.1",
 "lr_scheduler_step": "2,3",
 "lr_scheduler_factor": "0.1",
 "augmentation_type": "crop_color",
 "optimizer": "sgd",
 "momentum": "0.9",
 "weight_decay": "0.0001",
 "beta_1": "0.9",
 "beta_2": "0.999",
 "gamma": "0.9",
 "eps": "1e-8",
 "top_k": "5",
 "checkpoint_frequency": "1",
 "use_pretrained_model": "0",
 "model_prefix": "" }

Create an estimator object and train the first model using the training and validation datasets:

Fit the base estimator
s3_output_location = 's3://{}/{}/output'.format(bucket, prefix)
ic = sagemaker.estimator.Estimator(training_image,
 role,
 train_instance_count=1,
 train_instance_type='ml.p2.xlarge',
 train_volume_size=50,
 train_max_run=360000,
 input_mode='File',
 output_path=s3_output_location,
 sagemaker_session=sess,
 hyperparameters=hyperparams)

train_data = sagemaker.session.s3_input(s3train, distribution='FullyReplicated',
 content_type='application/x-recordio',
 s3_data_type='S3Prefix')
validation_data = sagemaker.session.s3_input(s3validation, distribution='FullyReplicated',
 content_type='application/x-recordio',
 s3_data_type='S3Prefix')

data_channels = {'train': train_data, 'validation': validation_data}

ic.fit(inputs=data_channels, logs=True)

To use the model to incrementally train another model, create a new estimator object and use the model
artifacts (ic.model_data, in this example) for the model_uri input argument:

Given the base estimator, create a new one for incremental training

286

Amazon SageMaker Developer Guide
Managed Spot Training

incr_ic = sagemaker.estimator.Estimator(training_image,
 role,
 train_instance_count=1,
 train_instance_type='ml.p2.xlarge',
 train_volume_size=50,
 train_max_run=360000,
 input_mode='File',
 output_path=s3_output_location,
 sagemaker_session=sess,
 hyperparameters=hyperparams,
 model_uri=ic.model_data) # This parameter will
 ingest the previous job's model as a new channel
incr_ic.fit(inputs=data_channels, logs=True)

After the training job has completed, the newly trained model artifacts are stored under the S3 output
path that you provided in Output_path. To deploy the model to get predictions, see Step 6: Deploy the
Model to Amazon SageMaker (p. 26).

Managed Spot Training in Amazon SageMaker
Amazon SageMaker makes it easy to train machine learning models using managed Amazon EC2 Spot
instances. Managed spot training can optimize the cost of training models up to 90% over on-demand
instances. Amazon SageMaker manages the Spot interruptions on your behalf.

Managed Spot Training uses Amazon EC2 Spot instance to run training jobs instead of on-demand
instances. You can specify which training jobs use spot instances and a stopping condition that specifies
how long Amazon SageMaker waits for a job to run using Amazon EC2 Spot instances. Metrics and logs
generated during training runs are available in CloudWatch.

Spot instances can be interrupted, causing jobs to take longer to start or finish. You can configure your
managed spot training job to use checkpoints. Amazon SageMaker copies checkpoint data from a local
path to Amazon S3. When the job is restarted, Amazon SageMaker copies the data from Amazon S3 back
into the local path. The training can then resume from the last checkpoint instead of restarting. For more
information about checkpointing, see Using Checkpoints in Amazon SageMaker (p. 288).

Note
Unless your training job will complete quickly, we recommend you use checkpointing with
managed spot training. SageMaker built-in algorithms and marketplace algorithms that do not
checkpoint are currently limited to a MaxWaitTimeInSeconds of 3600 seconds (60 minutes).

Topics

• Using Managed Spot Training (p. 287)

• Managed Spot Training Lifecycle (p. 288)

Using Managed Spot Training
To use managed spot training, create a training job. Set EnableManagedSpotTraining to
True and specify the MaxWaitTimeInSecods. MaxWaitTimeInSeconds must be larger
than MaxRuntimeInSeconds. For more information about creating a training job, see
CreateTrainingJob (p. 667).

You can calculate the savings from using managed spot training using the formula (1
- BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For example, if
BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.

287

Amazon SageMaker Developer Guide
Managed Spot Training Lifecycle

Managed Spot Training Lifecycle
You can monitor a training job using TrainingJobStatus and SecondaryStatus returned by
DescribeTrainingJob (p. 744). The list below shows how TrainingJobStatus and SecondaryStatus
values change depending on the training scenario:

• Spot instances acquired with no interruption during training

1. InProgress: Starting↠ Downloading ↠ Training ↠ Uploading

• Spot instances interrupted once. Later, enough spot instances were acquired to finish the training
job.

1. InProgress: Starting ↠ Downloading ↠ Training ↠ Interrupted ↠ Starting ↠
Downloading ↠ Training ↠ Uploading

• Spot instances interrupted twice and MaxWaitTimeInSeconds exceeded.

1. InProgress: Starting ↠ Downloading ↠ Training ↠ Interrupted ↠ Starting ↠
Downloading ↠ Training ↠ Interrupted ↠ Downloading ↠ Training

2. Stopping: Stopping

3. Stopped: MaxWaitTimeExceeded

• Spot instances were never launched.

1. InProgress: Starting

2. Stopping: Stopping

3. Stopped: MaxWaitTimeExceeded

Using Checkpoints in Amazon SageMaker
A checkpoint is a snapshot of the state of the model. They can be used with Managed Spot Training. If a
training job is interrupted, a snapshot can be used to resume from a previously saved point. This can save
training time.

Snapshots are saved to an Amazon S3 location you specify. You can configure the local path to use for
snapshots or use the default. When a training job is interrupted, Amazon SageMaker copies the training
data to Amazon S3. When the training job is restarted, the checkpoint data is copied to the local path. It
can be used to resume at the checkpoint.

To enable checkpoints, provide an Amazon S3 location. You can optionally provide a local path and
choose to use a shared folder. The default local path is /opt/ml/checkpoints/. For more information,
see CreateTrainingJob (p. 667)

Automatic Model Tuning
Amazon SageMaker automatic model tuning, also known as hyperparameter tuning, finds the best
version of a model by running many training jobs on your dataset using the algorithm and ranges of
hyperparameters that you specify. It then chooses the hyperparameter values that result in a model that
performs the best, as measured by a metric that you choose.

For example, suppose that you want to solve a binary classification problem on a marketing dataset.
Your goal is to maximize the area under the curve (auc) metric of the algorithm by training an XGBoost
Algorithm (p. 255) model. You don't know which values of the eta, alpha, min_child_weight,
and max_depth hyperparameters to use to train the best model. To find the best values for these
hyperparameters, you can specify ranges of values that Amazon SageMaker hyperparameter tuning

288

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#binary-classification-model
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#AUC

Amazon SageMaker Developer Guide
How Hyperparameter Tuning Works

searches to find the combination of values that results in the training job that performs the best as
measured by the objective metric that you chose. Hyperparameter tuning launches training jobs that use
hyperparameter values in the ranges that you specified, and returns the training job with highest auc.

You can use Amazon SageMaker automatic model tuning with built-in algorithms, custom algorithms,
and Amazon SageMaker pre-built containers for machine learning frameworks.

Before you start using hyperparameter tuning, you should have a well-defined machine learning
problem, including the following:

• A dataset

• An understanding of the type of algorithm you need to train

• A clear understanding of how you measure success

You should also prepare your dataset and algorithm so that they work in Amazon SageMaker and
successfully run a training job at least once. For information about setting up and running a training job,
see Get Started (p. 16).

Topics

• How Hyperparameter Tuning Works (p. 289)

• Define Metrics (p. 290)

• Define Hyperparameter Ranges (p. 292)

• Example: Hyperparameter Tuning Job (p. 293)

• Stop Training Jobs Early (p. 302)

• Run a Warm Start Hyperparameter Tuning Job (p. 303)

• Automatic Model Tuning Resource Limits (p. 307)

• Best Practices for Hyperparameter Tuning (p. 308)

How Hyperparameter Tuning Works

Random Search
In a random search, hyperparameter tuning chooses a random combination of values from within
the ranges that you specify for hyperparameters for each training job it launches. Because the choice
of hyperparameter values doesn't depend on the results of previous training jobs, you can run the
maximum number of concurrent training jobs without affecting the performance of the search.

For an example notebook that uses random search, see https://github.com/awslabs/
amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/
hpo_xgboost_random_log.ipynb.

Bayesian Search
Bayesian search treats hyperparameter tuning like a [regression] problem. Given a set of input features
(the hyperparameters), hyperparameter tuning optimizes a model for the metric that you choose.
To solve a regression problem, hyperparameter tuning makes guesses about which hyperparameter
combinations are likely to get the best results, and runs training jobs to test these values. After testing
the first set of hyperparameter values, hyperparameter tuning uses regression to choose the next set of
hyperparameter values to test.

Hyperparameter tuning uses an Amazon SageMaker implementation of Bayesian optimization.

289

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#[regression]

Amazon SageMaker Developer Guide
Define Metrics

When choosing the best hyperparameters for the next training job, hyperparameter tuning
considers everything that it knows about this problem so far. Sometimes it chooses a combination
of hyperparameter values close to the combination that resulted in the best previous training job to
incrementally improve performance. This allows hyperparameter tuning to exploit the best known
results. Other times, it chooses a set of hyperparameter values far removed from those it has tried.
This allows it to explore the range of hyperparameter values to try to find new areas that are not well
understood. The explore/exploit trade-off is common in many machine learning problems.

For more information about Bayesian optimization, see the following:

Basic Topics on Bayesian Optimization

• A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning

• Practical Bayesian Optimization of Machine Learning Algorithms
• Taking the Human Out of the Loop: A Review of Bayesian Optimization

Speeding up Bayesian Optimization

• Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
• Google Vizier: A Service for Black-Box Optimization
• Learning Curve Prediction with Bayesian Neural Networks
• Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of

learning curves

Advanced Modeling and Transfer Learning

• Scalable Hyperparameter Transfer Learning
• Bayesian Optimization with Tree-structured Dependencies
• Bayesian Optimization with Robust Bayesian Neural Networks
• Scalable Bayesian Optimization Using Deep Neural Networks
• Input Warping for Bayesian Optimization of Non-stationary Functions

Note
Hyperparameter tuning might not improve your model. It is an advanced tool for building
machine solutions, and, as such, should be considered part of the scientific development
process.
When you build complex machine learning systems like deep learning neural networks,
exploring all of the possible combinations is impractical. Hyperparameter tuning can accelerate
your productivity by trying many variations of a model, focusing on the most promising
combinations of hyperparameter values within the ranges that you specify. To get good results,
you need to choose the right ranges to explore. Because the algorithm itself is stochastic, it’s
possible that the hyperparameter tuning model will fail to converge on the best answer, even if
the best possible combination of values is within the ranges that you choose.

Define Metrics
Note
When you use one of the Amazon SageMaker built-in algorithms, you don't need to define
metrics. Built-in algorithms automatically send metrics to hyperparameter tuning. You do need
to choose one of the metrics that the built-in algorithm emits as the objective metric for the
tuning job. For a list of metrics that a built-in algorithm emits, see the Metrics table for the
algorithm in Use Amazon SageMaker Built-in Algorithms (p. 56).

290

https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1206.2944
http://ieeexplore.ieee.org/document/7352306/?reload=true
https://liamcli.com/assets/pdf/hyperband_jmlr.pdf
https://dl.acm.org/citation.cfm?id=3098043
https://openreview.net/forum?id=S11KBYclx
https://dl.acm.org/citation.cfm?id=2832731
https://dl.acm.org/citation.cfm?id=2832731
https://papers.nips.cc/paper/7917-scalable-hyperparameter-transfer-learning
http://proceedings.mlr.press/v70/jenatton17a.html
https://papers.nips.cc/paper/6116-bayesian-optimization-with-robust-bayesian-neural-networks
http://proceedings.mlr.press/v37/snoek15.pdf
https://arxiv.org/abs/1402.0929

Amazon SageMaker Developer Guide
Define Metrics

To optimize hyperparameters for a machine learning model, a tuning job evaluates the training
jobs it launches by using a metric that the training algorithm writes to logs. Amazon SageMaker
hyperparameter tuning parses your algorithm’s stdout and stderr streams to find algorithm metrics,
such as loss or validation-accuracy, that show how well the model is performing on the dataset

Note
These are the same metrics that Amazon SageMaker sends to CloudWatch Logs. For more
information, see Log Amazon SageMaker Events with Amazon CloudWatch (p. 466).

If you use your own algorithm for hyperparameter tuning, make sure that your algorithm emits at least
one metric by writing evaluation data to stderr or stdout.

Note
Hyperparameter tuning sends an additional hyperparameter, _tuning_objective_metric
to the training algorithm. This hyperparameter specifies the objective metric being used for the
hyperparameter tuning job, so that your algorithm can use that information during training.

You can define up to 20 metrics for your tuning job to monitor. You choose one of those metrics
to be the objective metric, which hyperparameter tuning uses to evaluate the training jobs. The
hyperparameter tuning job returns the training job that returned the best value for the objective metric
as the best training job.

You define metrics for a tuning job by specifying a name and a regular expression for each metric
that your tuning job monitors. Design the regular expressions to capture the values of metrics that
your algorithm emits. You pass these metrics to the CreateHyperParameterTuningJob (p. 638)
operation in the TrainingJobDefinition parameter as the MetricDefinitions field of the
AlgorithmSpecification field.

The following example defines 4 metrics:

=[
 {
 "Name": "loss",
 "Regex": "Loss = (.*?);",
 },
 {
 "Name": "ganloss",
 "Regex": "GAN_loss=(.*?);",
 },
 {
 "Name": "discloss",
 "Regex": "disc_train_loss=(.*?);",
 },
 {
 "Name": "disc-combined",
 "Regex": "disc-combined=(.*?);",
 },
]

The following is an example of the log that the algorithm writes:

GAN_loss=0.138318; Scaled_reg=2.654134; disc:[-0.017371,0.102429] real 93.3% gen 0.0%
 disc-combined=0.000000; disc_train_loss=1.374587; Loss = 16.020744; Iteration 0 took
 0.704s; Elapsed=0s

Use the regular expression (regex) to match the algorithm's log output and capture the numeric values
of metrics. For example, in the regex for the loss metric defined above, the first part of the regex finds
the exact text "Loss = ", and the expression (.*?); captures zero or more of any character until the first
semicolon character. In this expression, the parenthesis tell the regex to capture what is inside them, .
means any character, * means zero or more, and ? means capture only until the first instance of the ;
character.

291

Amazon SageMaker Developer Guide
Define Hyperparameter Ranges

Choose one of the metrics that you define as the objective metric for the tuning job. If you are
using the API, specify the value of the name key in the HyperParameterTuningJobObjective
field of the HyperParameterTuningJobConfig parameter that you send to the
CreateHyperParameterTuningJob (p. 638) operation.

Define Hyperparameter Ranges
Hyperparameter tuning finds the best hyperparameter values for your model by searching over ranges of
hyperparameters. You specify the hyperparameters and range of values over which to search by defining
hyperparameter ranges for your tuning job. Choosing hyperparameters and ranges significantly affects
the performance of your tuning job. For guidance on choosing hyperparameters and ranges, see Best
Practices for Hyperparameter Tuning (p. 308).

To define hyperparameter ranges by using the low-level API, you specify the names of hyperparameters
and ranges of values in the ParameterRanges field of the HyperParameterTuningJobConfig
parameter that you pass to the CreateHyperParameterTuningJob (p. 638) operation. The
ParameterRanges field has three subfields, one for each of the categorical, integer, and continuous
hyperparameter ranges. You can define up to 20 hyperparameters to search over. Each value of a
categorical hyperparameter range counts as a hyperparameter against the limit. Hyperparameter ranges
have the following structure:

"ParameterRanges": {
 "CategoricalParameterRanges": [
 {
 "Name": "tree_method",
 "Values": ["auto", "exact", "approx", "hist"]
 }
],
 "ContinuousParameterRanges": [
 {
 "Name": "eta",
 "MaxValue" : "0.5",
 "MinValue": "0",
 "ScalingType": "Auto"
 }
],
 "IntegerParameterRanges": [
 {
 "Name": "max_depth",
 "MaxValue": "10",
 "MinValue": "1",
 "ScalingType": "Auto"
 }
]
 }

Hyperparameter Scaling
For integer and continuous hyperparameter ranges, you can choose the scale you want hyperparameter
tuning to use to search the range of values by specifying a value for the ScalingType field of the
hyperparameter range. You can choose from the following scaling types:

Auto

Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
Linear

Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Typically, you choose this if the range of all values from the lowest to the highest is relatively small

292

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

(within one order of magnitude), because uniformly searching values from the range will give you a
reasonable exploration of the entire range.

Logarithmic

Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic
scale.

Logarithmic scaling works only for ranges that have only values greater than 0.

Choose logarithmic scaling when you are searching a range that spans several orders of magnitude.
For example, if you are tuning a Tune a Linear Learner Model (p. 162) model, and you specify a range
of values between .0001 and 1.0 for the learning_rate hyperparameter, searching uniformly on
a logarithmic scale gives you a better sample of the entire range than searching on a linear scale
would, because searching on a linear scale would, on average, devote 90 percent of your training
budget to only the values between .1 and 1.0, leaving only 10 percent of your training budget for
the values between .0001 and .1.

ReverseLogarithmic

Hyperparemeter tuning searches the values in the hyperparameter range by using a reverse
logarithmic scale. reverse logarithmic scaling is supported only for continuous hyperparameter
ranges. It is not supported for integer hyperparameter ranges.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

Choose reverse logarithmic scaling when you are searching a range that is highly sensitive to small
changes that are very close to 1.

For an example notebook that uses hyperparameter scaling, see https://github.com/awslabs/
amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/
hpo_xgboost_random_log.ipynb.

Example: Hyperparameter Tuning Job
This example shows how to create a new notebook for configuring and launching a hyperparameter
tuning job. The tuning job uses the XGBoost Algorithm (p. 255) to train a model to predict whether a
customer will enroll for a term deposit at a bank after being contacted by phone.

You use the low-level AWS SDK for Python (Boto) to configure and launch the hyperparameter tuning
job, and the AWS Management Console to monitor the status of hyperparameter training jobs. You can
also use the Amazon SageMaker high-level Amazon SageMaker Python SDK to configure, run, monitor,
and analyze hyperparameter tuning jobs. For more information, see https://github.com/aws/sagemaker-
python-sdk.

Prerequisites
To run the code in this example, you need

• An AWS account and an administrator user (p. 14)

• An Amazon S3 bucket for storing your training dataset and the model artifacts created during
training (p. 17)

• A running Amazon SageMaker notebook instance (p. 17)

Topics

• Create a Notebook (p. 294)

293

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

• Get the Amazon Sagemaker Boto 3 Client (p. 294)

• Get the Amazon SageMaker Execution Role (p. 295)

• Specify a Bucket and Data Output Location (p. 295)

• Download, Prepare, and Upload Training Data (p. 295)

• Configure and Launch a Hyperparameter Tuning Job (p. 296)

• Monitor the Progress of a Hyperparameter Tuning Job (p. 299)

• Clean up (p. 301)

Create a Notebook

Create a Jupyter notebook that contains a preinstalled environment with the default Anaconda
installation and Python3.

To create a Jupyter notebook

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/
.

2. Open a running notebook instance, by choosing Open next to its name. The Jupyter notebook server
page appears:

3. To create a notebook, choose Files, New, and conda_python3. .

4. Name the notebook.

Next Step

Get the Amazon Sagemaker Boto 3 Client (p. 294)

Get the Amazon Sagemaker Boto 3 Client

Import libraries and get a Boto3 client, which you use to call the hyperparameter tuning APIs.

In the new Jupyter notebook, type the following code:

import sagemaker
import boto3
from sagemaker.predictor import csv_serializer # Converts strings for HTTP POST requests
 on inference

import numpy as np # For performing matrix operations and
 numerical processing
import pandas as pd # For manipulating tabular data
from time import gmtime, strftime
import os

294

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

region = boto3.Session().region_name
smclient = boto3.Session().client('sagemaker')

Next Step

Get the Amazon SageMaker Execution Role (p. 295)

Get the Amazon SageMaker Execution Role

Get the execution role for the notebook instance. This is the IAM role that you created when you created
your notebook instance. You pass the role to the tuning job.

from sagemaker import get_execution_role

role = get_execution_role()
print(role)

Next Step

Specify a Bucket and Data Output Location (p. 295)

Specify a Bucket and Data Output Location

Specify the name of the Amazon S3 bucket where you want to store the output of the training jobs that
the tuning job launches. The name of the bucket must contain sagemaker, and be globally unique. The
bucket must be in the same AWS Region as the notebook instance that you use for this example. You can
use the bucket that you created when you set up Amazon SageMaker, or you can create a new bucket.
For information, see Step 1: Create an Amazon S3 Bucket (p. 17).

Note
The name of the bucket doesn't need to contain sagemaker if the role that you use to
run the hyperparameter tuning job has a policy that gives the SageMaker service principle
S3FullAccess permission.

prefix is the path within the bucket where Amazon SageMaker stores the output from training jobs.

bucket = 'sagemaker-MyBucket' # Replace with the name of your
 S3 bucket
prefix = 'sagemaker/DEMO-automatic-model-tuning-xgboost-dm'

Next Step

Download, Prepare, and Upload Training Data (p. 295)

Download, Prepare, and Upload Training Data

For this example, you use a training dataset of information about bank customers that includes
the customer's job, marital status, and how they were contacted during the bank's direct marketing
campaign. To use a dataset for a hyperparameter tuning job, you download it, transform the data, and
then upload it to an Amazon S3 bucket.

For more information about the dataset and the data transformation that the example performs, see the
hpo_xgboost_direct_marketing_sagemaker_APIs notebook in the Hyperparameter Tuning section of the
SageMaker Examples tab in your notebook instance.

295

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

Download and Explore the Training Dataset

To download and explore the dataset, run the following code in your notebook:

!wget -N https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-
additional.zip
!unzip -o bank-additional.zip
data = pd.read_csv('./bank-additional/bank-additional-full.csv', sep=';')
pd.set_option('display.max_columns', 500) # Make sure we can see all of the columns
pd.set_option('display.max_rows', 5) # Keep the output on one page
data

Prepare and Upload Data

Before creating the hyperparameter tuning job, prepare the data and upload it to an S3 bucket where
the hyperparameter tuning job can access it.

Run the following code in your notebook:

data['no_previous_contact'] = np.where(data['pdays'] == 999, 1, 0)
 # Indicator variable to capture when pdays takes a value of 999
data['not_working'] = np.where(np.in1d(data['job'], ['student', 'retired', 'unemployed']),
 1, 0) # Indicator for individuals not actively employed
model_data = pd.get_dummies(data)
 # Convert categorical variables to sets of indicators
model_data
model_data = model_data.drop(['duration', 'emp.var.rate', 'cons.price.idx',
 'cons.conf.idx', 'euribor3m', 'nr.employed'], axis=1)

train_data, validation_data, test_data = np.split(model_data.sample(frac=1,
 random_state=1729), [int(0.7 * len(model_data)), int(0.9*len(model_data))])

pd.concat([train_data['y_yes'], train_data.drop(['y_no', 'y_yes'], axis=1)],
 axis=1).to_csv('train.csv', index=False, header=False)
pd.concat([validation_data['y_yes'], validation_data.drop(['y_no', 'y_yes'], axis=1)],
 axis=1).to_csv('validation.csv', index=False, header=False)
pd.concat([test_data['y_yes'], test_data.drop(['y_no', 'y_yes'], axis=1)],
 axis=1).to_csv('test.csv', index=False, header=False)

boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train/
train.csv')).upload_file('train.csv')
boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'validation/
validation.csv')).upload_file('validation.csv')

Next Step

Configure and Launch a Hyperparameter Tuning Job (p. 296)

Configure and Launch a Hyperparameter Tuning Job
To configure and launch a hyperparameter tuning job, complete the following steps.

Topics

• Specify the Hyperparameter Tuning Job Settings (p. 297)

• Configure the Training Jobs (p. 298)

• Name and Launch the Hyperparameter Tuning Job (p. 299)

• Next Step (p. 299)

296

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

Specify the Hyperparameter Tuning Job Settings

To specify settings for the hyperparameter tuning job, you define a JSON object. You
pass the object as the value of the HyperParameterTuningJobConfig parameter to
CreateHyperParameterTuningJob (p. 638) when you create the tuning job.

In this JSON object, you specify:

• The ranges of hyperparameters that you want to tune. For more information, see Define
Hyperparameter Ranges (p. 292)

• The limits of the resource that the hyperparameter tuning job can consume.
• The objective metric for the hyperparameter tuning job. An objective metric is the metric that the

hyperparameter tuning job uses to evaluate the training job that it launches.

Note
To use your own algorithm for hyperparameter tuning, you need to define metrics for your
algorithm. For information,see Define Metrics (p. 290).

The hyperparameter tuning job defines ranges for the eta, alpha, min_child_weight, and
max_depth hyperparameters of the XGBoost Algorithm (p. 255) built-in algorithm. The objective metric
for the hyperparameter tuning job maximizes the validation:auc metric that the algorithm sends to
CloudWatch Logs.

tuning_job_config = {
 "ParameterRanges": {
 "CategoricalParameterRanges": [],
 "ContinuousParameterRanges": [
 {
 "MaxValue": "1",
 "MinValue": "0",
 "Name": "eta"
 },
 {
 "MaxValue": "2",
 "MinValue": "0",
 "Name": "alpha"
 },
 {
 "MaxValue": "10",
 "MinValue": "1",
 "Name": "min_child_weight"
 }
],
 "IntegerParameterRanges": [
 {
 "MaxValue": "10",
 "MinValue": "1",
 "Name": "max_depth"
 }
]
 },
 "ResourceLimits": {
 "MaxNumberOfTrainingJobs": 20,
 "MaxParallelTrainingJobs": 3
 },
 "Strategy": "Bayesian",
 "HyperParameterTuningJobObjective": {
 "MetricName": "validation:auc",
 "Type": "Maximize"
 }
 }

297

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

Configure the Training Jobs

To configure the training jobs that the tuning job launches, define a JSON object that you pass as the
value of the TrainingJobDefinition parameter of the CreateHyperParameterTuningJob (p. 638)
call.

In this JSON object, you specify:

• Optional—Metrics that the training jobs emit.

Note
Define metrics only when you use a custom training algorithm. Because this example uses
a built-in algorithm, you don't specify metrics. For information about defining metrics, see
Define Metrics (p. 290).

• The container image that specifies the training algorithm.

• The input configuration for your training and test data.

• The storage location for the algorithm's output. Specify the S3 bucket where you want to store the
output of the training jobs.

• The values of algorithm hyperparameters that are not tuned in the tuning job.

• The type of instance to use for the training jobs.

• The stopping condition for the training jobs. This is the maximum duration for each training job.

In this example, we set static values for the eval_metric, num_round, objective, rate_drop, and
tweedie_variance_power parameters of the XGBoost Algorithm (p. 255) built-in algorithm.

from sagemaker.amazon.amazon_estimator import get_image_uri
training_image = get_image_uri(boto3.Session().region_name, 'xgboost')

s3_input_train = 's3://{}/{}/train'.format(bucket, prefix)
s3_input_validation ='s3://{}/{}/validation/'.format(bucket, prefix)

training_job_definition = {
 "AlgorithmSpecification": {
 "TrainingImage": training_image,
 "TrainingInputMode": "File"
 },
 "InputDataConfig": [
 {
 "ChannelName": "train",
 "CompressionType": "None",
 "ContentType": "csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": s3_input_train
 }
 }
 },
 {
 "ChannelName": "validation",
 "CompressionType": "None",
 "ContentType": "csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": s3_input_validation
 }

298

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

 }
 }
],
 "OutputDataConfig": {
 "S3OutputPath": "s3://{}/{}/output".format(bucket,prefix)
 },
 "ResourceConfig": {
 "InstanceCount": 2,
 "InstanceType": "ml.c4.2xlarge",
 "VolumeSizeInGB": 10
 },
 "RoleArn": role,
 "StaticHyperParameters": {
 "eval_metric": "auc",
 "num_round": "100",
 "objective": "binary:logistic",
 "rate_drop": "0.3",
 "tweedie_variance_power": "1.4"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 43200
 }
}

Name and Launch the Hyperparameter Tuning Job

Now you can provide a name for the hyperparameter tuning job and then launch it by
calling the CreateHyperParameterTuningJob (p. 638) API. Pass tuning_job_config, and
training_job_definition that you created in previous steps as the values of the parameters.

tuning_job_name = "MyTuningJob"
smclient.create_hyper_parameter_tuning_job(HyperParameterTuningJobName = tuning_job_name,
 HyperParameterTuningJobConfig =
 tuning_job_config,
 TrainingJobDefinition = training_job_definition)

Next Step

Monitor the Progress of a Hyperparameter Tuning Job (p. 299)

Monitor the Progress of a Hyperparameter Tuning Job
To monitor the progress of a hyperparameter tuning job and the training jobs that it launches, use the
Amazon SageMaker console.

Topics
• View the Status of the Hyperparameter Tuning Job (p. 299)
• View the Status of the Training Jobs (p. 300)
• View the Best Training Job (p. 301)

View the Status of the Hyperparameter Tuning Job

To view the status of the hyperparameter tuning job

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/
.

2. Choose Hyperparameter tuning jobs.

299

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

3. In the list of hyperparameter tuning jobs, check the status of the hyperparameter tuning job you
launched. A tuning job can be:

• Completed—The hyperparameter tuning job successfully completed.

• InProgress—The hyperparameter tuning job is in progress. One or more training jobs are still
running.

• Failed—The hyperparameter tuning job failed.

• Stopped—The hyperparameter tuning job was manually stopped before it completed. All training
jobs that the hyperparameter tuning job launched are stopped.

• Stopping—The hyperparameter tuning job is in the process of stopping.

View the Status of the Training Jobs

To view the status of the training jobs that the hyperparameter tuning job launched

1. In the list of hyperparameter tuning jobs, choose the job that you launched.

2. Choose Training jobs.

3. View the status of each training job. To see more details about a job, choose it in the list of training
jobs. To view a summary of the status of all of the training jobs that the hyperparameter tuning job
launched, see Training job status counter.

300

Amazon SageMaker Developer Guide
Example: Hyperparameter Tuning Job

A training job can be:

• Completed—The training job successfully completed.
• InProgress—The training job is in progress.
• Stopped—The training job was manually stopped before it completed.
• Failed (Retriable)—The training job failed, but can be retried. A failed training job can be

retried only if it failed because an internal service error occurred.
• Failed (Non-retriable)—The training job failed and can't be retried. A failed training job

can't be retried when a client error occurs.

View the Best Training Job

A hyperparameter tuning job uses the objective metric that each training job returns to evaluate training
jobs. While the hyperparameter tuning job is in progress, the best training job is the one that has
returned the best objective metric so far. After the hyperparameter tuning job is complete, the best
training job is the one that returned the best objective metric.

To view the best training job, choose Best training job.

To deploy the best training job as a model that you can host at an Amazon SageMaker endpoint, choose
Create model.

Next Step

Clean up (p. 301)

Clean up
To avoid incurring unnecessary charges, when you are done with the example, use the AWS Management
Console to delete the resources that you created for it.

Note
If you plan to explore other examples, you might want to keep some of these resources, such as
your notebook instance, S3 bucket, and IAM role.

301

Amazon SageMaker Developer Guide
Stop Training Jobs Early

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/ and delete the
notebook instance. Stop the instance before deleting it.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/ and delete the bucket that you
created to store model artifacts and the training dataset.

3. Open the IAM console at https://console.aws.amazon.com/iam/ and delete the IAM role. If you
created permission policies, you can delete them, too.

4. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/ and delete
all of the log groups that have names starting with /aws/sagemaker/.

Stop Training Jobs Early
Stop the training jobs that a hyperparameter tuning job launches early when they are not improving
significantly as measured by the objective metric. Stopping training jobs early can help reduce compute
time and helps you avoid overfitting your model. To configure a hyperparameter tuning job to stop
training jobs early, do one of the following:

• If you are using the AWS SDK for Python (Boto 3), set the TrainingJobEarlyStoppingType field
of the HyperParameterTuningJobConfig (p. 922) object that you use to configure the tuning job to
AUTO.

• If you are using the Amazon SageMaker Python SDK, set the early_stopping_type parameter of
the HyperParameterTuner object to Auto.

• In the Amazon SageMaker console, in the Create hyperparameter tuning job workflow, under Early
stopping, choose Auto.

For a sample notebook that demonstrates how to use early stopping, see https://
github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/
image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb or open the
hpo_image_classification_early_stopping.ipynb notebook in the Hyperparameter Tuning
section of the SageMaker Examples in a notebook instance. For information about using sample
notebooks in a notebook instance, see Use Example Notebooks (p. 42).

How Early Stopping Works
When you enable early stopping for a hyperparameter tuning job, Amazon SageMaker evaluates each
training job the hyperparameter tuning job launches as follows:

• After each epoch of training, get the value of the objective metric.
• Compute the running average of the objective metric for all previous training jobs up to the same

epoch, and then compute the median of all of the running averages.
• If the value of the objective metric for the current training job is worse (higher when minimizing

or lower when maximizing the objective metric) than the median value of running averages of the
objective metric for previous training jobs up to the same epoch, Amazon SageMaker stops the current
training job.

Algorithms That Support Early Stopping
To support early stopping, an algorithm must emit objective metrics for each epoch. The following built-
in Amazon SageMaker algorithms support early stopping:

• Linear Learner Algorithm (p. 162)—Supported only if you use objective_loss as the objective
metric.

• XGBoost Algorithm (p. 255)

302

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/
https://sagemaker.readthedocs.io/en/stable/tuner.html
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb

Amazon SageMaker Developer Guide
Run a Warm Start Hyperparameter Tuning Job

• Image Classification Algorithm (p. 108)
• Object Detection Algorithm (p. 199)
• Sequence-to-Sequence Algorithm (p. 242)
• IP Insights Algorithm (p. 131)

Note
This list of built-in algorithms that support early stopping is current as of December 13, 2018.
Other built-in algorithms might support early stopping in the future. If an algorithm emits a
metric that can be used as an objective metric for a hyperparameter tuning job (preferably a
validation metric), then it supports early stopping.

To use early stopping with your own algorithm, you must write your algorithms such that it emits the
value of the objective metric after each epoch. The following list shows how you can do that in different
frameworks:

TensorFlow

Use the tf.contrib.learn.monitors.ValidationMonitor class. For information, see https://
www.tensorflow.org/api_docs/python/tf/contrib/learn/monitors.

MXNet

Use the mxnet.callback.LogValidationMetricsCallback. For information, see https://
mxnet.apache.org/api/python/callback/callback.html.

Chainer

Extend chainer by using the extensions.Evaluator class. For information, see https://
docs.chainer.org/en/v1.24.0/reference/extensions.html#evaluator.

PyTorch and Spark

There is no high-level support. You must explicitly write your training code so that it computes
objective metrics and writes them to logs after each epoch.

Run a Warm Start Hyperparameter Tuning Job
Use warm start to start a hyperparameter tuning job using one or more previous tuning jobs as a starting
point. The results of previous tuning jobs are used to inform which combinations of hyperparameters
to search over in the new tuning job. Hyperparameter tuning uses either Bayesian or random search to
choose combinations of hyperparameter values from ranges that you specify. For more information, see
How Hyperparameter Tuning Works (p. 289). Using information from previous hyperparameter tuning
jobs can help increase the performance of the new hyperparameter tuning job by making the search for
the best combination of hyperparameters more efficient.

Note
Warm start tuning jobs typically take longer to start than standard hyperparameter tuning
jobs, because the results from the parent jobs have to be loaded before the job can start. The
increased time depends on the total number of training jobs launched by the parent jobs.

Reasons you might want to consider warm start include:

• You want to gradually increase the number of training jobs over several tuning jobs based on the
results you see after each iteration.

• You get new data, and want to tune a model using the new data.
• You want to change the ranges of hyperparameters that you used in a previous tuning job, change

static hyperparameters to tunable, or change tunable hyperparameters to static values.
• You stopped a previous hyperparameter job early or it stopped unexpectedly.

303

https://www.tensorflow.org/api_docs/python/tf/contrib/learn/monitors
https://www.tensorflow.org/api_docs/python/tf/contrib/learn/monitors
https://mxnet.apache.org/api/python/callback/callback.html
https://mxnet.apache.org/api/python/callback/callback.html
https://docs.chainer.org/en/v1.24.0/reference/extensions.html#evaluator
https://docs.chainer.org/en/v1.24.0/reference/extensions.html#evaluator

Amazon SageMaker Developer Guide
Run a Warm Start Hyperparameter Tuning Job

Topics
• Types of Warm Start Tuning Jobs (p. 304)
• Warm Start Tuning Restrictions (p. 304)
• Warm Start Tuning Sample Notebook (p. 305)
• Create a Warm Start Tuning Job (p. 305)

Types of Warm Start Tuning Jobs
There are two different types of warm start tuning jobs:

IDENTICAL_DATA_AND_ALGORITHM

The new hyperparameter tuning job uses the same input data and training image as the parent
tuning jobs. You can change the hyperparameter ranges to search and the maximum number of
training jobs that the hyperparameter tuning job launches. You can also change hyperparameters
from tunable to static, and from static to tunable, but the total number of static plus tunable
hyperparameters must remain the same as it is in all parent jobs. You cannot use a new version of
the training algorithm, unless the changes in the new version do not affect the algorithm itself. For
example, changes that improve logging or adding support for a different data format are allowed.

Use identical data and algorithm when you use the same training data as you used in a previous
hyperparameter tuning job, but you want to increase the total number of training jobs or change
ranges or values of hyperparameters.

When you run an warm start tuning job of type IDENTICAL_DATA_AND_ALGORITHM, there
is an additional field in the response to DescribeHyperParameterTuningJob (p. 715) named
OverallBestTrainingJob. The value of this field is the TrainingJobSummary (p. 1019) for the
training job with the best objective metric value of all training jobs launched by this tuning job and
all parent jobs specified for the warm start tuning job.

TRANSFER_LEARNING

The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum
number of concurrent training jobs, and maximum number of training jobs that are different than
those of its parent hyperparameter tuning jobs. You can also change hyperparameters from tunable
to static, and from static to tunable, but the total number of static plus tunable hyperparameters
must remain the same as it is in all parent jobs. The training algorithm image can also be a different
version from the version used in the parent hyperparameter tuning job. When you use transfer
learning, changes in the dataset or the algorithm that significantly affect the value of the objective
metric might reduce the usefulness of using warm start tuning.

Warm Start Tuning Restrictions
The following restrictions apply to all warm start tuning jobs:

• A tuning job can have a maximum of 5 parent jobs, and all parent jobs must be in a terminal state
(Completed, Stopped, or Failed) before you start the new tuning job.

• The objective metric used in the new tuning job must be the same as the objective metric used in the
parent jobs.

• The total number of static plus tunable hyperparameters must remain the same between parent
jobs and the new tuning job. Because of this, if you think you might want to use a hyperparameter
as tunable in a future warm start tuning job, you should add it as a static hyperparameter when you
create a tuning job.

• The type of each hyperparameter (continuous, integer, categorical) must not change between parent
jobs and the new tuning job.

304

Amazon SageMaker Developer Guide
Run a Warm Start Hyperparameter Tuning Job

• The number of total changes from tunable hyperparameters in the parent jobs to static
hyperparameters in the new tuning job, plus the number of changes in the values of static
hyperparameters cannot be more than 10. Each value in a categorical hyperparameter counts against
this limit. For example, if the parent job has a tunable categorical hyperparameter with the possible
values red and blue, you change that hyperparameter to static in the new tuning job, that counts as
2 changes against the allowed total of 10. If the same hyperparameter had a static value of red in the
parent job, and you change the static value to blue in the new tuning job, it also counts as 2 changes.

• Warm start tuning is not recursive. For example, if you create MyTuningJob3 as a warm start tuning
job with MyTuningJob2 as a parent job, and MyTuningJob2 is itself an warm start tuning job with
a parent job MyTuningJob1, the information that was learned when running MyTuningJob1 is not
used for MyTuningJob3. If you want to use the information from MyTuningJob1, you must explicitly
add it as a parent for MyTuningJob3.

• The training jobs launched by every parent job in a warm start tuning job count against the 500
maximum training jobs for a tuning job.

• Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm
start tuning jobs.

Warm Start Tuning Sample Notebook
For a sample notebook that shows how to use warm start tuning, see https://github.com/awslabs/
amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_warmstart/
hpo_image_classification_warmstart.ipynb. For instructions how to create and access Jupyter
notebook instances that you can use to run the example in Amazon SageMaker, see Use
Example Notebooks (p. 42). Once you have created a notebook instance and opened it, select
the SageMaker Examples tab to see a list of all the Amazon SageMaker samples. The warm
start tuning example notebook is located in the Hyperparameter tuning section, and is named
hpo_image_classification_warmstart.ipynb. To open a notebook, click on its Use tab and select
Create copy.

Create a Warm Start Tuning Job
You can use either the low-level AWS SDK for Python (Boto 3) or the high-level Amazon SageMaker
Python SDK to create a warm start tuning job.

Topics
• Create a Warm Start Tuning Job (Low-level Amazon SageMaker API for Python (Boto 3)) (p. 305)
• Create a Warm Start Tuning Job (Amazon SageMaker Python SDK) (p. 306)

Create a Warm Start Tuning Job (Low-level Amazon SageMaker API for Python
(Boto 3))

To use warm start tuning, you specify the values of a
HyperParameterTuningJobWarmStartConfig (p. 927) object, and pass that as the WarmStartConfig
field in a call to CreateHyperParameterTuningJob (p. 638).

The following code shows how to create a HyperParameterTuningJobWarmStartConfig (p. 927) object
and pass it to CreateHyperParameterTuningJob (p. 638) job by using the low-level Amazon SageMaker
API for Python (Boto 3).

Create the HyperParameterTuningJobWarmStartConfig object:

warm_start_config = {
 "ParentHyperParameterTuningJobs" : [
 {"HyperParameterTuningJobName" : 'MyParentTuningJob'}

305

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_warmstart/hpo_image_classification_warmstart.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_warmstart/hpo_image_classification_warmstart.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_warmstart/hpo_image_classification_warmstart.ipynb

Amazon SageMaker Developer Guide
Run a Warm Start Hyperparameter Tuning Job

],
 "WarmStartType" : "IdenticalDataAndAlgorithm"
}

Create the warm start tuning job:

smclient = boto3.Session().client('sagemaker')
smclient.create_hyper_parameter_tuning_job(HyperParameterTuningJobName =
 'MyWarmStartTuningJob',
 HyperParameterTuningJobConfig = tuning_job_config, # See notebook for tuning
 configuration
 TrainingJobDefinition = training_job_definition, # See notebook for job definition
 WarmStartConfig = warm_start_config)

Create a Warm Start Tuning Job (Amazon SageMaker Python SDK)

To use the Amazon SageMaker Python SDK to run a warm start tuning job, you:

• Specify the parent jobs and the warm start type by using a WarmStartConfig object.
• Pass the WarmStartConfig object as the value of the warm_start_config argument of a

HyperparameterTuner object.
• Call the fit method of the HyperparameterTuner object.

For more information about using the Amazon SageMaker Python SDK for hyperparameter tuning, see
https://github.com/aws/sagemaker-python-sdk#sagemaker-automatic-model-tuning.

This example uses an estimator that uses the Image Classification Algorithm (p. 108) algorithm for
training. The following code sets the hyperparameter ranges that the warm start tuning job searches
within to find the best combination of values. For information about setting hyperparameter ranges, see
Define Hyperparameter Ranges (p. 292).

hyperparameter_ranges = {'learning_rate': ContinuousParameter(0.0, 0.1),
 'momentum': ContinuousParameter(0.0, 0.99)}

The following code configures the warm start tuning job by creating a WarmStartConfig object.

from sagemaker.tuner import WarmStartConfig,
 WarmStartTypes

parent_tuning_job_name = "MyParentTuningJob"
warm_start_config = WarmStartConfig(type=WarmStartTypes.IDENTICAL_DATA_AND_ALGORITHM,
 parents={parent_tuning_job_name})

Now set the values for static hyperparameters, which are hyperparameters that keep the same
value for every training job that the warm start tuning job launches. In the following code,
imageclassification is an estimator that was created previously.

imageclassification.set_hyperparameters(num_layers=18,
 image_shape='3,224,224',
 num_classes=257,
 num_training_samples=15420,
 mini_batch_size=128,
 epochs=30,
 optimizer='sgd',
 top_k='2',
 precision_dtype='float32',
 augmentation_type='crop')

306

https://sagemaker.readthedocs.io/en/latest/tuner.html
https://github.com/aws/sagemaker-python-sdk#sagemaker-automatic-model-tuning

Amazon SageMaker Developer Guide
Automatic Model Tuning Resource Limits

Now create the HyperparameterTuner object and pass the WarmStartConfig object that you
previously created as the warm_start_config argument.

tuner_warm_start = HyperparameterTuner(imageclassification,
 'validation:accuracy',
 hyperparameter_ranges,
 objective_type='Maximize',
 max_jobs=10,
 max_parallel_jobs=2,
 base_tuning_job_name='warmstart',
 warm_start_config=warm_start_config)

Finally, call the fit method of the HyperparameterTuner object to launch the warm start tuning job.

tuner_warm_start.fit(
 {'train': s3_input_train, 'validation': s3_input_validation},
 include_cls_metadata=False)

Automatic Model Tuning Resource Limits
Amazon SageMaker sets default limits for the following resources:

• Number of concurrent hyperparameter tuning jobs - 100
• Number of hyperparameters that can be searched - 20

Note
Every possible value in a categorical hyperparameter counts against this limit.

• Number of metrics defined per hyperparameter tuning job - 20
• Number of concurrent training jobs per hyperparameter tuning job - 10
• Number of training jobs per hyperparameter tuning job - 500
• Maximum run time for a hyperparameter tuning job - 30 days

When you plan hyperparameter tuning jobs, you also have to take the limits on training resources into
account. For information about the default resource limits for Amazon SageMaker training jobs, see
Amazon SageMaker Limits. Every concurrent training instance that all of your hyperparameter tuning
jobs run on count against the total number of training instances allowed. For example, suppose you run
10 concurrent hyperparameter tuning jobs. Each of those hyperparameter tuning jobs runs 100 total
training jobs, and runs 20 concurrent training jobs. Each of those traning jobs runs on one ml.m4.xlarge
instance. The following limits apply:

• Number of concurrent hyperparameter tuning jobs - You don't need to increase the limit, because 10
tuning jobs is below the limit of 100.

• Number of training jobs per hyperparameter tuning job - You don't need to increase the limit, because
100 training jobs is below the limit of 500.

• Number of concurrent training jobs per hyperparameter tuning job - You need to request a limit
increase to 20, because the default limit is 10.

• Amazon SageMaker training ml.m4.xlarge instances - You need to request limit increase to 200,
because you have 10 hyperparameter tuning jobs, with each of them running 20 concurrent training
jobs. The default limit is 20 instances.

• Amazon SageMaker training total instance count - You need to request a limit increase to 200, because
you have 10 hyperparameter tuning jobs, with each of them running 20 concurrent training jobs. The
default limit is 20 instances.

For information about requesting limit increases for AWS resources, see AWS Service Limits.

307

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_sagemaker
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon SageMaker Developer Guide
Best Practices for Hyperparameter Tuning

Best Practices for Hyperparameter Tuning
Hyperparameter optimization is not a fully-automated process. To improve optimization, use the
following guidelines when you create hyperparameters.

Topics
• Choosing the Number of Hyperparameters (p. 308)
• Choosing Hyperparameter Ranges (p. 308)
• Using Logarithmic Scales for Hyperparameters (p. 308)
• Choosing the Best Number of Concurrent Training Jobs (p. 308)
• Running Training Jobs on Multiple Instances (p. 308)

Choosing the Number of Hyperparameters
The difficulty of a hyperparameter tuning job depends primarily on the number of hyperparameters
that Amazon SageMaker has to search. Although you can simultaneously use up to 20 variables in a
hyperparameter tuning job, limiting your search to a much smaller number is likely to give better results.

Choosing Hyperparameter Ranges
The range of values for hyperparameters that you choose to search can significantly affect the success of
hyperparameter optimization. Although you might want to specify a very large range that covers every
possible value for a hyperparameter, you will get better results by limiting your search to a small range
of values. If you get the best metric values within a part of a range, consider limiting the range to that
part.

Using Logarithmic Scales for Hyperparameters
During hyperparameter tuning, Amazon SageMaker attempts to figure out if your hyperparameters
are log-scaled or linear-scaled. Initially, it assumes that hyperparameters are linear-scaled. If they
should be log-scaled, it might take some time for Amazon SageMaker to discover that. If you know
that a hyperparameter should be log-scaled and can convert it yourself, doing so could improve
hyperparameter optimization.

Choosing the Best Number of Concurrent Training Jobs
Running more hyperparameter tuning jobs concurrently gets more work done quickly, but a tuning job
improves only through successive rounds of experiments. Typically, running one training job at a time
achieves the best results with the least amount of compute time.

Running Training Jobs on Multiple Instances
When a training job runs on multiple instances, hyperparameter tuning uses the last-reported objective
metric from all instances of that training job as the value of the objective metric for that training job.
Design distributed training jobs so that you get they report the objective metric that you want.

Provide Dataset Metadata to Training Jobs with an
Augmented Manifest File

To classify data into different groupings, you train a model by using a dataset and metadata that act
as labels. To include metadata with your dataset in a training job, use an augmented manifest file.

308

Amazon SageMaker Developer Guide
Augmented Manifest File format

When using an augmented manifest file, your dataset must be stored in Amazon Simple Storage Service
(Amazon S3) and you must configure your training job to use dataset stored there. You specify the
location and format of this dataset for one or more Channel (p. 876).

When specifying a channel's parameters, you specify a path to the file, called a S3Uri. Amazon
SageMaker interprets this URI based on the specified S3DataType in S3DataSource (p. 994). The
AugmentedManifestFile option defines a manifest format that includes metadata with the input
data. Using an augmented manifest file is an alternative to preprocessing when you have labeled data.
For training jobs using labeled data, you typically need to preprocess the dataset to combine input data
with metadata before training. If your training dataset is large, preprocessing can be time consuming and
expensive.

Augmented Manifest File Format
An augmented manifest file must be formatted in JSON Lines format. In JSON Lines format, each line in
the file is a complete JSON object followed by a newline separator.

During training, Amazon SageMaker parses each JSON line and sends some or all of its attributes on to
the training algorithm. You specify which attribute contents to pass and the order in which to pass them
with the AttributeNames parameter of the CreateTrainingJob (p. 667) API. The AttributeNames
parameter is an ordered list of attribute names that Amazon SageMaker looks for in the JSON object to
use as training input.

For example, if you list ["line", "book"] for AttributeNames, the input data must include the
attribute names of line and book in the specified order. For this example, the following augmented
manifest file content is valid:

{"author": "Herman Melville", "line": "Call me Ishmael", "book": "Moby Dick"}
{"line": "It was love at first sight.", "author": "Joseph Heller", "book": "Catch-22"}

Amazon SageMaker ignores unlisted attribute names even if they precede, follow, or are in between
listed attributes.

When using augmented manifest files, observe the following guidelines:

• The order of the attributes listed in the AttributeNames parameter determines the order of the
attributes passed to the algorithm in the training job.

• The listed AttributeNames can be a subset of all of the attributes in the JSON line. Amazon
SageMaker ignores unlisted attributes in the file.

• You can specify any type of data allowed by the JSON format in AttributeNames, including text,
numerical, data arrays, or objects.

• To include an S3 URI as an attribute name, add the suffix -ref to it.

If an attribute name contains the suffix -ref, the attribute's value must be an S3 URI to a data file that
is accessible to the training job. For example, if AttributeNames contains ["image-ref", "is-a-
cat"], a valid augmented manifest file might contain these lines:

{"image-ref": "s3://mybucket/sample01/image1.jpg", "is-a-cat": 1}
{"image-ref": "s3://mybucket/sample02/image2.jpg", "is-a-cat": 0}

For the first line of this manifest, Amazon SageMaker retrieves the contents of the S3 object s3://
mybucket/foo/image1.jpg and streams it to the algorithm for training. The second line is the string
representation of the is-a-cat attribute "1", which is followed by the contents of the second line.

To create an augmented manifest file, use Amazon SageMaker Ground Truth to create a labeling job. For
more information, see Output Data (p. 545).

309

http://jsonlines.org/

Amazon SageMaker Developer Guide
Augmented Manifest File format

Stream Augmented Manifest File Data
Augmented manifest files are supported only for channels using Pipe input mode. For each channel, the
data is extracted from its augmented manifest file and streamed (in order) to the algorithm through the
channel's named pipe. Pipe mode uses the first in first out (FIFO) method, so records are processed in the
order in which they are queued. For information about Pipe input mode, see InputMode.

Attribute names with a "-ref" suffix point to preformatted binary data. In some cases, the algorithm
knows how to parse the data. In other cases, you might need to wrap the data so that records are
delimited for the algorithm. If the algorithm is compatible with RecordIO-formatted data, specifying
RecordIO for RecordWrapperType solves this issue. If the algorithm is not compatible with RecordIO
format, specify None for RecordWrapperType and make sure that your data is parsed correctly for
your algorithm. Using the ["image-ref", "is-a-cat"] example, if you use RecordIO wrapping, the
following stream of data is sent to the queue:

recordio_formatted(s3://mybucket/foo/
image1.jpg)recordio_formatted("1")recordio_formatted(s3://mybucket/bar/
image2.jpg)recordio_formatted("0")

Images that aren't wrapped with RecordIO format, are streamed with the corresponding is-a-cat
attribute value as one record. This can cause a problem because the algorithm might not delimit the
images and attributes correctly.

With augmented manifest files and Pipe mode in general, size limits of the EBS volume do not
apply. This includes settings that otherwise must be within the EBS volume size limit such as
S3DataDistributionType. For more information about Pipe mode and how to use it, see Using Your Own
Training Algorithms - Input Data Configuration.

Use an Augmented Manifest File (Console)
To complete this procedure, you need:

• The URL of the S3 bucket where you've stored the augmented manifest file.
• To store the data that is listed in the augmented manifest file in an S3 bucket.
• The URL of the S3 bucket where you want to store the output of the job.

To use an augmented manifest file in a training job (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker.
2. In the navigation pane, choose Training, then choose Training jobs.
3. Choose Create training job.
4. Provide a name for the training job. The name must be unique within an AWS Region in an AWS

account. It can have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and . : + = @ _ % - (hyphen).
5. Choose the algorithm that you want to use. For information about supported built-in algorithms,

see Use Amazon SageMaker Built-in Algorithms (p. 56). If you want to use a custom algorithm, make
sure that it is compatible with Pipe mode.

6. (Optional) For Resource configuration, either accept the default values or, to reduce computation
time, increase the resource consumption.

a. (Optional) For Instance type, choose the ML compute instance type that you want to use. In
most cases, ml.m4.xlarge is sufficient.

b. For Instance count, use the default, 1.
c. (Optional) For Additional volume per instance (GB), choose the size of the ML storage volume

that you want to provision. In most cases, you can use the default, 1. If you are using a large
dataset, use a larger size.

310

API_Channel.html#SageMaker-Type-Channel-InputMode
https://mxnet.incubator.apache.org/architecture/note_data_loading.html#data-format
API_S3DataSource.html#SageMaker-Type-S3DataSource-S3DataDistributionType
your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-inputdataconfig
your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-inputdataconfig
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide
Use an Augmented Manifest File (API)

7. Provide information about the input data for the training dataset.

a. For Channel name, either accept the default (train) or enter a more meaningful name, such as
training-augmented-manifest-file.

b. For InputMode, choose Pipe.
c. For S3 data distribution type, choose FullyReplicated. When training incrementally, fully

replicating causes each ML compute instance to use a complete copy of the expanded dataset.
For neural-based algorithms, such as Neural Topic Model (NTM) Algorithm (p. 177), choose
ShardedByS3Key.

d. If the data specified in the augmented manifest file is uncompressed, set the Compression type
to None. If the data is compressed using gzip, set it to Gzip.

e. (Optional) For Content type, specify the appropriate MIME type. Content type is the
multipurpose internet mail extension (MIME) type of the data.

f. For Record wrapper, if the dataset specified in the augmented manifest file is saved in RecordIO
format, choose RecordIO. If your dataset is not saved as a RecordIO-formatted file, choose
None.

g. For S3 data type, choose AugmentedManifestFile.
h. For S3 location, provide the path to the bucket where you stored the augmented manifest file.
i. For AugmentedManifestFile attribute names, specify the name of an attribute that you want

to use. The attribute name must be present within the augmented manifest file, and is case-
sensitive.

j. (Optional) To add more attribute names, choose Add row and specify another attribute name
for each attribute.

k. (Optional) To adjust the order of attribute names, choose the up or down buttons next to the
names. When using an augmented manifest file, the order of the specified attribute names is
important.

l. Choose Done.
8. For Output data configuration, provide the following information:

a. For S3 location, type the path to the S3 bucket where you want to store the output data.
b. (Optional) You can use your AWS Key Management Service (AWS KMS) encryption key to

encrypt the output data at rest. For Encryption key, provide the key ID or its Amazon Resource
Number (ARN). For more information, see KMS-Managed Encryption Keys.

9. (Optional) For Tags, add one or more tags to the training job. A tag is metadata that you can define
and assign to AWS resources. In this case, you can use tags to help you manage your training jobs. A
tag consists of a key and a value, which you define. For example, you might want to create a tag with
Project as a key and a value that refers to a project that is related to the training job, such as Home
value forecasts.

10. Choose Create training job. Amazon SageMaker creates and runs the training job.

After the training job has finished, Amazon SageMaker stores the model artifacts in the bucket whose
path you provided for S3 output path in the Output data configuration field. To deploy the model to
get predictions, see Step 6: Deploy the Model to Amazon SageMaker (p. 26).

Use an Augmented Manifest File (API)
The following shows how to train a model with an augmented manifest file using the Amazon
SageMaker high-level Python library:

Create a model object set to using "Pipe" mode.
model = sagemaker.estimator.Estimator(training_image,
 role,
 train_instance_count=1,

311

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Amazon SageMaker Developer Guide
Use an Augmented Manifest File (API)

 train_instance_type='ml.p3.2xlarge',
 train_volume_size = 50,
 train_max_run = 360000,
 input_mode = 'Pipe',
 output_path=s3_output_location,
 sagemaker_session=session)

Create a train data channel with S3_data_type as 'AugmentedManifestFile' and attribute
 names.
train_data = sagemaker.session.s3_input(your_augmented_manifest_file,
 distribution='FullyReplicated',
 content_type='image/jpeg',
 s3_data_type='AugmentedManifestFile',
 attribute_names=['source-ref', 'annotations'])
data_channels = {'train': train_data}

Train a model.
model.fit(inputs=data_channels, logs=True)

After the training job has finished, Amazon SageMaker stores the model artifacts in the bucket whose
path you provided for S3 output path in the Output data configuration field. To deploy the model to
get predictions, see Step 6: Deploy the Model to Amazon SageMaker (p. 26).

312

Amazon SageMaker Developer Guide
Prerequisites

Deploy a Model
After you build and train your model, you can deploy it to get predictions in one of two ways:

• To set up a persistent endpoint to get one prediction at a time, use Amazon SageMaker hosting
services. For an overview on deploying a model with Amazon SageMaker hosting services, see Deploy a
Model on Amazon SageMaker Hosting Services (p. 7).

• To get predictions for an entire dataset, use Amazon SageMaker batch transform. For an overview on
deploying a model with Amazon SageMaker batch transform, see Get Inferences for an Entire Dataset
with Batch Transform (p. 10).

Prerequisites
These topics assume that you have built and trained a machine learning model and are ready to
deploy it. If you are new to Amazon SageMaker and have not completed these prerequisite tasks, work
through the steps in the Get Started (p. 16) tutorial to familiarize yourself with an example of how
Amazon SageMaker manages the data science process and how it handles model deployment. For more
information about building a model, see Build a Model (p. 56). For information about training a model,
see Train a Model (p. 276).

What do you want to do?
Amazon SageMaker provides features to manage resources and optimize inference performance when
deploying machine learning models. For guidance on using inference pipelines, compiling and deploying
models with Neo, Elastic Inference, and automatic model scaling, see the following topics.

• To manage data processing and real-time predictions or to process batch transforms in a pipeline, see
Deploy an Inference Pipeline (p. 314).

• To train TensorFlow, Apache MXNet, PyTorch, ONNX, and XGBoost models once and optimize them to
deploy on ARM, Intel, and Nvidia processors, see Amazon SageMaker Neo (p. 328).

• To preprocess entire datasets quickly or to get inferences from a trained model for large datasets when
you don't need a persistent endpoint, see Batch Transform (p. 348).

• To speed up the throughput and decrease the latency of getting real-time inferences from your deep
learning models that are deployed as Amazon SageMaker hosted models using a GPU instance for your
endpoint, see Amazon SageMaker Elastic Inference (EI) (p. 355).

• To dynamically adjust the number of instances provisioned in response to changes in your workload,
see Automatically Scale Amazon SageMaker Models (p. 365).

Manage Model Deployments
For guidance on managing model deployments, including monitoring, troubleshooting, and best
practices, and for information on storage associated with inference hosting instances:

• For tools that can be used to monitor model deployments, see Monitor Amazon SageMaker (p. 461).
• For troubleshooting model deployments, see Troubleshoot Amazon SageMaker Model Deployments

 (p. 380).
• For model deployment best practices, see Best Practices for Deploying Amazon SageMaker

Models (p. 381).

313

Amazon SageMaker Developer Guide
Deploy Your Own Inference Code

• For information about the size of storage volumes provided for different sizes of hosting instances, see
Hosting Instance Storage Volumes (p. 381).

Deploy Your Own Inference Code
For developers that need more advanced guidance on how to run your own inference code:

• To run your own inference code hosting services, see Use Your Own Inference Code with Hosting
Services (p. 408).

• To run your own inference code for batch transforms, see Use Your Own Inference Code with Batch
Transform (p. 411).

Guide to Amazon SageMaker
What Is Amazon SageMaker? (p. 1)

Topics
• Deploy an Inference Pipeline (p. 314)
• Amazon SageMaker Neo (p. 328)
• Batch Transform (p. 348)
• Amazon SageMaker Elastic Inference (EI) (p. 355)
• Automatically Scale Amazon SageMaker Models (p. 365)
• Troubleshoot Amazon SageMaker Model Deployments (p. 380)
• Best Practices for Deploying Amazon SageMaker Models (p. 381)
• Hosting Instance Storage Volumes (p. 381)

Deploy an Inference Pipeline
An inference pipeline is an Amazon SageMaker model that is composed of a linear sequence of two to
five containers that process requests for inferences on data. You use an inference pipeline to define and
deploy any combination of pretrained Amazon SageMaker built-in algorithms and your own custom
algorithms packaged in Docker containers. You can use an inference pipeline to combine preprocessing,
predictions, and post-processing data science tasks. Inference pipelines are fully managed.

You can add Amazon SageMaker Spark ML Serving and scikit-learn containers that reuse the data
transformers developed for training models. The entire assembled inference pipeline can be considered
as an Amazon SageMaker model that you can use to make either real-time predictions or to process
batch transforms directly without any external preprocessing.

Within an inference pipeline model, Amazon SageMaker handles invocations as a sequence of HTTP
requests. The first container in the pipeline handles the initial request, then the intermediate response
is sent as a request to the second container, and so on, for each container in the pipeline. Amazon
SageMaker returns the final response to the client.

When you deploy the pipeline model, Amazon SageMaker installs and runs all of the containers on
each Amazon Elastic Compute Cloud (Amazon EC2) instance in the endpoint or transform job. Feature
processing and inferences run with low latency because the containers are co-located on the same EC2
instances. You define the containers for a pipeline model using the CreateModel (p. 648) operation
or from the console. Instead of setting one PrimaryContainer, you use the Containers parameter.
to set the containers that make up the pipeline You also specify the order in which the containers are
executed.

314

Amazon SageMaker Developer Guide
Sample Notebooks

A pipeline model is immutable, but you can update an inference pipeline by deploying a new one
using the UpdateEndpoint (p. 840) operation. This modularity supports greater flexibility during
experimentation.

There are no additional costs for using this feature. You pay only for the instances running on an
endpoint.

Topics

• Sample Notebooks for Inference Pipelines (p. 315)

• Feature Processing with Spark ML and Scikit-learn (p. 315)

• Create a Pipeline Model (p. 316)

• Run Real-time Predictions with an Inference Pipeline (p. 318)

• Run Batch Transforms with Inference Pipelines (p. 320)

• Inference Pipeline Logs and Metrics (p. 321)

• Troubleshoot Inference Pipelines (p. 326)

Sample Notebooks for Inference Pipelines
For a sample notebook that uploads and processes a dataset, trains a model, and builds a pipeline
model, see the Inference Pipelines with Spark ML and XGBoost on Abalone notebook. This notebook
shows how you can build your machine learning pipeline by using Spark feature Transformers and the
Amazon SageMaker XGBoost algorithm. After training the model, the sample shows how to deploy
the pipeline (feature Transformer and XGBoost) for real-time predictions and also performs a batch
transform job using the same pipeline.

For more examples that show how to create and deploy inference pipelines, see the Inference Pipelines
with SparkML and BlazingText on DBPedia and Training using SparkML on EMR and hosting on
SageMaker sample notebooks. For instructions on creating and accessing Jupyter notebook instances
that you can use to run the example in Amazon SageMaker, see Use Notebook Instances (p. 36).

To see a list of all the Amazon SageMaker samples, after creating and opening a notebook instance,
choose the SageMaker Examples tab. There are three inference pipeline notebooks. The first two
inference pipeline notebooks just described are located in the advanced_functionality folder and
the third notebook is in the sagemaker-python-sdk folder. To open a notebook, choose its Use tab,
then choose Create copy.

Feature Processing with Spark ML and Scikit-learn
Before training a model with either Amazon SageMaker built-in algorithms or custom algorithms, you
can use Spark and scikit-learn preprocessors to transform your data and engineer features.

Feature Processing with Spark ML
You can run Spark ML jobs with AWS Glue, a serverless ETL (extract, transform, load) service, from your
Amazon SageMaker notebook. You can also connect to existing EMR clusters to run Spark ML jobs with
Amazon EMR. To do this, you need an AWS Identity and Access Management (IAM) role that grants
permission for making calls from your Amazon SageMaker notebook to AWS Glue.

Note
Currently, AWS Glue supports only Python 2.7.

After engineering features, you package and serialize Spark ML jobs with MLeap into MLeap containers
that you can add to an inference pipeline. You don't need to use externally managed Spark clusters.

315

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_blazingtext_dbpedia
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_blazingtext_dbpedia
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/sparkml_serving_emr_mleap_abalone
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/sparkml_serving_emr_mleap_abalone
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html

Amazon SageMaker Developer Guide
Create a Pipeline Model

With this approach, you can seamlessly scale from a sample of rows to terabytes of data. The same
transformers work for both training and inference, so you don't need to duplicate preprocessing and
feature engineering logic or develop a one-time solution to make the models persist. With inference
pipelines, you don't need to maintain outside infrastructure, and you can make predictions directly from
data inputs.

When you run a Spark ML job on AWS Glue, a Spark ML pipeline is serialized into MLeap format. Then,
you can use the job with the SparkML Model Serving Container in an Amazon SageMaker Inference
Pipeline.MLeap is a serialization format and execution engine for machine learning pipelines. It supports
Spark, Scikit-learn, and TensorFlow for training pipelines and exporting them to a serialized pipeline
called an MLeap Bundle. You can deserialize Bundles back into Spark for batch-mode scoring or into the
MLeap runtime to power real-time API services.

Feature Processing with Sci-kit Learn
You can run and package scikit-learn jobs into containers directly in Amazon SageMaker. For an example
of Python code for building a scikit-learn featurizer model that trains on Fisher's Iris flower data set and
predicts the species of Iris based on morphological measurements, see IRIS Training and Prediction with
Sagemaker Scikit-learn.

Create a Pipeline Model
To create a pipeline model that can be deployed to an endpoint or used for a batch transform job, use
the Amazon SageMaker console or the CreateModel operation.

To create an inference pipeline (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/
.

2. Choose Models, and then choose Create models from the Inference group.

3. On the Create model page, provide a model name, choose an IAM role, and, if you want to use a
private VPC, specify VPC values.

4. To add information about the containers in the inference pipeline, choose Add container, then
choose Next.

5. Complete the fields for each container in the order that you want to execute them, up to the
maximum of five. Complete the Container input options, , Location of inference code image, and,
optionally, Location of model artifacts, Container host name, and Environmental variables fields. .

316

http://mleap-docs.combust.ml/
https://github.com/aws/sagemaker-sparkml-serving-container
http://archive.ics.uci.edu/ml/datasets/Iris
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Create a Pipeline Model

317

Amazon SageMaker Developer Guide
Real-time Inference

The MyInferencePipelineModel page summarizes the settings for the containers that provide input
for the model. If you provided the environment variables in a corresponding container definition,
Amazon SageMaker shows them in the Environment variables field.

Run Real-time Predictions with an Inference Pipeline
You can use trained models in an inference pipeline to make real-time predictions directly without
performing external preprocessing. When you configure the pipeline, you can choose to use the built-
in feature transformers already available in Amazon SageMaker. Or, you can implement your own
transformation logic using just a few lines of scikit-learn or Spark code.

MLeap, a serialization format and execution engine for machine learning pipelines, supports Spark,
scikit-learn, and TensorFlow for training pipelines and exporting them to a serialized pipeline called an
MLeap Bundle. You can deserialize Bundles back into Spark for batch-mode scoring or into the MLeap
runtime to power real-time API services.

The containers in a pipeline listen on the port specified in the SAGEMAKER_BIND_TO_PORT environment
variable (instead of 8080). When running in an inference pipeline, Amazon SageMaker automatically
provides this environment variable to containers. If this environment variable isn't present, containers

318

http://mleap-docs.combust.ml/

Amazon SageMaker Developer Guide
Real-time Inference

default to using port 8080. To indicate that your container complies with this requirement, use the
following command to add a label to your Dockerfile:

LABEL com.amazonaws.sagemaker.capabilities.accept-bind-to-port=true

If your container needs to listen on a second port, choose a port in the range specified by the
SAGEMAKER_SAFE_PORT_RANGE environment variable. Specify the value as an inclusive range in the
format "XXXX-YYYY", where XXXX and YYYY are multi-digit integers. Amazon SageMaker provides this
value automatically when you run the container in a multicontainer pipeline.

Note
To use custom Docker images in a pipeline that includes Amazon SageMaker built-in algorithms,
you need an Amazon Elastic Container Registry (Amazon ECR) policy. Your Amazon ECR
repository must grant Amazon SageMaker permission to pull the image. For more information,
see Troubleshoot Amazon ECR Permissions for Inference Pipelines (p. 326).

Create and Deploy an Inference Pipeline Endpoint
The following code creates and deploys a real-time inference pipeline model with SparkML and XGBoost
models in series using the Amazon SageMaker SDK.

from sagemaker.model import Model
from sagemaker.pipeline_model import PipelineModel
from sagemaker.sparkml.model import SparkMLModel

sparkml_data = 's3://{}/{}/{}'.format(s3_model_bucket, s3_model_key_prefix, 'model.tar.gz')
sparkml_model = SparkMLModel(model_data=sparkml_data)
xgb_model = Model(model_data=xgb_model.model_data, image=training_image)

model_name = 'serial-inference-' + timestamp_prefix
endpoint_name = 'serial-inference-ep-' + timestamp_prefix
sm_model = PipelineModel(name=model_name, role=role, models=[sparkml_model, xgb_model])
sm_model.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
 endpoint_name=endpoint_name)

Request Real-Time Inference from an Inference Pipeline
Endpoint
The following example shows how to make real-time predictions by calling an inference endpoint and
passing a request payload in JSON format:

from sagemaker.predictor import json_serializer, json_deserializer, RealTimePredictor
from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON

payload = {
 "input": [
 {
 "name": "Pclass",
 "type": "float",
 "val": "1.0"
 },
 {
 "name": "Embarked",
 "type": "string",
 "val": "Q"
 },
 {
 "name": "Age",
 "type": "double",

319

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

Amazon SageMaker Developer Guide
Batch Transform

 "val": "48.0"
 },
 {
 "name": "Fare",
 "type": "double",
 "val": "100.67"
 },
 {
 "name": "SibSp",
 "type": "double",
 "val": "1.0"
 },
 {
 "name": "Sex",
 "type": "string",
 "val": "male"
 }
],
 "output": {
 "name": "features",
 "type": "double",
 "struct": "vector"
 }
 }

predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess,
 serializer=json_serializer,
 content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV)

print(predictor.predict(payload))

Run Batch Transforms with Inference Pipelines
To get inferences on an entire dataset you run a batch transform on a trained model , To run inferences
on a full dataset, you can use the same inference pipeline model created and deployed to an endpoint
for real-time processing in a batch transform job. To run a batch transform job in a pipeline, you
download the input data from Amazon S3 and send it in one or more HTTP requests to the inference
pipeline model. For an example that shows how to prepare data for a batch transform, see the
"Preparing Data for Batch Transform" section of the ML Pipeline with SparkML and XGBoost - Training
and Inference sample notebook. For information about Amazon SageMaker batch transforms, see Get
Inferences for an Entire Dataset with Batch Transform (p. 10).

Note
To use custom Docker images in a pipeline that includes Amazon SageMaker built-in algorithms,
you need an Amazon Elastic Container Registry (Amazon ECR) policy. Your Amazon ECR
repository must grant Amazon SageMaker permission to pull the image. For more information,
see Troubleshoot Amazon ECR Permissions for Inference Pipelines (p. 326).

The following example shows how to run a transform job using the Amazon SageMaker Python SDK.
In this example, model_name is the inference pipeline that combines SparkML and XGBoost models
(created in previous examples). The Amazon S3 location specified by input_data_path contains the
input data, in CSV format, to be downloaded and sent to the Spark ML model. After the transform
job has finished, the Amazon S3 location specified by output_data_path contains the output data
returned by the XGBoost model in CVS format.

input_data_path = 's3://{}/{}/{}'.format(default_bucket, 'key', 'file_name')
output_data_path = 's3://{}/{}'.format(default_bucket, 'key')
transform_job = sagemaker.transformer.Transformer(
 model_name = model_name,
 instance_count = 1,
 instance_type = 'ml.m4.xlarge',

320

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

Amazon SageMaker Developer Guide
Logs and Metrics

 strategy = 'SingleRecord',
 assemble_with = 'Line',
 output_path = output_data_path,
 base_transform_job_name='inference-pipelines-batch',
 sagemaker_session=sess,
 accept = CONTENT_TYPE_CSV)
transform_job.transform(data = input_data_path,
 content_type = CONTENT_TYPE_CSV,
 split_type = 'Line')

Inference Pipeline Logs and Metrics
Monitoring is important for maintaining the reliability, availability, and performance of Amazon
SageMaker resources. To monitor and troubleshoot inference pipeline performance, use Amazon
CloudWatch logs and error messages. For information about the monitoring tools that Amazon
SageMaker provides, see Monitor Amazon SageMaker (p. 461).

Use Metrics to Monitor Multi-container Models
To monitor the multi-container models in Inference Pipelines, use Amazon CloudWatch. CloudWatch
collects raw data and processes it into readable, near real-time metrics. Amazon SageMaker training jobs
and endpoints write CloudWatch metrics and logs in the AWS/SageMaker namespace.

The following tables list the metrics and dimensions for the following:

• Endpoint invocations

• Training jobs, batch transform jobs, and endpoint instances

A dimension is a name/value pair that uniquely identifies a metric. You can assign up to 10 dimensions
to a metric. For more information on monitoring with CloudWatch, see Monitor Amazon SageMaker with
Amazon CloudWatch (p. 461).

Endpoint Invocation Metrics

The AWS/SageMaker namespace includes the following request metrics from calls to
InvokeEndpoint (p. 853) .

Metrics are reported at a 1-minute intervals.

Metric Description

Invocation4XXErrors The number of InvokeEndpoint requests that the model returned a 4xx
HTTP response code for. For each 4xx response, Amazon SageMaker sends a
1.

Units: None

Valid statistics: Average, Sum

Invocation5XXErrors The number of InvokeEndpoint requests that the model returned a 5xx
HTTP response code for. For each 5xx response, Amazon SageMaker sends a
1.

Units: None

Valid statistics: Average, Sum

321

Amazon SageMaker Developer Guide
Logs and Metrics

Metric Description

Invocations The number of InvokeEndpoint requests sent to a model endpoint.

To get the total number of requests sent to a model endpoint, use the Sum
statistic.

Units: None

Valid statistics: Sum, Sample Count

InvocationsPerInstanceThe number of endpoint invocations sent to a model, normalized by
InstanceCount in each ProductionVariant. Amazon SageMaker
sends 1/numberOfInstances as the value for each request, where
numberOfInstances is the number of active instances for the
ProductionVariant at the endpoint at the time of the request.

Units: None

Valid statistics: Sum

ModelLatency The time the model or models took to respond. This includes the time it
took to send the request, to fetch the response from the model container,
and to complete the inference in the container. ModelLatency is the total
time taken by all containers in an inerence pipeline..

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

OverheadLatency The time added to the time taken to respond to a client request by Amazon
SageMaker for overhead. OverheadLatency is measured from the time
that Amazon SageMaker receives the request until it returns a response
to the client, minus the ModelLatency. Overhead latency can vary
depending on request and response payload sizes, request frequency, and
authentication or authorization of the request, among other factors.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ContainerLatency The time it took for an Inference Pipelines container to respond as viewed
from Amazon SageMaker. ContainerLatency includes the time it took to
send the request, to fetch the response from the model's container, and to
complete inference in the container.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Dimensions for Endpoint Invocation Metrics

Dimension Description

EndpointName,
VariantName,
ContainerName

Filters endpoint invocation metrics for a ProductionVariant at the
specified endpoint and for the specified variant.

322

Amazon SageMaker Developer Guide
Logs and Metrics

For an inference pipeline endpoint, CloudWatch lists per-container latency metrics in your account as
Endpoint Container Metrics and Endpoint Variant Metrics in the SageMaker namespace, as follows.
The ContainerLatency metric appears only for inferences pipelines.

For each endpoint and each container, latency metrics display names for the container, endpoint, varian,
and metric.

Training Job, Batch Transform Job, and Endpoint Instance Metrics

The namespaces /aws/sagemaker/TrainingJobs, /aws/sagemaker/TransformJobs, and /aws/
sagemaker/Endpoints include the following metrics for training jobs and endpoint instances.

Metrics are reported at a 1-minute intervals.

Metric Description

CPUUtilization The percentage of CPU units that are used by the containers running on
an instance. The value ranges from 0% to 100%, and is multiplied by the
number of CPUs. For example, if there are four CPUs, CPUUtilization can
range from 0% to 400%.

For training jobs, CPUUtilization is the CPU utilization of the algorithm
container running on the instance.

For batch transform jobs, CPUUtilization is the CPU utilization of the
transform container running on the instance.

For multi-container models, CPUUtilization is the sum of CPU utilization
by all containers running on the instance.

For endpoint variants, CPUUtilization is the sum of CPU utilization by all
of the containers running on the instance.

Units: Percent

MemoryUtilizaton The percentage of memory that is used by the containers running on an
instance. This value ranges from 0% to 100%.

For training jobs, MemoryUtilizaton is the memory used by the algorithm
container running on the instance.

For batch transform jobs, MemoryUtilizaton is the memory used by the
transform container running on the instance.

323

Amazon SageMaker Developer Guide
Logs and Metrics

Metric Description

For multi-container models, MemoryUtilizaton is the sum of memory
used by all containers running on the instance.

For endpoint variants, MemoryUtilizaton is the sum of memory used by
all of the containers running on the instance.

Units: Percent

GPUUtilization The percentage of GPU units that are used by the containers running on an
instance. GPUUtilization ranges from 0% to 100% and is multiplied by
the number of GPUs. For example, if there are four GPUs, GPUUtilization
can range from 0% to 400%.

For training jobs, GPUUtilization is the GPU used by the algorithm
container running on the instance.

For batch transform jobs, GPUUtilization is the GPU used by the
transform container running on the instance.

For multi-container models, GPUUtilization is the sum of GPU used by all
containers running on the instance.

For endpoint variants, GPUUtilization is the sum of GPU used by all of
the containers running on the instance.

Units: Percent

GPUMemoryUtilizationThe percentage of GPU memory used by the containers running on
an instance. GPUMemoryUtilization ranges from 0% to 100% and is
multiplied by the number of GPUs. For example, if there are four GPUs,
GPUMemoryUtilization can range from 0% to 400%.

For training jobs, GPUMemoryUtilization is the GPU memory used by the
algorithm container running on the instance.

For batch transform jobs, GPUMemoryUtilization is the GPU memory
used by the transform container running on the instance.

For multi-container models, GPUMemoryUtilization is sum of GPU used
by all containers running on the instance.

For endpoint variants, GPUMemoryUtilization is the sum of the GPU
memory used by all of the containers running on the instance.

Units: Percent

DiskUtilization The percentage of disk space used by the containers running on an instance.
DiskUtilization ranges from 0% to 100%. This metric is not supported for
batch transform jobs.

For training jobs, DiskUtilization is the disk space used by the algorithm
container running on the instance.

For endpoint variants, DiskUtilization is the sum of the disk space used
by all of the provided containers running on the instance.

Units: Percent

324

Amazon SageMaker Developer Guide
Logs and Metrics

Dimensions for Training Job, Batch Transform Job, and Endpoint Instance Metrics

Dimension Description

Host For training jobs, Host has the format [training-job-name]/algo-
[instance-number-in-cluster]. Use this dimension to filter instance
metrics for the specified training job and instance. This dimension format is
present only in the /aws/sagemaker/TrainingJobs namespace.

For batch transform jobs, Host has the format [transform-job-name]/
[instance-id]. Use this dimension to filter instance metrics for the
specified batch transform job and instance. This dimension format is present
only in the /aws/sagemaker/TransformJobs namespace.

For endpoints, Host has the format [endpoint-name]/[production-
variant-name]/[instance-id]. Use this dimension to filter instance
metrics for the specified endpoint, variant, and instance. This dimension
format is present only in the /aws/sagemaker/Endpoints namespace.

To help you debug your training jobs, endpoints, and notebook instance lifecycle configurations, Amazon
SageMaker also sends anything an algorithm container, a model container, or a notebook instance
lifecycle configuration sends to stdout or stderr to Amazon CloudWatch Logs. You can use this
information for debugging and to analyze progress.

Use Logs to Monitor an Inference Pipeline
The following table lists the log groups and log streams Amazon SageMaker. sends to Amazon
CloudWatch

A log stream is a sequence of log events that share the same source. Each separate source of logs into
CloudWatch makes up a separate log stream. A log group is a group of log streams that share the same
retention, monitoring, and access control settings.

Logs

Log Group Name Log Stream Name

/aws/sagemaker/
TrainingJobs

[training-job-name]/algo-[instance-number-in-cluster]-
[epoch_timestamp]

[production-variant-name]/[instance-id]

[production-variant-name]/[instance-id]

/aws/sagemaker/
Endpoints/
[EndpointName]

[production-variant-name]/[instance-id]/[container-name
provided in the Amazon SageMaker model] (For Inference
Pipelines) For Inference Pipelines logs, if you don't provide container
names, CloudWatch uses **container-1, container-2**, and so on, in the
order that containers are provided in the model.

/aws/sagemaker/
NotebookInstances

[notebook-instance-name]/[LifecycleConfigHook]

[transform-job-name]/[instance-id]-[epoch_timestamp]/aws/sagemaker/
TransformJobs

[transform-job-name]/[instance-id]-[epoch_timestamp]/data-
log

325

Amazon SageMaker Developer Guide
Troubleshooting

Log Group Name Log Stream Name

[transform-job-name]/[instance-id]-[epoch_timestamp]/
[container-name provided in the Amazon SageMaker model]
(For Inference Pipelines) For Inference Pipelines logs, if you don't
provide container names, CloudWatch uses **container-1, container-2**, and
so on, in the order that containers are provided in the model.

Note
Amazon SageMaker creates the /aws/sagemaker/NotebookInstances log group when you
create a notebook instance with a lifecycle configuration. For more information, see Customize a
Notebook Instance (p. 40).

For more information about Amazon SageMaker logging, see Log Amazon SageMaker Events with
Amazon CloudWatch (p. 466).

Troubleshoot Inference Pipelines
To troubleshoot inference pipeline issues, use CloudWatch logs and error messages. If you are using
custom Docker images in a pipeline that includes Amazon SageMaker built-in algorithms, you might also
encounter permissions problems. To grant the required permissions, create an Amazon Elastic Container
Registry (Amazon ECR) policy.

Topics

• Troubleshoot Amazon ECR Permissions for Inference Pipelines (p. 326)

• Use CloudWatch Logs to Troubleshoot Amazon SageMaker Inference Pipelines (p. 327)

• Use Error Messages to Troubleshoot Inference Pipelines (p. 327)

Troubleshoot Amazon ECR Permissions for Inference Pipelines

When you use custom Docker images in a pipeline that includes Amazon SageMaker built-in algorithms,
you need an Amazon ECR policy. The policy allows your Amazon ECR repository to grant permission for
Amazon SageMaker to pull the image. The policy must add the following permissions:

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "allowSageMakerToPull",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
]
 }
]
}

326

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

Amazon SageMaker Developer Guide
Troubleshooting

Use CloudWatch Logs to Troubleshoot Amazon SageMaker
Inference Pipelines
Amazon SageMaker publishes the container logs for endpoints that deploy an inference pipeline to
Amazon CloudWatch at the following path for each container.

/aws/sagemaker/Endpoints/{EndpointName}/{Variant}/{InstanceId}/{ContainerHostname}

For example, logs for this endpoint are published to the following log groups and streams:

EndpointName: MyInferencePipelinesEndpoint
Variant: MyInferencePipelinesVariant
InstanceId: i-0179208609ff7e488
ContainerHostname: MyContainerName1 and MyContainerName2

logGroup: /aws/sagemaker/Endpoints/MyInferencePipelinesEndpoint
logStream: MyInferencePipelinesVariant/i-0179208609ff7e488/MyContainerName1
logStream: MyInferencePipelinesVariant/i-0179208609ff7e488/MyContainerName2

A log stream is a sequence of log events that share the same source. Each separate source of logs into
CloudWatch makes up a separate log stream. A log group is a group of log streams that share the same
retention, monitoring, and access control settings.

To see the log groups and streams

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. In the navigation page, choose Logs.
3. In Log Groups. filter on MyInferencePipelinesEndpoint:

4. To see the log streams, on the CloudWatch Log Groups page, choose
MyInferencePipelinesEndpoint, and then Search Log Group.

For a list of the logs that Amazon SageMaker publishes, see Inference Pipeline Logs and
Metrics (p. 321).

Use Error Messages to Troubleshoot Inference Pipelines
The inference pipeline error messages indicate which containers failed.

327

https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide
Compile and Deploy Models with Neo

If an error occurs while Amazon SageMaker is invoking an endpoint, the service returns a ModelError
(error code 424), which indicates which container failed. If the request payload (the response from the
previous container) exceeds the limit of 5 MB, Amazon SageMaker provides a detailed error message,
such as:

Received response from MyContainerName1 with status code 200. However, the request payload
from MyContainerName1 to MyContainerName2 is 6000000 bytes, which has exceeded the maximum
limit of 5 MB. See https://us-west-2.console.aws.amazon.com/cloudwatch/home?region=us-
west-2#logEventViewer:group=/aws/sagemaker/Endpoints/MyInferencePipelinesEndpoint in account
123456789012 for more information.

If a container fails the ping health check while Amazon SageMaker is creating an endpoint, it returns a
ClientError and indicates all of the containers that failed the ping check in the last health check.

Amazon SageMaker Neo
Neo is a new capability of Amazon SageMaker that enables machine learning models to train once and
run anywhere in the cloud and at the edge.

Ordinarily, optimizing machine learning models for inference on multiple platforms is extremely difficult
because you need to hand-tune models for the specific hardware and software configuration of each
platform. If you want to get optimal performance for a given workload, you need to know the hardware
architecture, instruction set, memory access patterns, and input data shapes among other factors. For
traditional software development, tools such as compilers and profilers simplify the process. For machine
learning, most tools are specific to the framework or to the hardware. This forces you into a manual trial-
and-error process that is unreliable and unproductive.

Neo eliminates the time and effort required to do this by automatically optimizing TensorFlow, Apache
MXNet, PyTorch, ONNX, and XGBoost models for deployment on ARM, Intel, and Nvidia processors. Neo
consists of a compiler and a runtime. First, the Neo compilation API reads models exported from various
frameworks. It converts the framework-specific functions and operations into a framework-agnostic
intermediate representation. Next, it performs a series of optimizations. Then it generates binary code
for the optimized operations, writes them to a shared object library, and saves the model definition
and parameters into separate files. Neo also provides a runtime for each target platform that loads and
executes the compiled model.

You can create a Neo compilation job from either the Amazon SageMaker console, AWS Command Line
Interface (AWS CLI), Python notebook, or the Amazon SageMaker SDK. With a few CLI commands, an API
invocation, or a few clicks, you can convert a model for your chosen platform. You can deploy the model
to an Amazon SageMaker endpoint or on an AWS IoT Greengrass device quickly. Amazon SageMaker
provides Neo container images for Amazon SageMaker XGBoost and Image Classification models, and
supports Amazon SageMaker-compatible containers for your own compiled models.

Note
Neo currently supports image classification models exported as frozen graphs from TensorFlow,
MXNet, or PyTorch, and XGBoost models. Neo is available in the following AWS Regions:

• US East (N. Virginia), us-east-1
• US West (Oregon), us-west-2
• EU (Ireland), eu-west-1

Topics
• Amazon SageMaker Neo Sample Notebooks (p. 329)
• Use Neo to Compile a Model (p. 329)
• Deploy a Model (p. 334)

328

Amazon SageMaker Developer Guide
Sample Notebooks

• Request Inferences from a Deployed Service (p. 342)
• Troubleshooting Neo Compilation Errors (p. 342)

Amazon SageMaker Neo Sample Notebooks
For sample notebooks that uses Amazon SageMaker Neo to train, compile, optimize, and deploy machine
learning models to make inferences, see:

• MNIST Training, Compilation and Deployment with MXNet Module
• MNIST Training, Compilation and Deployment with Tensorflow Module
• Deploying pre-trained PyTorch vision models with Amazon SageMaker Neo
• Model Optimization with an Image Classification Example
• Model Optimization with XGBoost Example

For instructions on how to run these example notebooks in Amazon SageMaker, see Use Example
Notebooks (p. 42). If you need intructions on how to create a notebook instance to run these examples,
see Amazon SageMaker, see Use Notebook Instances (p. 36). To navigate to the relevant example in
your notebook instance, choose the Amazon SageMaker Examples tab to see a list of all of the Amazon
SageMaker samples. To open a notebook, choose its Use tab, then choose Create copy.

Use Neo to Compile a Model
This section show how to create, describe, stop, and list compilation jobs. There are three options
available in Neo for managing the compilation jobs for machine learning models: Using the Neo CLI, the
Amazon SageMaker console, or the Amazon SageMaker SDK.

Topics
• Compile a Model (API) (p. 329)
• Compile a Model (Console) (p. 330)
• Compile a Model (Amazon SageMaker SDK) (p. 333)

Compile a Model (API)
This section shows how to manage compilation jobs for machine learning models. You can create,
describe, stop, and list compilation jobs.

Create a Compilation Job

As shown in the following JSON file, you specify the data input format, the S3 bucket where you stored
your model, the S3 bucket where you want to write the compiled model, and the target hardware:

job.json
{
 "CompilationJobName": "job002",
 "RoleArn": "arn:aws:iam::<your-account>:role/service-role/AmazonSageMaker-
ExecutionRole-20180829T140091",
 "InputConfig": {
 "S3Uri": "s3://<your-bucket>/sagemaker/DEMO-breast-cancer-prediction/train",
 "DataInputConfig": "{\"data\": [1,3,1024,1024]}",
 "Framework": "MXNET"
 },
 "OutputConfig": {
 "S3OutputLocation": "s3://<your-bucket>/sagemaker/DEMO-breast-cancer-prediction/
compile",

329

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_neo_compilation_jobs/mxnet_mnist/mxnet_mnist_neo.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_neo_compilation_jobs/tensorflow_distributed_mnist/tensorflow_distributed_mnist_neo.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_neo_compilation_jobs/pytorch_torchvision/pytorch_torchvision_neo.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_neo_compilation_jobs/imageclassification_caltech/Image-classification-fulltraining-highlevel-neo.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_neo_compilation_jobs/xgboost_customer_churn/xgboost_customer_churn_neo.ipynb

Amazon SageMaker Developer Guide
Compile Models

 "TargetDevice": "ml_c5"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
 }
}

aws sagemaker create-compilation-job \
--cli-input-json file://job.json \
--region us-west-2

You should get CompilationJobArn

Describe a Compilation Job

aws sagemaker describe-compilation-job \
--compilation-job-name $JOB_NM \
--region us-west-2

Stop a Compilation Job

aws sagemaker stop-compilation-job \
--compilation-job-name $JOB_NM \
--region us-west-2

There is no output for compilation-job operation

List a Compilation Job

aws sagemaker list-compilation-jobs \
--region us-west-2

Compile a Model (Console)

You can create a Neo compilation job in the Amazon SageMaker console. In the Amazon SageMaker
console, choose Compilation jobs, and then choose Create compilation job.

On the Create compilation job page, for Job name, enter a name. Then select an IAM role.

330

Amazon SageMaker Developer Guide
Compile Models

If you don’t have an IAM role, choose Create a new role.

On the Create an IAM role page, choose Any S3 bucket, and choose Create role.

331

Amazon SageMaker Developer Guide
Compile Models

In the Input configuration section, for Location of model artifacts, enter the path of the S3 bucket that
contains your model artifacts. For Data input configuration, enter the JSON string that specifies how
many data matrix inputs you and the shape of each data matrices. For Machine learning framework,
choose the framework.

In the Output configuration section, for S3 Output location, enter the path to the S3 bucket or folder
where you want to store the model. For Target device, choose which device you want to deploy your
model to, and choose Create job.

332

Amazon SageMaker Developer Guide
Compile Models

Check the status of the compilation job when started.

Check the status of the compilation job when completed.

Compile a Model (Amazon SageMaker SDK)
Follow the steps described in the Running the Training Job section of the MNIST Training, Compilation
and Deployment with MXNet Module sample to produce a machine learning model train using Amazon
SageMaker. Then you can use Neo to further optimize the model with the following code:

output_path = ‘/’.join(mnist_estimator.output_path.split(‘/’)[:-1])
compiled_model = mnist_estimator.compile_model(target_instance_family='ml_c5',

333

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_neo_compilation_jobs/mxnet_mnist/mxnet_mnist_neo.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_neo_compilation_jobs/mxnet_mnist/mxnet_mnist_neo.ipynb

Amazon SageMaker Developer Guide
Deploy Models

 input_shape={'data':[1, 784]},
 role=role,
 output_path=output_path)

This code compiles the model and saves the optimized model in output_path. Sample notebooks of
using SDK are provided in the Amazon SageMaker Neo Sample Notebooks (p. 329) section.

Deploy a Model
You can deploy the compact module to performance-critical cloud services with Amazon SageMaker
Hosting Services or to resource-constrained edge devices with AWS IoT Greengrass.

Topics
• Deploy a Model Compiled with Neo with Hosting Services (p. 334)
• Deploy a Model Compiled with Neo (AWS IoT Greengrass) (p. 341)

Deploy a Model Compiled with Neo with Hosting Services
To deploy a Neo-compiled model to an HTTPS endpoint, you must configure and create the endpoint for
the model using Amazon SageMaker hosting services. Currently developers can use Amazon SageMaker
APIs to deploy modules on to ml.c5, ml.c4, ml.m5, ml.m4, ml.p3, and ml.p2 instances.

When you deploy a compiled model, you need to use the same instance for the target that you used for
compilation. This creates an Amazon SageMaker endpoint that you can use to perform inferences. There
are three options available for deploying Neo-compiled models:

Topics
• Deploy a Model Compiled with Neo (AWS CLI) (p. 334)
• Deploy a Model Compiled with Neo (Console) (p. 336)
• Deploy a Model Compiled with Neo (Amazon SageMaker SDK) (p. 341)

Deploy a Model Compiled with Neo (AWS CLI)

The deployment of a Neo-compiled model with the CLI has three steps.

Topics
• Create a Model That Was Compiled with Neo (AWS CLI) (p. 334)
• Create the Endpoint Configuration (AWS CLI) (p. 336)
• Create an Endpoint (AWS CLI) (p. 336)

Create a Model That Was Compiled with Neo (AWS CLI)

For the full syntax of the CreateModel API, see CreateModel (p. 648).

For Neo-compiled models, use one of the following values for
PrimaryContainer/ContainerHostname, depending on your region and applications:

• Amazon SageMaker Image Classification
• 301217895009.dkr.ecr.us-west-2.amazonaws.com/image-classification-neo:latest

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/image-classification-neo:latest

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/image-classification-neo:latest

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/image-classification-neo:latest

334

Amazon SageMaker Developer Guide
Deploy Models

• Amazon SageMaker XGBoost
• 301217895009.dkr.ecr.us-west-2.amazonaws.com/xgboost-neo:latest

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/xgboost-neo:latest

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/xgboost-neo:latest

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/xgboost-neo:latest

• TensorFlow : The TensorFlow version used must be in TensorFlow SageMaker Estimators list.
• 301217895009.dkr.ecr.us-west-2.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• MXNet The MXNet version used must be in MXNet SageMaker Estimators list.
• 301217895009.dkr.ecr.us-west-2.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• Pytorch The Pytorch version used must be in Pytorch SageMaker Estimators list.
• 301217895009.dkr.ecr.us-west-2.amazonaws.com/sagemaker-neo-pytorch:[pytorch-
version]-[cpu/gpu]-py3

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/sagemaker-neo-pytorch:[pytorch-
version]-[cpu/gpu]-py3

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/sagemaker-neo-pytorch:[pytorch-
version]-[cpu/gpu]-py3

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/sagemaker-neo-pytorch:[pytorch-
version]-[cpu/gpu]-py3

Also, if you are using TensorFlow, Pytorch, or MXNet, add the following key-value pair to
PrimaryContainer/Environment:

"Environment": {
"SAGEMAKER_SUBMIT_DIRECTORY" : "[Full S3 path for *.tar.gz file containing the training
 script]"
}

The script must be packaged as a *.tar.gz file. The *.tar.gz file must contain the training script at
the root level. The script must contain two additional functions for Neo serving containers:

• neo_preprocess(payload, content_type): Function that takes in the payload and Content-
Type of each incoming request and returns a NumPy array.

• neo_postprocess(result): Function that takes the prediction results produced by Deep Learning
Runtime and returns the response body.

Neither of these two functions use any functionalities of MXNet, Pytorch, or Tensorflow. See the Amazon
SageMaker Neo Sample Notebooks (p. 329) for examples using these functions.

335

https://github.com/aws/sagemaker-python-sdk#tensorflow-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk#mxnet-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk#pytorch-sagemaker-estimators

Amazon SageMaker Developer Guide
Deploy Models

Create the Endpoint Configuration (AWS CLI)

For the full syntax of the CreateEndpointConfig API, see CreateEndpointConfig (p. 635). You must
specify the correct instance type in ProductionVariants/InstanceType. It is imperative that this
value matches the instance type specified in your compilation job.

Create an Endpoint (AWS CLI)

For the full syntax of the CreateEndpoint API, see CreateEndpoint (p. 632).

Deploy a Model Compiled with Neo (Console)

You can create a Neo endpoint in the Amazon SageMaker console. Open the Amazon SageMaker console
at https://console.aws.amazon.com/sagemaker/.

Choose Models, and then choose Create models from the Inference group. On the Create model page,
complete the Model name, IAM role, and, if needed, VPC fields.

To add information about the container used to deploy your model, choose Add container, then choose
Next. Complete the Container input options, Location of inference code image, and Location of model
artifacts, and optionally, Container host name, and Environmental variables fields.

336

Amazon SageMaker Developer Guide
Deploy Models

To deploy Neo-compiled models, choose the following:

• Container input options: Provide model artifacts and inference image

• Location of inference code image: Choose one of the following images, depending the region and
kind of application:

• Amazon SageMaker Image Classification

• 301217895009.dkr.ecr.us-west-2.amazonaws.com/image-classification-
neo:latest

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/image-classification-
neo:latest

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/image-classification-
neo:latest

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/image-classification-
neo:latest

• Amazon SageMaker XGBoost

• 301217895009.dkr.ecr.us-west-2.amazonaws.com/xgboost-neo:latest

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/xgboost-neo:latest

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/xgboost-neo:latest

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/xgboost-neo:latest

• TensorFlow : The TensorFlow version used must be in TensorFlow SageMaker Estimators list.

337

https://github.com/aws/sagemaker-python-sdk#tensorflow-sagemaker-estimators

Amazon SageMaker Developer Guide
Deploy Models

• 301217895009.dkr.ecr.us-west-2.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/sagemaker-neo-tensorflow:
[tensorflow-version]-[cpu/gpu]-py3

• MXNet The MXNet version used must be in MXNet SageMaker Estimators list.

• 301217895009.dkr.ecr.us-west-2.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/sagemaker-neo-mxnet:[mxnet-
version]-[cpu/gpu]-py3

• Pytorch The Pytorch version used must be in Pytorch SageMaker Estimators list.

• 301217895009.dkr.ecr.us-west-2.amazonaws.com/sagemaker-neo-pytorch:
[pytorch-version]-[cpu/gpu]-py3

• 785573368785.dkr.ecr.us-east-1.amazonaws.com/sagemaker-neo-pytorch:
[pytorch-version]-[cpu/gpu]-py3

• 007439368137.dkr.ecr.us-east-2.amazonaws.com/sagemaker-neo-pytorch:
[pytorch-version]-[cpu/gpu]-py3

• 802834080501.dkr.ecr.eu-west-1.amazonaws.com/sagemaker-neo-pytorch:
[pytorch-version]-[cpu/gpu]-py3

• Location of model artifact: the full S3 path of the compiled model artifact generated by the Neo
compilation API.

• Environmental variables:

• Omit this field for SageMaker Image Classification and SageMaker XGBoost.

• For TensorFlow, Pytorch, and MXNet, specify the environment variable
SAGEMAKER_SUBMIT_DIRECTORY as the full S3 path that contains the training script.

The script must be packaged as a *.tar.gz file. The *.tar.gz file must contain the training script at
the root level. The script must contain two additional functions for Neo serving containers:

• neo_preprocess(payload, content_type): Function that takes in the payload and Content-
Type of each incoming request and returns a NumPy array.

• neo_postprocess(result): Function that takes the prediction results produced by Deep Learning
Runtime and returns the response body.

Neither of these two functions use any functionalities of MXNet, Pytorch, or Tensorflow. See the Amazon
SageMaker Neo Sample Notebooks (p. 329) for examples using these functions.

Confirm that the information for the containers is accurate, and then choose Create model.This takes
you to the create model landing page. Select the Create endpoint button there.

338

https://github.com/aws/sagemaker-python-sdk#mxnet-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk#pytorch-sagemaker-estimators

Amazon SageMaker Developer Guide
Deploy Models

In Create and configure endpoint diagram, specify the Endpoint name. Choose Create a new endpoint
configuration in Attach endpoint configuration.

In New endpoint configuration page, specify the Endpoint configuration name.

339

Amazon SageMaker Developer Guide
Deploy Models

Then press Edit next to the name of the model and specify the correct Instance type on the Edit
Production Variant page. It is imperative that the Instance type value match the one specified in your
compilation job.

340

Amazon SageMaker Developer Guide
Deploy Models

When you’re done click Save, then click Create endpoint configuration on the New endpoint
configuration page, and then click Create endpoint.

Deploy a Model Compiled with Neo (Amazon SageMaker SDK)

The object handle for the compiled model supplies the deploy function, which allows you to create an
endpoint to serve inference requests. The function lets you set the number and type of instances that
are used for the endpoint. You must choose an instance for which you have compiled your model. For
example, in the job compiled in Compile a Model (Amazon SageMaker SDK) (p. 333) section, this is
ml_c5. The Neo API uses a special runtime, the Neo runtime, to run Neo-optimized models.

predictor = compiled_model.deploy(initial_instance_count = 1, instance_type =
 'ml.c5.4xlarge')

After the command is done, the name of the newly created endpoint is printed in the jupyter notebook.

Deploy a Model Compiled with Neo (AWS IoT Greengrass)
AWS IoT Greengrass extends cloud capabilities to local devices. It enables devices to collect and analyze
data closer to the source of information, react autonomously to local events, and communicate securely
with each other on local networks. With AWS IoT Greengrass, you can perform machine learning
inference at the edge on locally generated data using cloud-trained models. Currently, you can deploy
models on to all AWS IoT Greengrass devices based on ARM® Cortex-A™, Intel® Atom™, and Nvidia®
Jetson™ series processors. For more information on deploying a Lambda inference application to
perform machine learning inferences with AWS IoT Greengrass, see Perform Machine Learning Inference.

341

https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/ml-inference.html

Amazon SageMaker Developer Guide
Request Inferences

Request Inferences from a Deployed Service
If you have followed instructions in Deploy a Model Compiled with Neo with Hosting Services (p. 334),
you should have an Amazon SageMaker endpoint set up and running. You can now submit inference
requests using Boto3 client. Here is an example of sending an image for inference:

import boto3
import json

endpoint = '<insert name of your endpoint here>'

runtime = boto3.Session().client('sagemaker-runtime')

Read image into memory
with open(image, 'rb') as f:
 payload = f.read()
Send image via InvokeEndpoint API
response = runtime.invoke_endpoint(EndpointName=endpoint, ContentType='application/x-
image', Body=payload)
Unpack response
result = json.loads(response['Body'].read().decode())

For XGBoost application, you should submit a CSV text instead:

import boto3
import json

endpoint = '<insert your endpoint here>'

runtime = boto3.Session().client('sagemaker-runtime')

csv_text = '1,-1.0,1.0,1.5,2.6'
Send CSV text via InvokeEndpoint API
response = runtime.invoke_endpoint(EndpointName=endpoint, ContentType='text/csv',
 Body=csv_text)
Unpack response
result = json.loads(response['Body'].read().decode())

Note that BYOM allows for a custom content type. For more information, see InvokeEndpoint (p. 853).

Troubleshooting Neo Compilation Errors
This section contains information about how to understand and prevent common errors, the error
messages they generate, and guidance on how to resolve these errors. It also contains lists of the
frameworks and the operations in each of those frameworks that Neo supports.

Topics
• Prevent Neo Input Errors (p. 342)
• Neo Error Messages (p. 346)
• Resolve Neo Errors (p. 348)

Prevent Neo Input Errors
Some of the most common errors are due to invalid inputs. This section contains information arranged in
question and answer form to help you avoid these errors.

Which frameworks does Neo support?

342

Amazon SageMaker Developer Guide
Troubleshoot Errors

• TensorFlow

• PyTorch

• Apache MXNET

• XGBoost

• ONNX

Which operators does Amazon SageMaker Neo support for these frameworks?

The following table lists the supported operations for each framework.

MXNet TensorFlow PyTorch/ONNX

'_add_scalar' 'Add' 'Abs'

'_add_symbol' 'ArgMax' 'Add'

'_contrib_MultiBoxDetection''ArgMin' 'ArgMax'

'_contrib_MultiBoxPrior' 'AvgPool' 'ArgMin'

'_copy' 'BatchNormWithGlobalNormalization''AveragePool'

'_div_scalar' 'BiasAdd' 'BatchNormalization'

'_div_symbol' 'Cast' 'Cast'

'_minus_scalar' 'Ceil' 'Ceil'

'_minus_scalar' 'CheckNumerics' 'Clip'

'_mul_symbol' 'Concat' 'Concat'

'_Plus' 'ConcatV2' 'Constant'

'_plus_scalar' 'Conv2D' 'ConstantFill'

'_pow_scalar' 'DecodeJpeg' 'Conv'

'_rdiv_scalar' 'DepthwiseConv2dNative' 'ConvTranspose'

'_rminus_scalar' 'Elu' 'Div'

'_rpow_scalar' 'Equal' 'Dropout'

'_rsub_scalar' 'ExpandDims' 'Elu'

'_sub_scalar' 'Fill' 'Exp'

'_sub_symbol' 'Floor' 'FC'

'Activation' 'FusedBatchNorm' 'Flatten'

'add_n' 'FusedBatchNormV2' 'Floor'

'argmax' 'GatherV2' 'Gather'

'BatchNorm' 'Greater' 'Gemm'

'BatchNorm_v1' 'GreaterEqual' 'GlobalAveragePool'

343

https://aws.amazon.com/tensorflow/
https://pytorch.org/
https://aws.amazon.com/mxnet/
https://github.com/dmlc/xgboost
https://github.com/onnx/onnx

Amazon SageMaker Developer Guide
Troubleshoot Errors

MXNet TensorFlow PyTorch/ONNX

'broadcast_add' 'Identity' 'GlobalMaxPool'

'broadcast_div' 'LeakyRelu' 'HardSigmoid'

'broadcast_mul' 'Less' 'Identity'

'broadcast_sub' 'LessEqual' 'ImageScaler'

'broadcast_to' 'LRN' 'LeakyRelu'

'cast' 'MatMul' 'Log'

'Cast' 'Maximum' 'LogSoftmax'

'clip' 'MaxPool' 'LRN'

'Concat' 'Mean' 'MatMul'

'concat' 'Minimum' 'Max'

'Convolution' 'Mul' 'MaxPool'

'Convolution_v1' 'NotEqual' 'Mean'

'Crop' 'Pack' 'Min'

'Deconvolution' 'Pad' 'Mul'

'Dropout' 'PadV2' 'Neg'

'elemwise_add' 'Range' 'Pad'

'elemwise_div' 'Rank' 'ParametricSoftplus'

'elemwise_mul' 'Relu' 'Pow'

'elemwise_sub' 'Relu6' 'PRelu'

'exp' 'Reshape' 'Reciprocal'

'expand_dims' 'ResizeBilinear' 'ReduceMax'

'flatten' 'Rsqrt' 'ReduceMean'

'Flatten' 'Selu' 'ReduceMin'

'FullyConnected' 'Shape' 'ReduceProd'

'LeakyReLU' 'Sigmoid' 'ReduceSum'

'LinearRegressionOutput' 'Softmax' 'Relu'

'log' 'Square' 'Reshape'

'log_softmax' 'Squeeze' 'Scale'

'LRN' 'StridedSlice' 'ScaledTanh'

'max' 'Sub' 'Selu'

'max_axis' 'Sum' 'Shape'

344

Amazon SageMaker Developer Guide
Troubleshoot Errors

MXNet TensorFlow PyTorch/ONNX

'min' 'Tanh' 'Sigmoid'

'min_axis' 'Transpose' 'Slice'

'negative' 'Softmax'

'Pooling' 'SoftPlus'

'Pooling_v1' 'Softsign'

'relu' 'SpatialBN'

'Reshape' 'Split'

'reshape' 'Sqrt'

'reshape_like' 'Squeeze'

'sigmoid' 'Sub'

'slice_like' 'Sum'

'SliceChannel' 'Tanh'

'softmax' 'ThresholdedRelu'

'Softmax' 'Transpose'

'SoftmaxActivation' 'Unsqueeze'

'SoftmaxOutput' 'Upsample'

'split'

'sum'

'sum_axis'

'tanh'

'transpose'

'UpSampling'

Which model architectures does Neo support?

Neo supports image classification models.

Which model format files does Neo read in?

The file needs to be formatted as a tar.gz file that includes additional files that depend on the type of
framework.

• TensorFlow: Neo supports saved models and frozen models.

For saved models, Neo expects one .pb or one .pbtxt file and a variables directory that contains
variables.

For frozen models, Neo expect only one .pb or .pbtxt file.
• PyTorch: Neo expects one .pth file containing the model definition.

345

Amazon SageMaker Developer Guide
Troubleshoot Errors

• MXNET: Neo expects one symbol file (.json) and one parameter file (.params).

• XGBoost: Neo expects one XGBoost model file (.model) where the number of nodes in a tree can't
exceed 2^31.

• ONNX: Neo expects one .onnx file.

What input data shapes does Neo expect?

Neo expects the name and shape of the expected data inputs for your trained model with a JSON
dictionary form or list form. The data inputs are framework specific.

• TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using
a dictionary format for your trained model. The dictionary formats required for the console and CLI are
different.

• Examples for one input:

• If using the console, {"input":[1,1024,1024,3]}

• If using the CLI, {\"input\":[1,1024,1024,3]}

• Examples for two inputs:

• If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

• If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

• MXNET/ONNX: You must specify the name and shape (NCHW format) of the expected data inputs
in order using a dictionary format for your trained model. The dictionary formats required for the
console and CLI are different.

• Examples for one input:

• If using the console, {"data":[1,3,1024,1024]}

• If using the CLI, {\"data\":[1,3,1024,1024]}

• Examples for two inputs:

• If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

• If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

• PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order
using a dictionary format for your trained model or you can specify the shape only using a list format.
The dictionary formats required for the console and CLI are different. The list formats for the console
and CLI are the same.

• Examples for one input in dictionary format:

• If using the console, {"input0":[1,3,224,224]}

• If using the CLI, {\"input0\":[1,3,224,224]}

• Example for one input in list format: [[1,3,224,224]]

• Examples for two inputs in dictionary format:

• If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

• If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

• Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

• XGBOOST: input data name and shape are not needed.

Neo Error Messages
This section lists and classifies Neo errors and error messages.

Neo Error Messages

This list catalogs the user and system error messages you can receive from Neo deployments.

346

Amazon SageMaker Developer Guide
Troubleshoot Errors

• User error messages
• Client permission error: Neo passes the errors for these straight through from the dependent

service.

Access Denied when calling sts:AssumeRole

Any 400 error when calling S3 to download or upload a client model.

PassRole error
• Load error: Keywords in error messages, 'InputConfiguration','ModelSizeTooBig'.

Load Error: InputConfiguration: Exactly one {.xxx} file is allowed for {yyy} model.

Load Error: ModelSizeTooBig: number of nodes in a tree can't exceed 2^31
• Compilation error: Keywords in error messages, 'OperatorNotImplemented','

OperatorAttributeNotImplemented', 'OperatorAttributeRequired', 'OperatorAttributeValueNotValid'.

OperatorNotImplemented: {xxx} is not supported.

OperatorAttributeNotImplemented: {xxx} is not supported in {yyy}.

OperatorAttributeRequired: Required attribute {xxx} not found in {yyy}.

OperatorAttributeValueNotValid: The value of attribute {xxx} in operator {yyy} cannot be negative.
• Any Malformed Input Errors

• System error messages
• For system errors, Neo shows only one error message similar to the following: There was an

unexpected error during compilation, check your inputs and try again in a few minutes.
• This covers all unexpected errors and errors that are not user errors.

Neo Error Classifications

This list classifies the user errors you can receive from Neo. These include access and permission errors
and load errors for each of the supported frameworks. All other errors are system errors.

• Client permission error: Neo passes the errors for these straight through from the dependent service.

Access Denied when calling sts:AssumeRole

Any 400 error when calling Amazon S3 to download or upload a client model.

PassRole error
• Load error: Assuming that the Neo compiler successfully loaded .tar.gz from Amazon S3, check

whether the tarball contains the necessary files for compilation. The checking criteria is framework-
specific:
• TensorFlow: Expects only protobuf file (*.pb or *.pbtxt). For saved models, expects one variables

folder.
• Pytorch: Expect only one pytorch file (*.pth).
• MXNET: Expect only one symbol file (*.json) and one parameter file (*.params).
• XGBoost: Expect only one XGBoost model file (*.model). The input model has size limitation.

• Compilation error: Assuming that the Neo compiler successfully loaded .tar.gz from Amazon S3, and
that the tarball contains necessary files for compilation. The checking criteria is:
• OperatorNotImplemented: An operator has not been implemented.
• OperatorAttributeNotImplemented: The attribute in the specified operator has not been

implemented.

347

Amazon SageMaker Developer Guide
Batch Transform

• OperatorAttributeRequired: An attribute is required for an internal symbol graph, but it is not listed
in the user input model graph.

• OperatorAttributeValueNotValid: The value of the attribute in the specific operator is not valid.

Resolve Neo Errors

This section provides guidance on troubleshooting common issues with Neo. These include permission,
load, compilation, and system errors and errors involving invalid inputs and unsupported operations.

• Catalog of Known Issues:

• If you see Client Permission Error, review the set up documentation and make sure that you have
correctly granted the permissions that are failing.

• If you see Load Error, check the model format files that Neo expects for different frameworks.

• If you see Compilation Error, check and address the details error message in your input model
graph.

• If you see System Error, try again in a few minutes. If that fails, file a ticket.

• Lack of Roles and Permissions: Review the set up documentation and make sure that you have
correctly granted the permissions that are failing.

• Invalid API and Console Inputs: Fix your input as described in the validation error.

• Unsupported Operators:

• Check the failure reason where Neo has listed all unsupported operators with the keyword
‘OperatorNotImplemented’.

• For example: Compilation Error: OperatorNotImplemented: The following operators are not
implemented: {'_sample_multinomial', 'RNN' }

• Remove the unsupported operators from your input model graph and test it again.

Batch Transform
To preprocess or get inferences for an entire dataset, use batch transform. Use batch transform when
you need to work with large datasets, process datasets quickly or sub-second latency. Use preprocessing
to remove noise or bias from your dataset that interferes with training or inference. Use batch transform
for inference when you don't need a persistent endpoint. You can use batch transform for example, to
compare production variants that deploy different models.

To filter input data before performing inferences or to associate input records with inferences about
those records, use Associate Prediction Results with their Corresponding Input Records (p. 351). This is
useful for example, to provide context for creating and interpreting reports about the output data.

For more information about batch transform, see Get Inferences for an Entire Dataset with Batch
Transform (p. 10).

Topics

• Use Batch Transform with Large Datasets (p. 349)

• Speed Up a Batch Transform Job (p. 350)

• Use Batch Transform to Test Production Variants (p. 350)

• Batch Transform Errors (p. 350)

• Batch Transform Sample Notebooks (p. 350)

• Associate Prediction Results with their Corresponding Input Records (p. 351)

348

Amazon SageMaker Developer Guide
Use Batch Transform with Large Datasets

Use Batch Transform with Large Datasets
Batch transform automatically manages the processing of large datasets within the limits of specified
parameters. For example, suppose that you have a dataset file, input1.csv, stored in an S3 bucket. The
content of the input file might look like this:

Record1-Attribute1, Record1-Attribute2, Record1-Attribute3, ..., Record1-AttributeM
Record2-Attribute1, Record2-Attribute2, Record2-Attribute3, ..., Record2-AttributeM
Record3-Attribute1, Record3-Attribute2, Record3-Attribute3, ..., Record3-AttributeM
...
RecordN-Attribute1, RecordN-Attribute2, RecordN-Attribute3, ..., RecordN-AttributeM

When a batch transform job starts, Amazon SageMaker initializes compute instances and distributes the
inference or preprocessing workload between them. When you have multiples files, one instance might
process input1.csv, and the other instance might process another file named input2.csv. To keep
large payloads within the MaxPayloadInMB limit, you might split an input file into several mini-batches.
For example, you might create a mini-batch created from input1.csv, as follows.

Record3-Attribute1, Record3-Attribute2, Record3-Attribute3, ..., Record3-AttributeM
Record4-Attribute1, Record4-Attribute2, Record4-Attribute3, ..., Record4-AttributeM

Note
Amazon SageMaker processes each input file separately. It doesn't combine mini-batches from
different input files to comply with the MaxPayloadInMB limit.

To split input files into mini-batches, when you create a batch transform job, set the SplitType parameter
value to Line. If SplitType is set to None or if an input file can't be split into mini-batches, Amazon
SageMaker uses the entire input file in a single request.

If the batch transform job successfully processes all of the records in an input file, it creates an output
file with the same name and an .out file extension. For multiple input files, such as input1.csv
and input2.csv, the output files are named input1.csv.out, and input2.csv.out. The
batch transform job stores the output files in the specified location in Amazon S3, such as s3://
awsexamplebucket/output/. The predictions in an output file are listed in the same order as
the corresponding records in the input file. The following would be the contents of the output file
input1.csv.out, based on the input file shown earlier.

Inference1-Attribute1, Inference1-Attribute2, Inference1-Attribute3, ..., Inference1-
AttributeM
Inference2-Attribute1, Inference2-Attribute2, Inference2-Attribute3, ..., Inference2-
AttributeM
Inference3-Attribute1, Inference3-Attribute2, Inference3-Attribute3, ..., Inference3-
AttributeM
...
InferenceN-Attribute1, Inference3-Attribute2, Inference3-Attribute3, ..., InferenceN-
AttributeM

To combine the results of multiple output files into a single output file, set the AssembleWith parameter
to Line.

When the input data is very large and is transmitted using HTTP chunked encoding, to stream the data
to the algorithm, set MaxPayloadInMB to 0. Currently, Amazon SageMaker built-in algorithms don't
support this feature.

349

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TransformInput.html#SageMaker-Type-TransformInput-SplitType
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TransformOutput.html#SageMaker-Type-TransformOutput-AssembleWith
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB

Amazon SageMaker Developer Guide
Speed Up a Batch Transform Job

For information about using the API to create a batch transform job, see the
CreateTransformJob (p. 673) API. For more information about the correlation between batch transform
input and output objects, see OutputDataConfig. For an example of how to use batch transform, see
Step 6.2: Deploy the Model with Batch Transform (p. 28).

Speed Up a Batch Transform Job
If you are using the CreateTransformJob API, you can reduce the time it takes to complete batch
transform jobs by using different parameter values, such as MaxPayloadInMB, MaxConcurrentTransforms,
and BatchStrategy. Amazon SageMaker automatically finds the optimal parameter settings for built-in
algorithms. For custom algorithms, provide these values through an execution-parameters endpoint.

If you are using the Amazon SageMaker console, you can reduce the time it takes to complete batch
transform jobs by using different parameter values, such as Max payload size (MB), Max concurrent
transforms, and Batch strategy, in the Additional configuration section of the Batch transform job
configuration page. Amazon SageMaker automatically finds the optimal parameter settings for built-in
algorithms. For custom algorithms, provide these values through an execution-parameters endpoint.

Use Batch Transform to Test Production Variants
To test different models or various hyperparameter settings, create a separate transform job for each
new model variant and use a validation dataset. For each transform job, specify a unique model name
and location in Amazon S3 for the output file. To analyze the results, use Inference Pipeline Logs and
Metrics (p. 321).

Batch Transform Errors
Amazon SageMaker uses the Amazon S3 Multipart Upload API to upload results from a batch transform
job to Amazon S3. If an error occurs, the uploaded results are removed from Amazon S3. In some cases,
such as when a network outage occurs, an incomplete multipart upload might remain in Amazon S3.
To avoid incurring storage charges, we recommend that you add the S3 bucket policy to the S3 bucket
lifecycle rules. This policy deletes incomplete multipart uploads that might be stored in the S3 bucket.
For more information, see Object Lifecycle Management.

If a batch transform job fails to process an input file because of a problem with the dataset, Amazon
SageMaker marks the job as "failed" to alert you. If an input file contains a bad record, the transform
job doesn't create an output file for that input file because it can't maintain the same order in the
transformed data. When your dataset has multiple input files, a transform job continues to process input
files even if it fails to process one. The processed files still generate useable results.

Exceeding the MaxPayloadInMB limit causes an error. This might happen with a large dataset if it can't be
split, the SplitType parameter is set to none, or individual records within the dataset exceed the limit.

If you are using your own algorithms, you can use placeholder text, such as ERROR, when the algorithm
finds a bad record in an input file. For example, if the last record in a dataset is bad, the algorithm should
place the error placeholder for that record in the output file.

Batch Transform Sample Notebooks
For a sample notebook that uses batch transform to with a PCA model as a data reduction step on user-
item review matrix followed by DBSCAN to cluster movies, see https://github.com/awslabs/amazon-
sagemaker-examples/blob/master/sagemaker_batch_transform/introduction_to_batch_transform/
batch_transform_pca_dbscan_movie_clusters.ipynb. For instructions on creating and accessing Jupyter
notebook instances that you can use to run the example in Amazon SageMaker, see Use Notebook
Instances (p. 36). After creating and opening a notebook instance, choose the SageMaker Examples tab

350

https://docs.aws.amazon.com/sagemaker/latest/dg/API_OutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxConcurrentTransforms
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-BatchStrategy
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests
https://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html#mpu-abort-incomplete-mpu-lifecycle-config
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TransformInput.html#SageMaker-Type-TransformInput-SplitType
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.ipynb

Amazon SageMaker Developer Guide
Associate Prediction Results with Input

to see a list of all the Amazon SageMaker examples. The topic modeling example notebooks that use the
NTM algorithms are located in the Advanced functionality section. To open a notebook, choose its Use
tab, then choose Create copy.

Associate Prediction Results with their Corresponding
Input Records
When making predictions on a large dataset, attributes that are not needed for prediction can be
excluded. After the predictions have been made, you often want to associate some of the excluded
attributes with those predictions or with other input data in your report. Amazon SageMaker Batch
Tranform enables these data processing steps, often eliminating the need for any additional pre-
processing or post-processing. The feature supports JSON and CSV formatted input files.

Topics

• Data Processing Workflow for a Batch Transform Job (p. 351)

• Use Data Processing in Batch Transform Jobs (p. 352)

• Supported JSONPath Operators (p. 352)

• Examples (p. 353)

Data Processing Workflow for a Batch Transform Job

The following diagram shows the data processing workflow for a batch transform job.

To join the prediction results with the input data, there are three main steps:

• Filter the input data that is not needed for inference before passing it to the batch transform job. Use
the InputFilter parameter to determine which attributes to use as input for the model.

• Associate the input data with the inference results. Use JoinSource to combine the input data with the
inference.

351

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-InputFilter
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-JoinSource

Amazon SageMaker Developer Guide
Associate Prediction Results with Input

• Filter the joined data to retain the inputs needed to provide context for interpreting the predictions in
the reports. Use OutputFilter to store the specified portion of the joined dataset in the output file.

Use Data Processing in Batch Transform Jobs
To process the data when creating a batch transform job with CreateTransformJob:

1. Specify the portion of the input to pass to the model with the InputFilter parameter in the
DataProcessing data structure.

2. Join the raw input data with the transformed data with the JoinSource parameter.
3. Specify which portion of the joined input and transformed data from the batch transform job to

include in the output file with the OutputFilter parameter.
4. Choose either JSON- or CSV-formatted files for input:

• For JSON- or JSON Lines-formatted inputs, Amazon SageMaker either adds SageMakerOutput
attribute to the input file or creates a new JSON output file with the attributes SageMakerInput
and SageMakerOutput. For more information, see DataProcessing (p. 891).

• For CSV-formatted input files, the joined input data is followed by the transformed data and the
output is a CSV file.

If you use an algorithm with the DataProcessing structure, it must support your chosen format
for both input and output files. For example, with the TransformOutput (p. 1030) field of the
CreateTransformJob API, you must set both the ContentType and Accept parameters to one of
the following values: text/csv, application/json, or application/jsonlines. The syntax for
specifying columns in a CSV file and specifying attributes in a JSON file are different. Using the wrong
syntax causes an error. For more information, see Examples (p. 353) For more information about input
and output file formats for build-in algorithms, see Use Amazon SageMaker Built-in Algorithms (p. 56).

The record delimiters for the input and output must also be consistent with the your chosen file input.
The SplitType parameter indicates how to split the records in the input dataset. The AssembleWith
parameter indicates how to reassemble the records for the output. If you set input and output formats
to text/csv, you must also set the SplitType and AssemblyType parameters to line. If you
set the input and output formats to application/jsonlines, you can set both SplitType and
AssemblyType to either none or line.

For JSON files, the attribute name SageMakerOutput is reserved for output. The JSON input file can't
have an attribute with this name. If it does, the data in the input file might be overwritten.

Supported JSONPath Operators
To filter and join the input data and inference, use a JSONPath subexpression. The following table lists
the supported JSONPath operators.

JSONPath Operator Description Example

$ The root element to a query. This operator
is required at the beginning of all path
expressions.

"$"

.<name> A dot-notated child element. "$.id"

* A wildcard. Use in place of an attribute name
or numeric value.

"$.id.*"

['<name>' (,'<name>')]A bracket-notated element or multiple child
elements.

"$['id','SageMakerOutput']"

352

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-OutputFilter
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TransformInput.html#SageMaker-Type-TransformInput-ContentType
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TransformOutput.html#SageMaker-Type-TransformOutput-Accept
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TransformInput.html#SageMaker-Type-TransformInput-SplitType
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TransformOutput.html#SageMaker-Type-TransformOutput-AssembleWith

Amazon SageMaker Developer Guide
Associate Prediction Results with Input

JSONPath Operator Description Example

[<number>
(,<number>)]

An index or array of indexes. Negative index
values are also supported. A -1 index refers to
the last element in an array.

$[1] , $[1,3,5]

[<start>:<end>] An array slice operator. If you omit <start>,
Amazon SageMaker uses the first element
of the array. If you omit <end>, Amazon
SageMaker uses the last element of the array.

$[2:5], $[:5], $[2:]

Note
Amazon SageMaker supports only a subset of the defined JSONPath operators. For more
information about JSONPath operators, see JsonPath.

Examples
The following examples show some common ways to join input data with prediction results.

Topics
• Output Only Inference Results (p. 353)

• Output a Combination of Input Data and Results (p. 353)

• Output an ID Column with Results and Exclude the ID Column from the Input (CSV) (p. 354)

• Output an ID Attribute with Results and Exclude the ID Attribute from the Input (JSON) (p. 355)

Output Only Inference Results

By default, the DataProcessing parameter doesn't join results with input and only outputs the inference
results.

If you want to explicity specify in code not to join results with input, use the Amazon SageMaker Python
SDK and specify these settings in a transformer call.

sm_transformer = sagemaker.transformer.Transformer(…)
sm_transformer.transform(…, input_filter="$", join_source= "None", output_filter="$")

The following code shows the default behavior. To output an inference only using the AWS SDK for
Python, add it to your CreateTransformJob request:

{
 "DataProcessing": {
 "InputFilter": "$",
 "JoinSource": "None",
 "OutputFilter": "$"
 }
}

Output a Combination of Input Data and Results

If you are using the Amazon SageMaker Python SDK, combine the input data with the inference in the
output file, specify "Input" for the JoinSource parameter in a transformer call.

sm_transformer = sagemaker.transformer.Transformer(…)

353

https://github.com/json-path/JsonPath
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-DataProcessing
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-JoinSource

Amazon SageMaker Developer Guide
Associate Prediction Results with Input

sm_transformer.transform(…, join_source= "Input")

If you are using the AWS SDK for Python (Boto 3), join all input data with the inference by adding the
following code to your CreateTransformJob (p. 673) request.

{
 "DataProcessing":
 {
 "JoinSource": "Input"
 }
}

For JSON or JSON Lines, the results are in the SageMakerOutput key in the input JSON file. For
example, if the input is a JSON file that contains the key-value pair {"key":1}, the the data transform
result might be {"label":1}.

Amazon SageMaker stores both in the input file under SageMakerInput key.

{
 "key":1,
 "SageMakerOutput":{"label":1}
}

Note
The joined result for JSON must be a key-value pair object. If the input is not a key-value pair
object, Amazon SageMaker creates a new JSON file. In the new JSON file, the input data is
stored in the SageMakerInput key and the results are stored as the SageMakerOutput value.

For a CSV file, for example, if the record is [1,2,3], and the label result is [1], then the output file
would contain [1,2,3,1].

Output an ID Column with Results and Exclude the ID Column from the Input
(CSV)

If you are using the Amazon SageMaker Python SDK, to include results or an ID column in the output,
specify indexes of the joined dataset in a transformer call. For example, if your data includes five
columns an the first one is the ID column, use the following transformer request.

sm_transformer = sagemaker.transformer.Transformer(…)
sm_transformer.transform(…, input_filter="$[1:]", join_source= "Input",
 output_filter="$[0,5:]")

If you are using the AWS SDK for Python (Boto 3), add the following code to your
CreateTransformJob (p. 673) request.

{
 "DataProcessing": {
 "InputFilter": "$[1:]",
 "JoinSource": "Input",
 "OutputFilter": "$[0,5:]"
 }
}

To specify columns in Amazon SageMaker, index the array elements. The first column is 0, the second
column is 1, and the sixth column is 5. To exclude the first column from the input, set InputFilter to
"$[1:]".

354

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-InputFilter

Amazon SageMaker Developer Guide
Elastic Inference

The OutputFilter parameter applies to the joined input and output. To index correctly, you must know
the sizes of the input data combined with the inference. To include the first three columns from the input
data with the output, set the OutputFilter to "$[0:2, 5:]". The colon ‘:’ tells Amazon SageMaker
to include all of the elements between two values. For example, 0:2 specifies the first three columns. If
you omit the number after the colon, for example, "[0, 5:]", the subset ends at the last column in the
joined data.

Output an ID Attribute with Results and Exclude the ID Attribute from the Input
(JSON)

If you are using the Amazon SageMaker Python SDK, include results or an ID attribute in the output by
specifying it in a transformer call. For example, if you store data under the features attribute and the
record ID under the ID attribute, you would use the following transformer request.

sm_transformer = sagemaker.transformer.Transformer(…)
sm_transformer.transform(…, input_filter="$.features", join_source= "Input",
 output_filter="$['id','SageMakerOutput']")

If you are using the AWS SDK for Python (Boto 3), join all input data with the inference by adding the
following code to your CreateTransformJob (p. 673) request.

{
 "DataProcessing": {
 "InputFilter": "$.features",
 "JoinSource": "Input",
 "OutputFilter": "$['id','SageMakerOutput']"
 }
}

Warning
The attribute name SageMakerOutput is reserved for the JSON output file. The JSON input file
must not have an attribute with this name. If it does, the input file values might be overwritten
with the inference.

Amazon SageMaker Elastic Inference (EI)
By using Amazon Elastic Inference (EI), you can speed up the throughput and decrease the latency of
getting real-time inferences from your deep learning models that are deployed as Amazon SageMaker
hosted models, but at a fraction of the cost of using a GPU instance for your endpoint. EI allows you to
add inference acceleration to a hosted endpoint for a fraction of the cost of using a full GPU instance.
Add an EI accelerator in one of the available sizes to a deployable model in addition to a CPU instance
type, and then add that model as a production variant to an endpoint configuration that you use to
deploy a hosted endpoint. You can also add an EI accelerator to a Amazon SageMaker notebook instance
so that you can test and evaluate inference performance when you are building your models.

Elastic Inference is supported in EI-enabled versions of TensorFlow and MXNet. To use any other deep
learning framework, export your model by using ONNX, and then import your model into MXNet. You
can then use your model with EI as an MXNet model. For information about importing an ONNX model
into MXNet, see https://mxnet.incubator.apache.org/tutorials/onnx/super_resolution.html.

Topics

• How EI Works (p. 356)

• Choose an EI Accelerator Type (p. 356)

355

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-OutputFilter
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://mxnet.incubator.apache.org/tutorials/onnx/super_resolution.html

Amazon SageMaker Developer Guide
How EI Works

• Use EI in a Amazon SageMaker Notebook Instance (p. 356)

• Use EI on a Hosted Endpoint (p. 357)

• Frameworks that Support EI (p. 357)

• Use EI with Amazon SageMaker Built-in Algorithms (p. 357)

• EI Sample Notebooks (p. 357)

• Set Up to Use EI (p. 358)

• Attach EI to a Notebook Instance (p. 361)

• Use EI on Amazon SageMaker Hosted Endpoints (p. 363)

How EI Works
EI accelerators are network attached devices that work along with EC2 instances in your endpoint to
accelerate your inference calls. When your model is deployed as an endpoint, ML frameworks use a
combination of EC2 instance and accelerator resources to execute inference calls.

The following EI accelerator types are available. You can configure your endpoints or notebook instances
with any EI accelerator type.

In the table, the throughput in teraflops (TFLOPS) is listed for both single-precision floating-point (F32)
and half-precision floating-point (F16) operations. The memory in GB is also listed.

Accelerator Type F32 Throughput in
TFLOPS

F16 Throughput in
TFLOPS

Memory in GB

ml.eia1.medium 1 8 1

ml.eia1.large 2 16 2

ml.eia1.xlarge 4 32 4

Choose an EI Accelerator Type
Consider the following factors when choosing an accelerator type for a hosted model:

• Models, input tensors and batch sizes influence the amount of accelerator memory you need. Start
with an accelerator type that provides at least as much memory as the file size of your trained model.

• Demands on CPU compute resources, GPU-based acceleration, and CPU memory vary significantly
between different kinds of deep learning models. The latency and throughput requirements of the
application also determine the amount of compute and acceleration you need. Thoroughly test
different configurations of instance types and EI accelerator sizes to make sure you choose the
configuration that best fits the performance needs of your application.

Use EI in a Amazon SageMaker Notebook Instance
Typically, you build and test machine learning models in a Amazon SageMaker notebook before you
deploy them for production. You can attach EI to your notebook instance when you create the notebook
instance. You can set up an endpoint that is hosted locally on the notebook instance by using the local
mode supported by TensorFlow and MXNet estimators and models in the Amazon SageMaker Python
SDK to test inference performance. For instructions on how to attach EI to a notebook instance and set
up a local endpoint for inference, see Attach EI to a Notebook Instance (p. 361).

356

Amazon SageMaker Developer Guide
Use EI on a Hosted Endpoint

Use EI on a Hosted Endpoint
When you are ready to deploy your model for production to provide inferences, you create a Amazon
SageMaker hosted endpoint. You can attach EI to the instance where your endpoint is hosted to increase
its performance at providing inferences. For instructions on how to attach EI to a hosted endpoint
instance, see Use EI on Amazon SageMaker Hosted Endpoints (p. 363).

Frameworks that Support EI
EI is designed to be used with AWS enhanced versions of TensorFlow or Apache MXNet machine learning
frameworks. These enhanced versions of the frameworks are automatically built into containers when
you use the Amazon SageMaker Python SDK, or you can download them as binary files and import
them in your own Docker containers. You can download the EI-enabled binary for TensorFlow from
the Amazon S3 bucket at https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow.
For information about building a container that uses the EI-enabled version of TensorFlow, see
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-
tensorflow-serving-container. You can download the EI-enabled binary for Apache MXNet from the
public Amazon S3 bucket at https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet.
For information about buidling a container that uses the EI-enabled version of MXNet, see https://
github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-
container.

To use EI in a hosted endpoint, you can use any of the following, depending on your needs.

• SageMaker Python SDK TensorFlow - if you want to use TensorFlow and you don't need to build a
custom container.

• SageMaker Python SDK MXNet - if you want to use MXNet and you don't need to build a custom
container.

• The low-level AWS Amazon SageMaker SDK for Python (Boto 3) - if you need to build a custom
container.

Typically, you don't need to create a custom container unless your model is very complex and requires
extensions to a framework that the Amazon SageMaker pre-built containers do not support.

Use EI with Amazon SageMaker Built-in Algorithms
Currently, the Image Classification Algorithm (p. 108) and Object Detection Algorithm (p. 199) built-in
algorithms support EI. For an example that uses the Image Classification algorithm with EI, see https://
github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/
imageclassification_caltech/Image-classification-fulltraining.ipynb.

EI Sample Notebooks
The following Sample notebooks provide examples of using EI in Amazon SageMaker:

• https://github.com/awslabs/amazon-sagemaker-examples/blob/master/
sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/
tensorflow_iris_dnn_classifier_using_estimators_elastic_inference.ipynb

• https://github.com/awslabs/amazon-sagemaker-examples/blob/master/
sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/
tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb

• https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/
mxnet_mnist/mxnet_mnist_elastic_inference.ipynb

357

https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-tensorflow-serving-container
https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference.ipynb

Amazon SageMaker Developer Guide
Set Up to Use EI

• https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/
mxnet_mnist/mxnet_mnist_elastic_inference_local.ipynb

• https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-
python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/
tensorflow_serving_pretrained_model_elastic_inference.ipynb

Set Up to Use EI
Use the instructions in this topic only if one of the following applies to you:

• You want to use a customized role or permission policy.
• You want to use a VPC for your hosted model or notebook instance.

Note
If you already have an execution role that has the AmazonSageMakerFullAccess managed
policy attached (this is true for any IAM role that you create when you create a notebook
instance, training job, or model in the console) and you are not connecting to an EI model or
notebook instance in a VPC, you do not need to make any of these changes to use EI in Amazon
SageMaker.

Topics
• Set Up Required Permissions (p. 358)
• Use a Custom VPC to Connect to EI (p. 360)

Set Up Required Permissions
To use EI in Amazon SageMaker, the role that you use to open a notebook instance or create a
deployable model must have a policy with the required permissions attached. You can attach the
AmazonSageMakerFullAccess managed policy, which contains the required permissions, to the role,
or you can add a custom policy that has the required permissions. For information about creating an IAM
role, see Creating a Role for an AWS Service (Console) in the AWS Identity and Access Management User
Guide. For information about attaching a policy to a role, see Adding and Removing IAM Policies .

Add these permissions specifically for connecting EI in an IAM policy:

{
 "Effect": "Allow",
 "Action": [
 "elastic-inference:Connect",
 "ec2:DescribeVpcEndpoints"
],
 "Resource": "*"
}

The following IAM policy is the complete list of required permissions to use EI in Amazon SageMaker:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elastic-inference:Connect",
 "ec2:DescribeVpcEndpoints"

358

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/tensorflow_serving_pretrained_model_elastic_inference.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/tensorflow_serving_pretrained_model_elastic_inference.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/tensorflow_serving_pretrained_model_elastic_inference.ipynb
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon SageMaker Developer Guide
Set Up to Use EI

],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability",
 "cloudwatch:PutMetricData",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DeleteAlarms",
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:DeleteScheduledAction",
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:DescribeScalableTargets",
 "application-autoscaling:DescribeScalingActivities",
 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:DescribeScheduledActions",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:PutScheduledAction",
 "application-autoscaling:RegisterScalableTarget",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:GetLogEvents",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:GetBucketLocation",

359

Amazon SageMaker Developer Guide
Set Up to Use EI

 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "s3:ExistingObjectTag/SageMaker": "true"
 }
 }
 },
 {
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/sagemaker.application-
autoscaling.amazonaws.com/AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "sagemaker.application-autoscaling.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

Use a Custom VPC to Connect to EI
To use EI with Amazon SageMaker in a VPC, you need to create and configure two security groups,
and set up a PrivateLink VPC interface endpoint. EI uses VPC interface endpoint to communicate with
Amazon SageMaker endpoints in your VPC. The security groups you create are used to connect to the
VPC interface endpoint.

Set up Security Groups to Connect to EI

To use EI within a VPC, you need to create two security groups:

• A security group to control access to the VPC interface endpoint that you will set up for EI.
• A security group that allows Amazon SageMaker to call into the first security group.

Complete the following steps to configure the two security groups:

1. Create a security group with no outbound connections. You will attach this to the VPC endpoint
interface you create in the next section.

360

Amazon SageMaker Developer Guide
Attaching EI to a Notebook Instance

2. Create a second security group with no inbound connections, but with an outbound connection to
the first security group.

3. Edit the first security group to allow inbound connections only to the second security group an all
outbound connections.

For more information about VPC security groups, see Security Groups for Your VPC in the Amazon Virtual
Private Cloud User Guide.

Set up a VPC Interface Endpoint to Connect to EI

To use EI with Amazon SageMaker in a custom VPC, you need to set up a VPC interface endpoint
(PrivateLink) for the EI service.

• Set up a VPC interface endpoint (PrivateLink) for the EI. Follow the instructions at Creating
an Interface Endpoint. In the list of services, choose com.amazonaws.<region>.elastic-
inference.runtime. For Security group, make sure you select the first security group you created in the
previous section to the endpoint.

• When you set up the interface endpoint, choose all of the Availability Zones where EI is available. EI
fails if you do not set up at least two Availability Zones. For information about VPC subnets, see VPCs
and Subnets.

Attach EI to a Notebook Instance
To test and evaluate inference performance using EI, you can attach EI to a notebook instance when you
create or update a notebook instance. You can then use EI in local mode to host a model at an endpoint
hosted on the notebook instance. You should test various sizes of notebook instances and EI accelerators
to evaluate the configuration that works best for your use case.

Set Up to Use EI
To use EI locally in a notebook instance, create a notebook instance with an EI instance. To do this:

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker

2. In the navigation pane, choose Notebook instances.

3. Choose Create notebook instance.

4. For Notebook instance name, provide a unique name for your notebook instance.

5. For notebook instance type, choose a CPU instance such as ml.t2.medium.

6. For Elastic Inference (EI), choose an instance from the list, such as ml.eia1.medium.

7. For IAM role, choose an IAM role that has the required permissions to use Amazon SageMaker and
EI.

8. (Optional) For VPC - Optional, if you want the notebook instance to use a VPC, choose one from the
available list, otherwise leave it as No VPC. If you use a VPC follow the instructions at Use a Custom
VPC to Connect to EI (p. 360).

9. (Optional) For Lifecycle configuration - optional, either leave it as No configuration or choose a
lifecycle configuration. For more information, see Customize a Notebook Instance (p. 40).

10. (Optional) For Encryption key - optional, Optional) If you want Amazon SageMaker to use an AWS
Key Management Service key to encrypt data in the ML storage volume attached to the notebook
instance, specify the key.

11. (Optional) For Volume Size In GB - optional, leave the default value of 5.

12. (Optional) For Tags, add tags to the notebook instance. A tag is a label you assign to help manage
your notebook instances. A tag consists of a key and a value both of which you define.

361

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

Amazon SageMaker Developer Guide
Attaching EI to a Notebook Instance

13. Choose Create Notebook Instance.

After you create your notebook instance with EI attached, you can create a Jupyter notebook and set up
an EI endpoint that is hosted locally on the notebook instance.

Topics

• Use EI in Local Mode in Amazon SageMaker (p. 362)

Use EI in Local Mode in Amazon SageMaker
To use EI locally in an endpoint hosted on a notebook instance, use local mode with the Amazon
SageMaker Python SDK versions of either the TensorFlow or MXNet estimators or models. For more
information about local mode support in the Amazon SageMaker Python SDK, see https://github.com/
aws/sagemaker-python-sdk#sagemaker-python-sdk-overview.

Topics

• Use EI in Local Mode with Amazon SageMaker TensorFlow Estimators and Models (p. 362)

• Use EI in Local Mode with Amazon SageMaker Apache MXNet Estimators and Models (p. 362)

Use EI in Local Mode with Amazon SageMaker TensorFlow Estimators and
Models

To use EI with TensorFlow in local mode, specify local for instance_type and
local_sagemaker_notebook for accelerator_type when you call the deploy method of an
estimator or a model object. For more information about Amazon SageMaker Python SDK TensorFlow
estimators and models, see https://github.com/aws/sagemaker-python-sdk/blob/master/src/
sagemaker/tensorflow/README.rst.

The following code shows how to use local mode with an estimator object. To call the deploy method,
you must have previously either:

• Trained the model by calling the fit method of an estimator.

• Pass a model artifact when you initialize the model object.

Deploys the model to a local endpoint
tf_predictor = tf_model.deploy(initial_instance_count=1,
 instance_type='local',
 accelerator_type='local_sagemaker_notebook')

For a complete example of using EI in local mode with TensorFlow, see the sample
notebook at https://github.com/awslabs/amazon-sagemaker-examples/blob/
master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/
tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb

Use EI in Local Mode with Amazon SageMaker Apache MXNet Estimators and
Models

To use EI with MXNet in local mode, specify local for instance_type and
local_sagemaker_notebook for accelerator_type when you call the deploy method of an
estimator or a model object. For more information about Amazon SageMaker Python SDK MXNet
estimators and models, see https://github.com/aws/sagemaker-python-sdk/blob/master/src/
sagemaker/mxnet/README.rst.

362

https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview
https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_iris_dnn_classifier_using_estimators/tensorflow_iris_dnn_classifier_using_estimators_elastic_inference_local.ipynb
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst

Amazon SageMaker Developer Guide
Endpoints with Elastic Inference

The following code shows how to use local mode with an estimator object. You must have previously
called the fit method of the estimator to train the model.

Deploys the model to a local endpoint
mxnet_predictor = mxnet_estimator.deploy(initial_instance_count=1,
 instance_type='local',
 accelerator_type='local_sagemaker_notebook')

For a complete example of using EI in local mode with MXNet, see the sample notebook at https://
github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/
mxnet_mnist_elastic_inference_local.ipynb .

Use EI on Amazon SageMaker Hosted Endpoints
To use Elastic Inference (EI) in Amazon SageMaker with a hosted endpoint for real-time inference, specify
an EI accelerator when you create the deployable model to be hosted at that endpoint. You can do this in
one of the following ways:

• Use the Amazon SageMaker Python SDK versions of either the TensorFlow or MXNet and the Amazon
SageMaker pre-built containers for TensorFlow and MXNet

• Build your own container, and use the low-level Amazon SageMaker API (Boto 3). You will need to
import the EI-enabled version of either TensorFlow or MXNet from the provided Amazon S3 locations
into your container, and use one of those versions to write your training script.

• Use either the Image Classification Algorithm (p. 108) or Object Detection Algorithm (p. 199) build-
in algorithms, and use Boto 3 to run your training job and create your deployable model and hosted
endpoint.

Topics

• Use EI with an Amazon SageMaker TensorFlow Container (p. 363)

• Use EI with an Amazon SageMaker MXNet Container (p. 364)

• Use EI with Your Own Container (p. 364)

Use EI with an Amazon SageMaker TensorFlow Container
To use TensorFlow with EI in Amazon SageMaker, you need to call the deploy method of either the
Estimator or Model objects. You then specify an accelerator type using the accelerator_type input
argument. For information on using TensorFlow in the Amazon SageMaker Python SDK, see: https://
github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst.

Amazon SageMaker provides default model training and inference code for your convenience. For custom
file formats, you might need to implement custom model training and inference code.

Use an Estimator Object

To use an estimator object with EI, include the accelerator_type input argument when you use the
deploy method. The estimator returns a predictor object which we call its deploy method as shown in the
example code:

Deploy an estimator using EI (using the accelerator_type input argument)
predictor = estimator.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia1.medium')

363

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.ipynb
https://sagemaker.readthedocs.io/en/latest/sagemaker.tensorflow.html#tensorflow-estimator
https://sagemaker.readthedocs.io/en/latest/sagemaker.tensorflow.html#tensorflow-model
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst

Amazon SageMaker Developer Guide
Endpoints with Elastic Inference

Use a Model Object

To use a model object with EI, include the accelerator_type input argument when you use the deploy
method. The estimator returns a predictor object which we call its deploy method as shown in the
example code:

Deploy a model using EI (using the accelerator_type input argument)
predictor = model.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia1.medium')

Use EI with an Amazon SageMaker MXNet Container
To use MXNet with EI in Amazon SageMaker, you need to call the deploy method of either the Estimator
or Model objects. You then specify an accelerator type using the accelerator_type input argument.
For information on using MXNet in the Amazon SageMaker Python SDK, see https://github.com/aws/
sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst

Amazon SageMaker provides default model training and inference code for your convenience. For custom
file formats, you might need to implement custom model training and inference code.

Use an Estimator Object

To use an estimator object with EI, include the accelerator_type input argument when you use the
deploy method. The estimator returns a predictor object which we call its deploy method as shown in the
example code:

Deploy an estimator using EI (using the accelerator_type input argument)
predictor = estimator.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia1.medium')

Use a Model Object

To use a model object with EI, include the accelerator_type input argument when you use the deploy
method. The estimator returns a predictor object which we call its deploy method as shown in the
example code:

Deploy a model using EI (using the accelerator_type input argument)
predictor = model.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia1.medium')

For a complete example of using EI with MXNet in Amazon SageMaker, see the sample notebook at
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/
mxnet_mnist/mxnet_mnist_elastic_inference.ipynb

Use EI with Your Own Container
To use EI with a model in a custom container that you build, use the low-level Amazon SageMaker SDK
for Python (Boto 3). download and import the AWS EI-enabled versions of TensorFlow or Apache MXNet
machine learning frameworks, and write your training script using those frameworks.

Import the EI Version of TensorFlow or MXNet into Your Docker Container

To use EI with your own container, you need to import either the Amazon EI TensorFlow Serving library
or the Amazon EI Apache MXNet library into your container. The EI-enabled versions of TensorFlow and

364

https://sagemaker.readthedocs.io/en/latest/sagemaker.mxnet.html#mxnet-estimator
https://sagemaker.readthedocs.io/en/latest/sagemaker.mxnet.html#mxnet-model
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference.ipynb

Amazon SageMaker Developer Guide
Automatically Scale Amazon SageMaker Models

MXNet are currently available as binary files stored in Amazon S3 locations. You can download the EI-
enabled binary for TensorFlow from the Amazon S3 bucket at https://s3.console.aws.amazon.com/
s3/buckets/amazonei-tensorflow. For information about building a container that uses the EI-enabled
version of TensorFlow, see https://github.com/aws/sagemaker-tensorflow-container#building-the-
sagemaker-elastic-inference-tensorflow-serving-container. You can download the EI-enabled binary for
Apache MXNet from the public Amazon S3 bucket at https://s3.console.aws.amazon.com/s3/buckets/
amazonei-apachemxnet. For information about building a container that uses the EI-enabled version
of MXNet, see https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-
inference-mxnet-container.

Create an EI Endpoint with Boto 3

To create an endpoint by using Boto 3, you first create an endpoint configuration. The endpoint
configuration specifies one or more models (called production variants) that you want to host at the
endpoint. To attach EI to one or more of the production variants hosted at the endpoint, you specify one
of the EI instance types as the AcceleratorType field for that ProductionVariant. You then pass
that endpoint configuration when you create the endpoint.

Create an Endpoint Configuration

To use EI, you need to specify an accelerator type in the endpoint configuration:

Create Endpoint Configuration
from time import gmtime, strftime

endpoint_config_name = 'ImageClassificationEndpointConfig-' + strftime("%Y-%m-%d-%H-%M-%S",
 gmtime())
print(endpoint_config_name)
create_endpoint_config_response = sagemaker.create_endpoint_config(
 EndpointConfigName = endpoint_config_name,
 ProductionVariants=[{
 'InstanceType':'ml.m4.xlarge',
 'InitialInstanceCount':1,
 'ModelName':model_name,
 'VariantName':'AllTraffic',
 'AcceleratorType':'ml.eia1.medium'}])

print("Endpoint Config Arn: " + create_endpoint_config_response['EndpointConfigArn'])

Create an Endpoint

After you create an endpoint configuration with an accelerator type, you can proceed to create an
endpoint.

endpoint_name = 'ImageClassificationEndpoint-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())
endpoint_response = sagemaker.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)

After the endpoint is created you can invoke it using the invoke_endpoint method in a boto3 runtime
object as you would any other endpoint.

Automatically Scale Amazon SageMaker Models
Amazon SageMaker supports automatic scaling for production variants. Automatic scaling dynamically
adjusts the number of instances provisioned for a production variant in response to changes in your

365

https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow
https://s3.console.aws.amazon.com/s3/buckets/amazonei-tensorflow
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-tensorflow-serving-container
https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet
https://s3.console.aws.amazon.com/s3/buckets/amazonei-apachemxnet
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container

Amazon SageMaker Developer Guide
Automatic Scaling Components

workload. When the workload increases, automatic scaling brings more instances online. When the
workload decreases, automatic scaling removes unnecessary instances so that you don't pay for
provisioned variant instances that you aren't using.

To use automatic scaling for a production variant, you define and apply a scaling policy that uses
Amazon CloudWatch metrics and target values that you assign. Automatic scaling uses the policy to
adjust the number of instances up or down in response to actual workloads.

You can use the AWS Management Console to apply a scaling policy based on a predefined metric. A
predefined metric is defined in an enumeration so that you can specify it by name in code or use it in the
AWS Management Console. Alternatively, you can use either the AWS Command Line Interface (AWS CLI)
or the Application Auto Scaling API to apply a scaling policy based on a predefined or custom metric.
We strongly recommend that you load test your automatic scaling configuration to ensure that it works
correctly before using it to manage production traffic.

For information about deploying trained models as endpoints, see Step 6.1: Deploy the Model to
Amazon SageMaker Hosting Services (p. 26).

Topics

• Automatic Scaling Components (p. 366)

• Before You Begin (p. 368)

• Related Topics (p. 369)

• Configure Automatic Scaling for a Production Variant (p. 369)

• Edit a Scaling Policy (p. 375)

• Delete a Scaling Policy (p. 375)

• Update Endpoints that Use Automatic Scaling (p. 377)

• Load Testing for Production Variant Automatic Scaling (p. 377)

• Best Practices for Configuring Automatic Scaling (p. 378)

Automatic Scaling Components
To adjust the number of instances hosting a production variant, Amazon SageMaker automatic scaling
uses a scaling policy . Automatic scaling has the following components:

• Required permissions—Permissions that are required to perform automatic scaling actions.

• A service-linked role—An AWS Identity and Access Management (IAM) role that is linked to a specific
AWS service. A service-linked role includes all of the permissions that the service requires to call other
AWS services on your behalf. Amazon SageMaker automatic scaling automatically generates this role,
AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint, for you.

• A target metric—The Amazon CloudWatch metric that Amazon SageMaker automatic scaling uses to
determine when and how much to scale.

• Minimum and maximum capacity—The minimum and maximum number of instances to use for scaling
the variant.

• A cool down period—The amount of time, in seconds, after a scale-in or scale-out activity completes
before another scale-out activity can start.

Required Permissions for Automatic Scaling
The SagemakerFullAccessPolicy IAM policy has all of the permissions required to perform
automatic scaling actions. For more information about Amazon SageMaker IAM roles, see Amazon
SageMaker Roles (p. 496).

366

Amazon SageMaker Developer Guide
Automatic Scaling Components

If you are using a custom permission policy, you must include the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:UpdateEndpointWeightsAndCapacities"
],
 "Resource": "*"
}
 {
 "Action": [
 "application-autoscaling:*"
],
 "Effect": "Allow",
 "Resource": "*"
}

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource":
 "arn:aws:iam::*:role/aws-service-role/sagemaker.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint",
 "Condition": {
 "StringLike": { "iam:AWSServiceName": "sagemaker.application-autoscaling.amazonaws.com" }
 }
}

{
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
}

Service-Linked Role for Automatic Scaling
A service-linked role is a unique type of IAM role that is linked directly to an AWS service.
Service-linked roles are predefined by the service and include all of the permissions that
the service requires to call other AWS services on your behalf. Automatic scaling uses the
AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint service-linked role. For more
information, see Service-Linked Roles for Application Auto Scaling in the Application Auto Scaling User
Guide.

Target Metric for Automatic Scaling
Amazon SageMaker automatic scaling uses target-tracking scaling policies. You configure the target-
tracking scaling policy by specifying a predefined or custom metric and a target value for the metric . For
more information, see Target Tracking Scaling Policies.

Amazon CloudWatch alarms trigger the scaling policy , which calculate how to adjust scaling based
on the metric and target value that you set. The scaling policy adds or removes endpoint instances
as required to keep the metric at, or close to, the specified target value. In addition, a target-tracking
scaling policy also adjusts to fluctuations in the metric when a workload changes. The policy minimizes
rapid fluctuations in the number of available instances for your variant.

367

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com//autoscaling/application/userguide/application-auto-scaling-target-tracking.html

Amazon SageMaker Developer Guide
Before You Begin

For example, a scaling policy that uses the predefined InvocationsPerInstance metric with a target
value of 70 can keep InvocationsPerInstance at, or close to 70.

Minimum and Maximum Capacity for Automatic Scaling
You can specify the maximum number of endpoint instances that Application Auto Scaling manages for
the variant. The maximum value must be equal to or greater than the value specified for the minimum
number of endpoint instances. Amazon SageMaker automatic scaling does not enforce a limit for this
value.

You can also specify the minimum number of instances that Application Auto Scaling manages for the
variant. This value must be at least 1, and equal to or less than the value specified for the maximum
number of variant instances.

To determine the minimum and maximum number of instances that you need for typical traffic, test your
automatic scaling configuration with the expected rate of traffic to your variant.

Cooldown Period for Automatic Scaling
Tune the responsiveness of a target-tracking scaling policy by adding a cooldown period. A cooldown
period controls when your variant is scaled in and out by blocking subsequent scale-in or scale-out
requests until the period expires. This slows the deletion of variant instances for scale-in requests, and
the creation of variant instances for scale-out requests. A cooldown period helps to ensure that it doesn't
launch or terminate additional instances before the previous scaling activity takes effect. After automatic
scaling dynamically scales using a scaling policy, it waits for the cooldown period to complete before
resuming scaling activities.

You configure the cooldown period in your automatic scaling policy. You can specify the following
cooldown periods:

• A scale-in activity reduces the number of variant instances. A scale-in cooldown period specifies the
amount of time, in seconds, after a scale-in activity completes before another scale-in activity can
start.

• A scale-out activity increases the number of variant instances. A scale-out cooldown period specifies
the amount of time, in seconds, after a scale-out activity completes before another scale-out activity
can start.

If you don't specify a scale-in or a scale-out cooldown period automatic scaling use the default, which is
300 seconds for each.

If instances are being added or removed too quickly when you test your automatic scaling configuration,
consider increasing this value. You can see this behavior if the traffic to your variant has a lot of spikes, or
if you have multiple automatic scaling policies defined for a variant.

If instances are not being added quickly enough to address increased traffic, consider decreasing this
value.

Before You Begin
Before you can use automatically scaled model deployment, create an Amazon SageMaker model
deployment. For more information about deploying a model endpoint, see Step 6.1: Deploy the Model to
Amazon SageMaker Hosting Services (p. 26).

When automatic scaling adds a new variant instance, it is the same instance class as the one used by the
primary instance.

368

Amazon SageMaker Developer Guide
Related Topics

Related Topics
• What Is Application Auto Scaling?

Configure Automatic Scaling for a Production Variant
You can configure automatic scaling for a variant with the AWS Management Console, the AWS CLI, or
the Application Auto Scaling API.

Topics
• Configure Automatic Scaling for a Production Variant (Console) (p. 369)

• Configure Automatic Scaling for a Production Variant (AWS CLI or the Application Auto Scaling
API) (p. 370)

Configure Automatic Scaling for a Production Variant (Console)

To configure automatic scaling for a production variant (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Endpoints.

3. Choose the endpoint that you want to configure.

4. For Endpoint runtime settings, choose the variant that you want to configure.

5. For Endpoint runtime settings, choose Configure auto scaling.

The Configure variant automatic scaling page appears.

6. For Minimum capacity, type the minimum number of instances that you want the scaling policy to
maintain. At least 1 instance is required.

7. For Maximum capacity, type the maximum number of instances that you want the scaling policy to
maintain.

8. For the target value, type the average number of invocations per instance per minute for the variant.
To determine this value, follow the guidelines in Load Testing (p. 377).

Application Auto Scaling adds or removes instances to keep the metric close to the value that you
specify.

9. For Scale-in cool down (seconds) and Scale-out cool down (seconds), type the number seconds for
each cool down period. Assuming that the order in the list is based on either most important to less
important of first applied to last applied.

10. Select Disable scale in to prevent the scaling policy from deleting variant instances if you want to
ensure that your variant scales out to address increased traffic, but are not concerned with removing
instances to reduce costs when traffic decreases, disable scale-in activities.

Scale-out activities are always enabled so that the scaling policy can create endpoint instances as
needed.

11. Choose Save.

This procedure registers a variant as a scalable target with Application Auto Scaling. When you register a
variant, Application Auto Scaling performs validation checks to ensure the following:

• The variant exists

• The permissions are sufficient

369

https://docs.aws.amazon.com//autoscaling/application/userguide/what-is-application-auto-scaling.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Configure Automatic Scaling for a Production Variant

• You aren't registering a variant with an instance that is a burstable performance instance such as T2

Note
Amazon SageMaker automatic scaling doesn't support automatic scaling for burstable
instances such as T2, because they already allow for increased capacity under increased
workloads. For information about burstable performance instances, see Amazon EC2 Instance
Types.

Configure Automatic Scaling for a Production Variant (AWS CLI
or the Application Auto Scaling API)
With the AWS CLI or the Application Auto Scaling API, you can configure automatic scaling based on
either a predefined or a custom metric.

Register a Production Variant

To define the scaling limits for the variant, register your variant with Application Auto Scaling.
Application Auto Scaling dynamically scales the number of variant instances.

To register your variant, you can use either the AWS CLI or the Application Auto Scaling API.

When you register a variant, Application Auto Scaling performs validation checks to ensure the
following:

• The variant resource exists
• The permissions are sufficient
• You aren't registering a variant with an instance that is a Burstable Performance Instance such as T2

Note
Amazon SageMaker automatic scaling doesn't support automatic scaling for burstable
instances such as T2, because burstable instances already allow for increased capacity under
increased workloads. For information about Burstable Performance Instances, see Amazon
EC2 Instance Types.

Register a Production Variant (AWS CLI)

To register your endpoint, use the register-scalable-target AWS CLI command with the following
parameters:

• --service-namespace—Set this value to sagemaker.
• --resource-id—The resource identifier for the production variant. For this parameter, the resource

type is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• --scalable-dimension—Set this value to sagemaker:variant:DesiredInstanceCount.
• --min-capacity—The minimum number of instances that Application Auto Scaling must manage

for this endpoint. Set min-capacity to at least 1. It must be equal to or less than the value specified
for max-capacity.

• --max-capacity—The maximum number of instances that Application Auto Scaling should manage.
Set max-capacity to a minimum of 1, It must be equal to or greater than the value specified for
min-capacity.

Example

The following example shows how to register an endpoint variant named MyVariant that is dynamically
scaled to have one to eight instances:

370

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html

Amazon SageMaker Developer Guide
Configure Automatic Scaling for a Production Variant

aws application-autoscaling register-scalable-target \
 --service-namespace sagemaker \
 --resource-id endpoint/MyEndPoint/variant/MyVariant \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount \
 --min-capacity 1 \
 --max-capacity 8

Register a Production Variant (Application Auto Scaling API)

To register your endpoint variant with Application Auto Scaling, use the RegisterScalableTarget
Application Auto Scaling API action with the following parameters:

• ServiceNamespace—Set this value to sagemaker.
• ResourceID—The resource identifier for the production variant. For this parameter, the resource

type is endpoint and the unique identifier is the name of the variant, for example endpoint/
MyEndPoint/variant/MyVariant.

• ScalableDimension—Set this value to sagemaker:variant:DesiredInstanceCount.
• MinCapacity—The minimum number of instances to be managed by Application Auto Scaling. This

value must be set to at least 1 and must be equal to or less than the value specified for MaxCapacity.
• MaxCapacity—The maximum number of instances to be managed by Application Auto Scaling.

This value must be set to at least 1 and must be equal to or greater than the value specified for
MinCapacity.

Example

The following example shows how to register an Amazon SageMaker production variant that is
dynamically scaled to use one to eight instances:

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.RegisterScalableTarget
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndPoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount",
 "MinCapacity": 1,
 "MaxCapacity": 8
}

Define a Target-Tracking Scaling Policy

To specify the metrics and target values for a scaling policy, you configure a target-tracking scaling
policy. You can use either a predefined metric or a custom metric.

Scaling policy configuration is represented by a JSON block. You save your scaling policy
configuration as a JSON block in a text file. You use that text file when invoking the AWS CLI or
the Application Auto Scaling API. For more information about policy configuration syntax, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

The following options are available for defining a target-tracking scaling policy configuration.

371

https://docs.aws.amazon.com//autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.aws.amazon.com//autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon SageMaker Developer Guide
Configure Automatic Scaling for a Production Variant

Topics

• Use a Predefined Metric (p. 372)

• Use a Custom Metric (p. 372)

• Add a Cooldown Period (p. 373)

• Disable Scale-in Activity (p. 373)

Use a Predefined Metric

To quickly define a target-tracking scaling policy for a variant, use the
SageMakerVariantInvocationsPerInstance predefined metric.
SageMakerVariantInvocationsPerInstance is the average number of times per minute that each
instance for a variant is invoked. We strongly recommend using this metric.

To use a predefined metric in a scaling policy, create a target tracking configuration for your policy. In the
target tracking configuration, include a PredefinedMetricSpecification for the predefined metric
and a TargetValue for the target value of that metric.

Example

The following example is a typical policy configuration for target-tracking scaling for a variant. In this
configuration, we use the SageMakerVariantInvocationsPerInstance predefined metric to adjust
the number of variant instances so that each instance has a InvocationsPerInstance metric of 70.

{
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 }
}

Use a Custom Metric

If you need to define a target-tracking scaling policy that meets your custom requirements, define a
custom metric. You can define a custom metric based on any production variant metric that changes in
proportion to scaling.

Not all Amazon SageMaker metrics work for target tracking. The metric must be a valid utilization
metric, and it must describe how busy an instance is. The value of the metric must increase or decrease
in inverse proportion to the number of variant instances. That is, the value of the metric should decrease
when the number of instances increases.

Important
Before deploying automatic scaling in production, you must test automatic scaling with your
custom metric.

Example

The following example is a target-tracking configuration for a scaling policy. In this configuration, for a
variant named my-variant, a custom metric adjusts the variant based on an average CPU utilization of
50 percent across all instances.

{
 "TargetValue": 50,
 "CustomizedMetricSpecification":
 {

372

Amazon SageMaker Developer Guide
Configure Automatic Scaling for a Production Variant

 "MetricName": "CPUUtilization",
 "Namespace": "/aws/sagemaker/Endpoints",
 "Dimensions": [
 {"Name": "EndpointName", "Value": "my-endpoint" },
 {"Name": "VariantName","Value": "my-variant"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

Add a Cooldown Period

To add a cooldown period for scaling out your variant, specify a value, in seconds, for
ScaleOutCooldown . Similarly, to add a cooldown period for scaling in your variant, add a
value, in seconds, for ScaleInCooldown . For more information about ScaleInCooldown and
ScaleOutCooldown, see TargetTrackingScalingPolicyConfiguration in the Application Auto
Scaling API Reference.

Example

The following is an example of a target-tracking policy configuration for a scaling policy. In this
configuration, the SageMakerVariantInvocationsPerInstance predefined metric is used to adjust
a variant based on an average of 70 across all instances of that variant. The configuration provides a
scale-in cooldown period of 10 minutes and a scale-out cooldown period of 5 minutes.

{
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

Disable Scale-in Activity

You can prevent the target-tracking scaling policy configuration from scaling in your variant by disabling
scale-in activity. Disabling scale-in activity prevents the scaling policy from deleting instances, while still
allowing it to create them as needed.

To enable or disable scale-in activity for your variant, specify a Boolean value for DisableScaleIn. For
more information about DisableScaleIn, see TargetTrackingScalingPolicyConfiguration in
the Application Auto Scaling API Reference.

Example

The following is an example of a target-tracking configuration for a scaling policy. In this configuration,
the SageMakerVariantInvocationsPerInstance predefined metric adjusts a variant based on an
average of 70 across all instances of that variant. The configuration disables scale-in activity for the
scaling policy.

{
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 },

373

https://docs.aws.amazon.com//autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com//autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon SageMaker Developer Guide
Configure Automatic Scaling for a Production Variant

 "DisableScaleIn": true
}

Apply a Scaling Policy to a Production Variant

After registering your variant and defining a scaling policy, apply the scaling policy to the registered
variant. To apply a scaling policy to a variant, you can use the AWS CLI or the Application Auto Scaling
API.

Apply a Scaling Policy to a Production Variant (AWS CLI)

To apply a scaling policy to your variant, use the put-scaling-policy AWS CLI command with the
following parameters:

• --policy-name—The name of the scaling policy.

• --policy-type—Set this value to TargetTrackingScaling.

• --resource-id—The resource identifier for the variant. For this parameter, the resource type is
endpoint and the unique identifier is the name of the variant. For example endpoint/MyEndpoint/
variant/MyVariant.

• --service-namespace—Set this value to sagemaker.

• --scalable-dimension—Set this value to sagemaker:variant:DesiredInstanceCount.

• --target-tracking-scaling-policy-configuration—The target-tracking scaling policy
configuration to use for the variant.

Example

The following example uses with Application Auto Scaling to apply a target-tracking scaling policy
named myscalablepolicy to a variant named myscalablevariant. The policy configuration is saved
in a file named config.json.

aws application-autoscaling put-scaling-policy \
 --policy-name myscalablepolicy \
 --policy-type TargetTrackingScaling \
 --resource-id endpoint/MyEndpoint/variant/MyVariant \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount \
 --target-tracking-scaling-policy-configuration file://config.json

Apply a Scaling Policy to a Production Variant (Application Auto Scaling API)

To apply a scaling policy to a variant with the Application Auto Scaling API, use the PutScalingPolicy
Application Auto Scaling API action with the following parameters:

• PolicyName—The name of the scaling policy.

• ServiceNamespace—Set this value to sagemaker.

• ResourceID—The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example, endpoint/
MyEndpoint/variant/MyVariant.

• ScalableDimension—Set this value to sagemaker:variant:DesiredInstanceCount.

• PolicyType—Set this value to TargetTrackingScaling.

• TargetTrackingScalingPolicyConfiguration—The target-tracking scaling policy configuration
to use for the variant.

374

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html
https://docs.aws.amazon.com//autoscaling/application/APIReference/API_PutScalingPolicy.html

Amazon SageMaker Developer Guide
Edit a Scaling Policy

Example

The following example uses Application Auto Scaling to apply a target-tracking scaling policy named
myscalablepolicy to a variant named myscalablevariant. It uses a policy configuration based on
the SageMakerVariantInvocationsPerInstance predefined metric.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndpoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 }
 }
}

Edit a Scaling Policy
You can edit a variant scaling policy with the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API.

Edit a Scaling Policy (Console)
To edit a scaling policy with the AWS Management Console, use the same procedure that you used to
Configure Automatic Scaling for a Production Variant (Console) (p. 369).

Edit a Scaling Policy (AWS CLI or Application Auto Scaling API)
You can use the AWS CLI or the Application Auto Scaling API to edit a scaling policy in the same way that
you apply a scaling policy:

• With the AWS CLI, specify the name of the policy that you want to edit in the --policy-name
parameter. Specify new values for the parameters that you want to change.

• With the Application Auto Scaling API, specify the name of the policy that you want to edit in the
PolicyName parameter. Specify new values for the parameters that you want to change.

For more information, see Apply a Scaling Policy to a Production Variant (p. 374).

Delete a Scaling Policy
You can delete a scaling policy with the AWS Management Console, the AWS CLI, or the Application Auto
Scaling API.

375

Amazon SageMaker Developer Guide
Delete a Scaling Policy

Delete a Scaling Policy (Console)

To delete an automatic scaling policy for a variant (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. In the navigation pane, choose Endpoints.
3. Choose the endpoint for which you want to delete automatic scaling.
4. For Endpoint runtime settings, choose the variant that you want to configure.
5. Choose Configure auto scaling.
6. Choose Deregister auto scaling.

Delete a Scaling Policy (AWS CLI or Application Auto Scaling
API)
You can use the AWS CLI or the Application Auto Scaling API to delete a scaling policy from a variant.

Delete a Scaling Policy (AWS CLI)

To delete a scaling policy from a variant, use the delete-scaling-policy AWS CLI command with the
following parameters:

• --policy-name—The name of the scaling policy.
• --resource-id—The resource identifier for the variant. For this parameter, the resource type

is endpoint and the unique identifier is the name of the variant. For example, endpoint/
MyEndpoint/variant/MyVariant.

• --service-namespace—Set this value to sagemaker.
• --scalable-dimension—Set this value to sagemaker:variant:DesiredInstanceCount.

Example

The following example deletes a target-tracking scaling policy named myscalablepolicy from a
variant named myscalablevariant.

aws application-autoscaling delete-scaling-policy \
 --policy-name myscalablepolicy \
 --resource-id endpoint/MyEndpoint/variant/MyVariant \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount

Delete a Scaling Policy (Application Auto Scaling API)

To delete a scaling policy from your variant, use the DeleteScalingPolicy Application Auto Scaling
API action with the following parameters:

• PolicyName—The name of the scaling policy.
• ServiceNamespace—Set this value to sagemaker.
• ResourceID—The resource identifier for the variant. For this parameter, the resource type

is endpoint and the unique identifier is the name of the variant,. For example, endpoint/
MyEndpoint/variant/MyVariant.

• ScalableDimension—Set this value to sagemaker:variant:DesiredInstanceCount.

376

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/delete-scaling-policy.html
https://docs.aws.amazon.com//autoscaling/application/APIReference/API_DeleteScalingPolicy.html

Amazon SageMaker Developer Guide
Update Endpoints that Use Automatic Scaling

Example

The following example uses the Application Auto Scaling API to delete a target-tracking scaling policy
named myscalablepolicy from a variant named myscalablevariant.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.DeleteScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndpoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount"
}

Update Endpoints that Use Automatic Scaling
When you update Amazon SageMaker endpoints that have automatic scaling applied, complete the
following steps:

To update an endpoint that has automatic scaling applied

1. Deregister the endpoint as a scalable target by calling DeregisterScalableTarget.
2. Because you turn off automatic scaling before you update the endpoint, you might want to take the

additional precaution of increasing the number of instances for your endpoint during the update.
To do this, update the instance counts for the production variants hosted at the endpoint by calling
UpdateEndpointWeightsAndCapacities (p. 842).

3. Call DescribeEndpoint (p. 709) repeatedly until the value of the EndpointStatus field of the
response is InService.

4. Call DescribeEndpointConfig (p. 712) to get the values of the current endpoint config.
5. Create a new endpoint config by calling CreateEndpointConfig (p. 635). For the

InitialInstanceCount field of each production variant, specify the corresponding value of
DesiredInstanceCount from the response to the previous call to DescribeEndpoint (p. 709).
For all other values, use the values that you got as the response when you called
DescribeEndpointConfig (p. 712) in the previous step.

6. Update the endpoint by calling UpdateEndpoint (p. 840). Specify the endpoint config you created
in the previous step as the EndpointConfig field.

7. Re-enable automatic scaling by calling RegisterScalableTarget.

Load Testing for Production Variant Automatic
Scaling
Perform load tests to choose an automatic scaling configuration that works the way you want.

For an example of load testing to optimize automatic scaling for a Amazon SageMaker endpoint, see
Load test and optimize an Amazon SageMaker endpoint using automatic scaling.

377

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_DeregisterScalableTarget.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://aws.amazon.com//blogs/machine-learning/load-test-and-optimize-an-amazon-sagemaker-endpoint-using-automatic-scaling/

Amazon SageMaker Developer Guide
Additional Considerations

The following guidelines for load testing assume you are using an automatic scaling policy that uses the
predefined target metric SageMakerVariantInvocationsPerInstance.

Topics
• Determine the Performance Characteristics of a Production Variant (p. 378)
• Calculate the Target SageMakerVariantInvocationsPerInstance (p. 378)

Determine the Performance Characteristics of a Production
Variant
Perform load testing to find the peak InvocationsPerInstance that your variant instance can
handle, and the latency of requests, as concurrency increases.

This value depends on the instance type chosen, payloads that clients of your variant typically send, and
the performance of any external dependencies your variant has.

To find the peak requests-per-second (RPS) your variant can handle and latency of requests

1. Set up an endpoint with your variant using a single instance. For information about how to set up an
endpoint, see Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services (p. 26).

2. Use a load testing tool to generate an increasing number of parallel requests, and monitor the RPS
and model latency in the out put of the load testing tool.

Note
You can also monitor requests-per-minute instead of RPS. In that case don't multiply by
60 in the equation to calculate SageMakerVariantInvocationsPerInstance shown
below.

When the model latency increases or the proportion of successful transactions decreases, this is the
peak RPS that your variant can handle.

Calculate the Target SageMakerVariantInvocationsPerInstance
After you find the performance characteristics of the variant, you can determine the maximum RPS we
should allow to be sent to an instance. The threshold used for scaling must be less than this maximum
value. Use the following equation in combination with load testing to determine the correct value for the
SageMakerVariantInvocationsPerInstance target metric in your automatic scaling configuration.

SageMakerVariantInvocationsPerInstance = (MAX_RPS * SAFETY_FACTOR) * 60

Where MAX_RPS is the maximum RPS that you determined previously, and SAFETY_FACTOR is the safety
factor that you chose to ensure that your clients don't exceed the maximum RPS. Multiply by 60 to
convert from RPS to invocations-per-minute to match the per-minute CloudWatch metric that Amazon
SageMaker uses to implement automatic scaling (you don't need to do this if you measured requests-
per-minute instead of requests-per-second).

Note
Amazon SageMaker recommends that you start testing with a SAFETY_FACTOR of 0.5. Test your
automatic scaling configuration to ensure it operates in the way you expect with your model for
both increasing and decreasing customer traffic on your endpoint.

Best Practices for Configuring Automatic Scaling
When configuring automatic scaling, consider the following general guidelines.

378

Amazon SageMaker Developer Guide
Additional Considerations

Testing Your Automatic Scaling Configuration

It is important that you test your automatic scaling configuration to confirm that it works with your
model the way you expect it to.

Updating Endpoints Configured for Automatic Scaling

When you update an endpoint, Application Auto Scaling checks to see whether any of the variants on
that endpoint are targets for automatic scaling. If the update would change the instance type for any
variant that is a target for automatic scaling, the update fails.

In the AWS Management Console, you see a warning that you must deregister the variant from
automatic scaling before you can update it. If you are trying to update the endpoint by calling the
UpdateEndpoint (p. 840) API, the call fails. Before you update the endpoint, delete any scaling policies
configured for it by calling the DeleteScalingPolicy Application Auto Scaling API action, then call
DeregisterScalableTarget to deregister the variant as a scalable target. After you update the endpoint,
you can register the variant as a scalable target and attach an automatic scaling policy to the updated
variant.

There is one exception. If you change the model for a variant that is configured for automatic scaling,
Amazon SageMaker automatic scaling allows the update. This is because changing the model doesn't
typically affect performance enough to change automatic scaling behavior. If you do update a model
for a variant configured for automatic scaling, ensure that the change to the model doesn't significantly
affect performance and automatic scaling behavior.

For instructions on how to update an endpoint that uses automatic scaling, see Update Endpoints that
Use Automatic Scaling (p. 377).

Deleting Endpoints Configured for Automatic Scaling

If you delete an endpoint, Application Auto Scaling checks to see whether any of the variants on
that endpoint are targets for automatic scaling. If any are and you have permission to deregister the
variant, Application Auto Scaling deregisters those variants as scalable targets without notifying you.
If you use a custom permission policy that doesn't provide permission for the DeleteScalingPolicy and
DeregisterScalableTarget actions, you must delete automatic scaling policies and deregister scalable
targets and before deleting the endpoint.

Note
You, as an IAM user, might not have sufficient permission to delete an endpoint if another IAM
user configured automatic scaling for a variant on that endpoint.

Using Step Scaling Policies

Although Amazon SageMaker automatic scaling supports using Application Auto Scaling step scaling
policies, we recommend using target tracking policies, instead. For information about using Application
Auto Scaling step scaling policies, see Step Scaling Policies.

Scaling In When There Is No Traffic

If a variant’s traffic becomes zero, Amazon SageMaker automatic scaling doesn't scale down. This is
because Amazon SageMaker doesn't emit metrics with a value of zero.

As a workaround, do either of the following:

• Send requests to the variant until automatic scaling scales down to the minimum capacity

379

https://docs.aws.amazon.com//autoscaling/application/APIReference/API_DeleteScalingPolicy.html
https://docs.aws.amazon.com//autoscaling/application/APIReference/API_DeregisterScalableTarget.html
https://docs.aws.amazon.com//autoscaling/application/APIReference/API_DeleteScalingPolicy.html
https://docs.aws.amazon.com//autoscaling/application/APIReference/API_DeregisterScalableTarget.html
https://docs.aws.amazon.com//autoscaling/application/userguide/application-auto-scaling-step-scaling-policies.html

Amazon SageMaker Developer Guide
Troubleshoot

• Change the policy to reduce the maximum provisioned capacity to match the minimum provisioned
capacity

Troubleshoot Amazon SageMaker Model
Deployments

If you encounter an issue when deploying machine learning models in Amazon SageMaker, see the
following guidance.

Topics
• Detection Errors in the Active CPU Count (p. 380)

Detection Errors in the Active CPU Count
If you deploy an Amazon SageMaker model with a Linux Java Virtual Machine (JVM), you might
encounter detection errors that prevent using available CPU resources. This issue affects some JVMs
that support Java 8 and Java 9, and most that support Java 10 and Java 11. These JVMs implement a
mechanism that detects and handles the CPU count and the maximum memory available when running
a model in a Docker container, and, more generally, within Linux taskset commands or control groups
(cgroups). Amazon SageMaker deployments take advantage of some of the settings that the JVM uses
for managing these resources. Currently, this causes the container to incorrectly detect the number of
available CPUs.

Amazon SageMaker doesn't limit access to CPUs on an instance. However, the JVM might detect the CPU
count as 1 when more CPUs are available for the container. As a result, the JVM adjusts all of its internal
settings to run as if only 1 CPU core is available. These settings affect garbage collection, locks, compiler
threads, and other JVM internals that negatively affect the concurrency, throughput, and latency of the
container.

For an example of the misdetection, in a container configured for Amazon SageMaker that is deployed
with a JVM that is based on Java8_191 and that has four available CPUs on the instance, run the
following command to start your JVM:

java -XX:+UnlockDiagnosticVMOptions -XX:+PrintActiveCpus -version

This generates the following output:

active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.16.04.1-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

Many of the JVMs affected by this issue have an option to disable this behavior and reestablish full
access to all of the CPUs on the instance. Disable the unwanted behaviour and establish full access
to all instance CPUs by including the -XX:-UseContainerSupport parameter when starting Java
applications. For example, run the java command to start your JVM as follows:

380

Amazon SageMaker Developer Guide
Best Practices

java -XX:-UseContainerSupport -XX:+UnlockDiagnosticVMOptions -XX:+PrintActiveCpus -version

This generates the following output:

active_processor_count: sched_getaffinity processor count: 4
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: sched_getaffinity processor count: 4
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.16.04.1-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

Check whether the JVM used in your container supports the -XX:-UseContainerSupport parameter.
If it does, always pass the parameter when you start your JVM. This provides access to all of the CPUs in
your instances.

You might also encounter this issue when indirectly using a JVM in Amazon SageMaker containers. For
example, when using a JVM to support SparkML Scala. The -XX:-UseContainerSupport parameter
also affects the output returned by the Java Runtime.getRuntime().availableProcessors() API .

Best Practices for Deploying Amazon SageMaker
Models

This topic provides guidance on best practices for deploying machine learning models in Amazon
SageMaker.

Topics
• Deploy Multiple Instances Across Avalibility Zones (p. 381)

Deploy Multiple Instances Across Avalibility Zones
Create robust endpoints when hosting your model. Amazon SageMaker endpoints can help protect
your application from Availability Zone outages and instance failures. If an outage occurs or an instance
fails, Amazon SageMaker automatically attempts to distribute your instances across Availability Zones.
For this reason, we strongly recommended that you deploy multiple instances for each production
endpoint.

If you are using an Amazon Virtual Private Cloud (VPC), configure the VPC with at least two Subnets,
each in a different Availability Zone. If an outage occurs or an instance fails, Amazon SageMaker
automatically attempts to distribute your instances across Availability Zones.

In general, to achieve more reliable performance, use more small Instance Types in different Availability
Zones to host your endpoints.

Hosting Instance Storage Volumes
When you create an endpoint, Amazon SageMaker attaches an Amazon EBS storage volume to each ML
compute instance that hosts the endpoint. The size of the storage volume depends on the instance type.
The following table shows the size of the storage volume that Amazon SageMaker attaches for each
instance type.

381

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_VpcConfig.html#SageMaker-Type-VpcConfig-Subnets
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon SageMaker Developer Guide
Hosting Instance Storage Volumes

Instance
Type

Storage
Volume
in
GB

ml.t2.medium2

ml.t2.large4

ml.t2.xlarge8

ml.t2.2xlarge16

ml.m4.xlarge8

ml.m4.2xlarge16

ml.m4.4xlarge30

ml.m4.10xlarge30

ml.m4.16xlarge30

ml.m5.large4

ml.m5.xlarge8

ml.m5.2xlarge16

ml.m5.4xlarge30

ml.m5.12xlarge30

ml.m5.24xlarge30

ml.c4.large4

ml.c4.xlarge4

ml.c4.2xlarge8

ml.c4.4xlarge15

ml.c4.8xlarge30

ml.c5.large2

ml.c5.xlarge4

ml.c5.2xlarge8

ml.c5.4xlarge16

ml.c5.9xlarge30

ml.c5.18xlarge30

ml.p2.xlarge30

ml.p2.8xlarge30

ml.p2.16xlarge30

382

Amazon SageMaker Developer Guide
Hosting Instance Storage Volumes

Instance
Type

Storage
Volume
in
GB

ml.p3.2xlarge30

ml.p3.8xlarge30

ml.p3.16xlarge30

383

Amazon SageMaker Developer Guide
Scenarios and Guidance

Use Your Own Algorithms or Models
with Amazon SageMaker

Amazon SageMaker makes extensive use of Docker containers for build and runtime tasks. Before using
your own algorithm or model with Amazon SageMaker, you need to understand how Amazon SageMaker
manages and runs them. Amazon SageMaker provides pre-built Docker images for its built-in algorithms
and the deep learning frameworks supported used for training and inference. By using containers, you
can train machine learning algorithms and deploy models quickly and reliably at any scale. Docker is a
program that performs operating-system-level virtualization for installing, distributing, and managing
software. It packages applications and their dependencies into virtual containers that provide isolation,
portability, and security.

You can put scripts, algorithms, and inference code for your machine learning models into containers.
The container includes the runtime, system tools, system libraries, and other code required to train your
algorithms or deploy your models. This gives you the flexibility to use almost any script or algorithm
code with Amazon SageMaker, regardless of runtime or implementation language. The code that runs
in containers is effectively isolated from its surroundings, ensuring a consistent runtime, regardless
of where the container is deployed. After packaging your training code, inference code, or both into
Docker containers, you can create algorithm resources and model package resources for use in Amazon
SageMaker or to publish on AWS Marketplace. With Docker, you can ship code faster, standardize
application operations, seamlessly move code, and economize by improving resource utilization.

You create Docker containers from images that are saved in a repository. You build the images from
scripted instructions provided in a Dockerfile. To use Docker containers in Amazon SageMaker, the scripts
that you use must satisfy certain requirements. For information about the requirements, see Use Your
Own Training Algorithms (p. 404) and Use Your Own Inference Code (p. 408).

Scenarios for Running Scripts, Training Algorithms,
or Deploying Models with Amazon SageMaker

Amazon SageMaker always uses Docker containers when running scripts, training algorithms or
deploying models. However, your level of engagement with containers varies depending on whether
you are using a built-in algorithm provided by Amazon SageMaker or a script or model that you have
developed yourself. If you're using your own code, it also depends on the language and framework
or environment used to develop it, and any other the dependencies it requires to run. In particular, it
depends on whether you use the Amazon SageMaker Python SDK or AWS SDK for Python (Boto3) or
some other SDK. Amazon SageMaker provides containers for its built-in algorithms and pre-built Docker
images for some of the most common machine learning frameworks. You can use the containers and
images as provided or extend them to cover more complicated use cases. You can also create your own
container images to manage more advanced use cases not addressed by the containers provided by
Amazon SageMaker.

There are four main scenarios for running scripts, algorithms, and models in the Amazon SageMaker
environment. The last three describe the scenarios covered here: the ways you can use containers to bring
your own script, algorithm or model.

• Use a built-in algorithm. Containers are used behind the scenes when you use one of the Amazon
SageMaker built-in algorithms, but you do not deal with them directly. You can train and deploy

384

Amazon SageMaker Developer Guide
Docker Container Basics

these algorithms from the Amazon SageMaker console, the AWS Command Line Interface (AWS
CLI), a Python notebook, or the Amazon SageMaker Python SDK. The built-in algorithms available
are itemized and described in the Use Amazon SageMaker Built-in Algorithms (p. 56) topic. For an
example of how to train and deploy a built-in algorithm using Jupyter Notebook running in an Amazon
SageMaker notebook instance, see the Get Started (p. 16) topic.

• Use pre-built container images.Amazon SageMaker provides pre-built containers to supports deep
learning frameworks such as Apache MXNet, TensorFlow, PyTorch, and Chainer. It also supports
machine learning libraries such a scikit-learn and SparkML by providing pre-built Docker images. If you
use the Amazon SageMaker Python SDK, they are deployed using their respective Amazon SageMaker
SDK Estimator class. In this case, you can supply the Python code that implements your algorithm
and configure the pre-built image to access your code as an entry point. For a list of deep learning
frameworks currently supported by Amazon SageMaker and samples that show how to use their
pre-build container images, see Prebuilt Amazon SageMaker Docker Images for TensorFlow, MXNet,
Chainer, and PyTorch (p. 398). For information on the scikit-learn and SparkML pre-built container
images, see Prebuilt Amazon SageMaker Docker Images for Scikit-learn and Spark ML (p. 401).
For more information about using frameworks with the Amazon SageMaker Python SDK, see their
respective topics in Use Machine Learning Frameworks with Amazon SageMaker (p. 440).

• Extend a pre-built container image. If you have additional functional requirements for an algorithm
or model that you developed in a framework that a pre-built Amazon SageMaker Docker image doesn't
support, you can modify an Amazon SageMaker image to satisfy your needs. For an example, see
Extending our PyTorch containers.

• Build your own custom container image: If there is no pre-built Amazon SageMaker container image
that you can use or modify for an advanced scenario, you can package your own script or algorithm to
use with Amazon SageMaker.You can use any programming language or framework to develop your
container. For an example that shows how to build your own containers to train and host an algorithm,
see Bring Your Own R Algorithm.

The next topic provides a brief introduction to Docker containers. Amazon SageMaker has certain
contractual requirements that a container must satisfy to be used with it. The following topic describes
the Amazon SageMaker Containers library that can be used to create Amazon SageMaker-compatible
containers, including a list of the environmental variables it defines and may require. Then a tutorial
that shows how to get started by using Amazon SageMaker Containers to train a Python script. After the
tutorial, topics:

• Describe the pre-built Docker containers provided by Amazon SageMaker for deep learning
frameworks and other libraries.

• Provide examples of how to deploy containers for the various scenarios.

Subsequent sections describe in more detail the contractual requirements to use Docker with Amazon
SageMaker to train your custom algorithms and to deploy your inference code to make predictions.
There are two ways to make predictions when deploying a model. First, to get individual, real-time
predictions, you can make inferences with a hosting services. Second, to get predictions for an entire
dataset, you can use a batch transform. The final sections describe how to create algorithm and model
package resources for use in your Amazon SageMaker account or to publish on AWS Marketplace.

Docker Container Basics
Docker containers provide isolation, portability, and security. They simplify the creation of highly
distributed systems and save money by improving resource utilization. Docker relies on Linux kernel
functionality to provide a lightweight virtualization to package applications into an image that is totally
self-contained. Docker uses a file, called a Dockerfile, to specify how the image is assembled. When you
have an image, you use Docker to build and run a container based on that image.

385

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/pytorch_extending_our_containers/pytorch_extending_our_containers.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/r_bring_your_own

Amazon SageMaker Developer Guide
Amazon SageMaker Containers

You can build your Docker images from scratch or base them on other Docker images that you or others
have built. Images are stored in repositories that are indexed and maintained by registries. An image can
be pushed into or pulled out of a repository using its registry address, which is similar to a URL. Docker
Hub is a registry hosted by Docker, Inc. that provides publicly available repositories. AWS provides the
Amazon Elastic Container Service (Amazon ECS), a highly scalable, fast container management service.
With Amazon ECS, you can deploy any kind of code in Amazon SageMaker. You can also create a logical
division of labor by creating a deployment team that handles DevOps and infrastructure, and that
maintains the container, and a data science team that creates the algorithms and models that are later
added to a container.

Docker builds images by reading the instructions from a Dockerfile text file that contains all of the
commands, in order, that are needed to build the image. A Dockerfile adheres to a specific format
and set of instructions. For move information, see Dockerfile reference. Dockerfiles used in Amazon
SageMaker must also satisfy additional requirements regarding the environmental variables, directory
structure, timeouts, and other common functionality. For information, see Use Your Own Training
Algorithms (p. 404) and Use Your Own Inference Code (p. 408).

For general information about Docker containers managed by Amazon ECS, see Docker Basics for
Amazon ECS in the Amazon Elastic Container Service Developer Guide.

For more information about writing Dockerfiles to build images, see Best practices for writing
Dockerfiles.

For general information about Docker, see the following:

• Docker home page

• Docker overview

• Getting Started with Docker

• Dockerfile reference

Amazon SageMaker Containers: a Library to Create
Docker Containers

Amazon SageMaker Containers is a library that implements the functionality that you need to create
containers to run scripts, train algorithms, or deploy models that are compatible with Amazon
SageMaker. To install this library, use a RUN pip install sagemaker-containers command in
your Dockerfile. The library defines the locations for storing code and other resources when you install it.
Your Dockerfile must also copy the code to be run into the location expected by an Amazon SageMaker-
compatible container and define the entry point containing the code to run when the container is
started. The library also defines other information that a container needs to manage deployments for
training and inference. After you build a Docker image, you can push it to the Amazon Elastic Container
Registry (Amazon ECR). To create a container, you can pull the image from Amazon ECR and build the
container using the docker build command.

The following high-level schematic shows how the files are organized in an Amazon SageMaker-
compatible container created with the Amazon SageMaker Containers library.

386

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.docker.com/engine/reference/builder/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#the-dockerfile-instructions
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#the-dockerfile-instructions
http://www.docker.com
https://docs.docker.com/engine/docker-overview/
http://www.docker.com/get-started
https://docs.docker.com/engine/reference/builder/
https://github.com/aws/sagemaker-containers

Amazon SageMaker Developer Guide
Amazon SageMaker Containers

When Amazon SageMaker trains a model, it creates a number of files in the container's /opt/ml
directory.

/opt/ml
input
config
hyperparameters.json
resourceConfig.json
data
<channel_name>
<input data>
model

code
<script files>
#
output
 ### failure

When you run a model training job, the Amazon SageMaker container has a /opt/ml/input/ directory
that contains JSON files that configure the hyperparameters for the algorithm and the network layout
used for distributed training. The directory also contains files that specify the channels through which
Amazon SageMaker accesses the data in Amazon Simple Storage Service (Amazon S3). Place scripts to
run in the /opt/ml/code/ directory. The /opt/ml/model/ directory contains the model generated
by your algorithm in a singe file or an entire directory tree in any format. You can also send information
about why a training job failed to the /opt/ml/output/ directory. Amazon SageMaker packages files in
this directory into a compressed tar archive file.

When you host a trained model on Amazon SageMaker to make inferences, you deploy the model
to an HTTP endpoint. The model makes realtime predictions in response to inference requests. The
container must contain a serving stack to process these requests. The five files used in the standard
Python serving stack by Amazon SageMaker are installed in the container's WORKDIR. You can choose
a different toolset to deploy an HTTP endpoint and, therefore, could have a different layout. If you're
writing in a programming language other than Python, you will have a different layout, the nature
of which will depend on the frameworks and tools that you choose. The Python serving stack in the
WORKDIR directory contains the following files:

• nginx.conf– The configuration file for the nginx front end.

387

Amazon SageMaker Developer Guide
Environmental Variables - Entrypoints

• predictor.py– The program that implements the Flask web server and the decision tree predictions for
this application. You need to customize the code that performs prediction for your application.

• serve – The program started when the container is started for hosting. This file simply launches the
Gunicorn server, which runs multiple instances of the Flask application defined in predictor.py.

• train – The program that is invoked when you run the container for training. To implement your
training algorithm, you modify this program.

• wsgi.py – A small wrapper used to invoke the Flask application.

In the container, the model files are in the same place that they were written to during training.

/opt/ml
model
 ### <model files>

For more information, see Use Your Own Inference Code (p. 408)

You can provide separate Docker images for the training algorithm and inference code, as shown in the
figure. Or you can use a single Docker image for both. When creating Docker images for use with Amazon
SageMaker, consider the following:

• Providing two Docker images can increase storage requirements and cost because common libraries
might be duplicated.

• In general, smaller containers start faster for both training and hosting. Models train faster and the
hosting service can react to increases in traffic by automatically scaling more quickly.

• You might be able to write an inference container that is significantly smaller than the training
container. This is especially common when you use GPUs for training, but your inference code is
optimized for CPUs.

• Amazon SageMaker requires that Docker containers run without privileged access.
• Docker containers might send messages to the Stdout and Stderr files. Amazon SageMaker sends

these messages to Amazon CloudWatch logs in your AWS account.

Environmental Variables used by Amazon SageMaker
Containers to Define Entry Points
When creating a Dockerfile, you must define an entry point that specifies the location of the code to
run when the container starts. Amazon SageMaker Containers does this by setting an ENV environment
variable. The environment variable that you need to set depends on the job you want to do:

• To run a script,specify the SAGEMAKER_PROGRAM ENV variable.
• To train an algorithm, specify the SAGEMAKER_TRAINING_MODULE ENV variable.
• To host a model, specify the SAGEMAKER_SERVING_MODULE ENV variable.

You can use the Amazon SageMaker containers SDK package to set environment variables.

SAGEMAKER_PROGRAM

Train scripts similar to those you would use outside Amazon SageMaker using Amazon SageMaker Script
Mode. It supports Python and Shell scripts: Amazon SageMaker uses the Python interpreter for any script
with the .py suffix.Amazon SageMaker uses the Shell interpreter to execute any other script.

When running a program to specify the entry point for Script Mode, set the SAGEMAKER_PROGRAM
environmental variable. The script must be located in the /opt/ml/code folder.

388

http://flask.pocoo.org/

Amazon SageMaker Developer Guide
Environmental Variables - User Scripts

For example, the container used in the example in Get Started: Use Amazon SageMaker Containers to
Run a Python Script (p. 396) sets this ENV as follows.

ENV SAGEMAKER_PROGRAM train.py

The Amazon SageMaker PyTorch container sets the ENV variable as follows.

ENV SAGEMAKER_PROGRAM cifar10.py

In the example, cifar10.py is the program that implements the training algorithm and handles loading
the model for inferences. For more information, see the Extending our PyTorch containers notebook.

SAGEMAKER_TRAINING_MODULE

When training an algorithm, specify the location of the module that contains the training logic by setting
the SAGEMAKER_TRAINING_MODULE environment variable. An Amazon SageMaker container invokes
this module when the container starts training. For example, you set this environment variable in MXNet
as follows.

ENV SAGEMAKER_TRAINING_MODULE sagemaker_mxnet_container.training:main

For TensorFlow, set this environmant variable as follows.

ENV SAGEMAKER_TRAINING_MODULE sagemaker_tensorflow_container.training:main

The code that implements this logic is in Amazon SageMaker Containers.

SAGEMAKER_SERVING_MODULE

To locate the module that contains the hosting logic when deploying a model, set the
SAGEMAKER_SERVING_MODULE environmental variable. An Amazon SageMaker container invokes this
module when it starts hosting.

ENV SAGEMAKER_SERVING_MODULE sagemaker_mxnet_container.serving:main

The code that implements this logic is in the: Amazon SageMaker Containers.

Environmental Variables used by Amazon SageMaker
Containers Important for Running User Scripts
When you write a script to run in a container, you are likely to use the following build-time environment
variables. Amazon SageMaker Containers sets some of these variable values by default.

• SM_MODEL_DIR

SM_MODEL_DIR=/opt/ml/model

When the training job finishes, Amazon SageMaker deletes the container, including its file system,
except for the files in the /opt/ml/model and /opt/ml/output folders. Use /opt/ml/model to
save the model checkpoints. Amazon SageMaker uploads these checkpoints to the default S3 bucket.
Examples:

Using it in argparse

389

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/pytorch_extending_our_containers/pytorch_extending_our_containers.ipynb
https://github.com/aws/sagemaker-tensorflow-container/blob/script-mode/docker/1.12.0/Dockerfile.cpu#92
https://github.com/aws/sagemaker-containers/blob/master/src/sagemaker_containers/_trainer.py
https://github.com/aws/sagemaker-containers/blob/master/src/sagemaker_containers/_server.py
https://github.com/aws/sagemaker-containers

Amazon SageMaker Developer Guide
Environmental Variables - User Scripts

parser.add_argument('model_dir', type=str, default=os.environ['SM_MODEL_DIR'])

Using it as a variable
model_dir = os.environ['SM_MODEL_DIR']

Saving checkpoints to the model directory in Chainer
serializers.save_npz(os.path.join(os.environ['SM_MODEL_DIR'], 'model.npz'), model)

For more information, see How Amazon SageMaker Processes Training Output.

• SM_CHANNELS

SM_CHANNELS='["testing","training"]'

The SM_CHANNELS environmental variable contains the list of input data channels for the container.
When you train a model, you can partition your training data into different logical "channels". Common
channels are: training, testing,and evaluation, or images and labels. SM_CHANNELS includes the name
of the channels that are in the container as a JSON encoded list.

Examples:

import json

Using it in argparse
parser.add_argument('channel_names', type=int,
 default=json.loads(os.environ['SM_CHANNELS'])))

Using it as a variable
channel_names = json.loads(os.environ['SM_CHANNELS']))

• SM_CHANNEL_{channel_name}

SM_CHANNEL_TRAINING='/opt/ml/input/data/training'
SM_CHANNEL_TESTING='/opt/ml/input/data/testing'

The SM_CHANNEL_{channel_name} environmental variable contains the directory where the channel
named channel_name is located in the container.

Examples:

import json

parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAINING'])
parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TESTING'])

args = parser.parse_args()

train_file = np.load(os.path.join(args.train, 'train.npz'))
test_file = np.load(os.path.join(args.test, 'test.npz'))

• SM_HPS

SM_HPS='{"batch-size": "256", "learning-rate": "0.0001","communicator": "pure_nccl"}'

The SM_HPS environmental variable contains a JSON encoded dictionary with the hyperparameters
that you have provided.

Example:

390

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html#your-algorithms-training-algo-envvariables

Amazon SageMaker Developer Guide
Environmental Variables - User Scripts

import json

hyperparameters = json.loads(os.environ['SM_HPS']))
{"batch-size": 256, "learning-rate": 0.0001, "communicator": "pure_nccl"}

• SM_HP_ {hyperparameter_name}

SM_HP_LEARNING-RATE=0.0001
SM_HP_BATCH-SIZE=10000
SM_HP_COMMUNICATOR=pure_nccl

The SM_HP_ {hyperparameter_name environmental variable contains the value of the
hyperparameter named hyperparameter_name.

Examples:

learning_rate = float(os.environ['SM_HP_LEARNING-RATE'])
batch_size = int(os.environ['SM_HP_BATCH-SIZE'])
comminicator = os.environ['SM_HP_COMMUNICATOR']

• SM_CURRENT_HOST

SM_CURRENT_HOST=algo-1

The SM_CURRENT HOST contains the name of the current container on the container network.

Examples:

Using it in argparse
parser.add_argument('current_host', type=str, default=os.environ['SM_CURRENT_HOST'])

Using it as a variable
current_host = os.environ['SM_CURRENT_HOST']

• SM_HOSTS

SM_HOSTS='["algo-1","algo-2"]'

The SM_HOSTS environmental variable contains a JSON-encoded list of all of the hosts.

Example:

import json

Using it in argparse
parser.add_argument('hosts', type=nargs, default=json.loads(os.environ['SM_HOSTS']))

Using it as variable
hosts = json.loads(os.environ['SM_HOSTS'])

• SM_NUM_GPUS

SM_NUM_GPUS=1

The SM_NUM_GPUS environmental variable contains the number of GPUs available in the current
container.

391

Amazon SageMaker Developer Guide
Environmental Variable - Reference

Examples:

Using it in argparse
parser.add_argument('num_gpus', type=int, default=os.environ['SM_NUM_GPUS'])

Using it as a variable
num_gpus = int(os.environ['SM_NUM_GPUS'])

Reference: Amazon SageMaker Containers
Environmental Variables
The following build-time environment variables are also defined by default when you use the Amazon
SageMaker Containers.

• SM_NUM_CPUS

SM_NUM_CPUS=32

The SM_NUM_CPUS environment variable contains the number of CPUs available in the current
container.

Example:

Using it in argparse
parser.add_argument('num_cpus', type=int, default=os.environ['SM_NUM_CPUS'])

Using it as a variable
num_cpus = int(os.environ['SM_NUM_CPUS'])

• SM_LOG_LEVEL

SM_LOG_LEVEL=20

The SM_LOG_LEVEL environment variable contains the current log level in the container.

Example:

import logging

logger = logging.getLogger(__name__)

logger.setLevel(int(os.environ.get('SM_LOG_LEVEL', logging.INFO)))

• SM_NETWORK_INTERFACE_NAME

SM_NETWORK_INTERFACE_NAME=ethwe

The SM_NETWORK_INTERFACE_NAME environment variable contains the name of the network
interface, which is used for distributed training.

Example:

Using it in argparse

392

https://github.com/aws/sagemaker-containers
https://github.com/aws/sagemaker-containers

Amazon SageMaker Developer Guide
Environmental Variable - Reference

parser.add_argument('network_interface', type=str,
 default=os.environ['SM_NETWORK_INTERFACE_NAME'])

Using it as a variable
network_interface = os.environ['SM_NETWORK_INTERFACE_NAME']

• SM_USER_ARGS

SM_USER_ARGS='["--batch-size","256","--learning_rate","0.0001","--
communicator","pure_nccl"]'

The SM_INPUT_DIR environment variable contains a JSON-encoded list of the script arguments
provided for training.

• SM_INPUT_DIR

SM_INPUT_DIR=/opt/ml/input/

The SM_INPUT_DIR environment variable contains the path of the input directory, /opt/ml/input/.
This is the directory where Amazon SageMaker saves input data and configuration files before and
during training.

• SM_INPUT_CONFIG_DIR

SM_INPUT_DIR=/opt/ml/input/config

The SM_INPUT_CONFIG_DIR environment variable contains the path of the input config directory, /
opt/ml/input/config/. This is the directory where standard Amazon SageMaker configuration files
are located.

When training starts, Amazon SageMaker creates the following files in this directory:

• hyperparameters.json – Contains the hyperparameters specified in the CreateTrainingJob
request.

• inputdataconfig.json – Contains the data channel information that you specified in the
InputDataConfig parameter in a CreateTrainingJob request.

• resourceconfig.json – Contains the name of the current host and all host containers used in the
training.

For more information, see: Using Your Own Training Algorithms.

• SM_OUTPUT_DATA_DIR

SM_OUTPUT_DATA_DIR=/opt/ml/output/data/algo-1

The SM_OUTPUT_DATA_DIR environment variable contains the directory where the algorithm writes
non-model training artifacts, such as evaluation results. Amazon SageMaker retains these artifacts.
As it runs in a container, your algorithm generates output, including the status of the training job and
model, and the output artifacts. Your algorithm should write this information to this directory.

• SM_RESOURCE_CONFIG

SM_RESOURCE_CONFIG='{"current_host":"algo-1","hosts":["algo-1","algo-2"]}'

The SM_RESOURCE_CONFIG environment variable contains the contents of the
resourceconfig.json file located in the /opt/ml/input/config/ directory. It has the following
keys:

393

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html

Amazon SageMaker Developer Guide
Environmental Variable - Reference

• current_host – The name of the current container on the container network. For example,
"algo-1".

• hosts – The list of names of all of the containers on the container network, sorted lexicographically.
For example, ["algo-1", "algo-2", "algo-3"] for a three-node cluster.

For more information about the resourceconfig.json file, see: Distributed Training Configuration.

• SM_INPUT_DATA_CONFIG

SM_INPUT_DATA_CONFIG='{
 "testing": {
 "RecordWrapperType": "None",
 "S3DistributionType": "FullyReplicated",
 "TrainingInputMode": "File"
 },
 "training": {
 "RecordWrapperType": "None",
 "S3DistributionType": "FullyReplicated",
 "TrainingInputMode": "File"
 }
}'

The SM_INPUT_DATA_CONFIG environment variable contains the input data configuration of the
inputdataconfig.json file located in the /opt/ml/input/config/ directory.

For more information about the resourceconfig.json file, see Distributed Training Configuration.

• SM_TRAINING_ENV

SM_TRAINING_ENV='
{
 "channel_input_dirs": {
 "test": "/opt/ml/input/data/testing",
 "train": "/opt/ml/input/data/training"
 },
 "current_host": "algo-1",
 "framework_module": "sagemaker_chainer_container.training:main",
 "hosts": [
 "algo-1",
 "algo-2"
],
 "hyperparameters": {
 "batch-size": 10000,
 "epochs": 1
 },
 "input_config_dir": "/opt/ml/input/config",
 "input_data_config": {
 "test": {
 "RecordWrapperType": "None",
 "S3DistributionType": "FullyReplicated",
 "TrainingInputMode": "File"
 },
 "train": {
 "RecordWrapperType": "None",
 "S3DistributionType": "FullyReplicated",
 "TrainingInputMode": "File"
 }
 },
 "input_dir": "/opt/ml/input",
 "job_name": "preprod-chainer-2018-05-31-06-27-15-511",
 "log_level": 20,
 "model_dir": "/opt/ml/model",

394

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-dist-training
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-dist-training

Amazon SageMaker Developer Guide
Get Information for a Script

 "module_dir": "s3://sagemaker-{aws-region}-{aws-id}/{training-job-name}/source/
sourcedir.tar.gz",
 "module_name": "user_script",
 "network_interface_name": "ethwe",
 "num_cpus": 4,
 "num_gpus": 1,
 "output_data_dir": "/opt/ml/output/data/algo-1",
 "output_dir": "/opt/ml/output",
 "resource_config": {
 "current_host": "algo-1",
 "hosts": [
 "algo-1",
 "algo-2"
]
 }
}'

The SM_TRAINING_ENV environment variable provides all of the training information as a JSON-
encoded dictionary.

Additional Information for Scripts
Scripts can assign values for the hyperparameters of an algorithm. The interpreter passes all
hyperparameters specified in the training job to the entry point as script arguments. For example, it
passes the training job hyperparameters as follow.:

{"HyperParameters": {"batch-size": 256, "learning-rate": 0.0001, "communicator":
 "pure_nccl"}}

When an entry point needs additional information from the container that isn't available in
hyperparameters, Amazon SageMaker Containers writes this information as environment variables that
are available in the script. For example, the following training job includes the training and testing
channels.

from sagemaker.pytorch import PyTorch

estimator = PyTorch(entry_point='train.py', ...)

estimator.fit({'training': 's3://bucket/path/to/training/data',
 'testing': 's3://bucket/path/to/testing/data'})

The environment variable SM_CHANNEL_{channel_name} provides the path where the channel is
located.

import argparse
import os

if __name__ == '__main__':
 parser = argparse.ArgumentParser()

 ...

 # reads input channels training and testing from the environment variables
 parser.add_argument('--training', type=str, default=os.environ['SM_CHANNEL_TRAINING'])
 parser.add_argument('--testing', type=str, default=os.environ['SM_CHANNEL_TESTING'])

 args = parser.parse_args()
 ...

395

Amazon SageMaker Developer Guide
Get Started with Containers

Get Started: Use Amazon SageMaker Containers to
Run a Python Script

To run an arbitrary script-based program in a Docker container using the Amazon SageMaker Containers,
build a Docker container with an Amazon SageMaker notebook instance, as follows:

1. Create the notebook instance.

2. Create and upload the Dockerfile and Python scripts.

3. Build the container.

4. Test the container locally.

5. Clean up the resources.

To create an Amazon SageMaker notebook instance

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebook , Notebook instances, and Create notebook instance.

3. On the Create notebook instance page, provide the following information:

a. For Notebook instance name, enter RunScriptNotebookInstance.

b. For Notebook Instance type, choose ml.t2.medium.

c. For IAM role, choose Create a new role.

i. Choose Create a new role.

ii. On the Create an IAM role page, choose Specific S3 buckets, specify an S3 bucket named
sagemaker-run-script,. and then choose Create role.

Amazon SageMaker creates an IAM role named AmazonSageMaker-
ExecutionRole-YYYYMMDDTHHmmSS. For example, AmazonSageMaker-
ExecutionRole-20190429T110788. Record the role name because you'll need it later.

d. For Root Access, accept the default, Enabled.

e. Choose Create notebook instance.

It takes a few minutes for Amazon SageMaker to launch an ML compute instance—in this case,
a notebook instance—and attach an ML storage volume to it. The notebook instance has a
preconfigured Jupyter notebook server and a set of Anaconda libraries. For more information,
see the CreateNotebookInstance (p. 656) API.

4. When the status of the notebook instance is InService, from Actions, choose Open Jupyter.

For New, choose conda_tensorflw_p36. This is the kernel you need.

5. To name the notebook, choose File, Rename, enter tRun-Python-Script, and then choose
Rename.

To create and upload the Dockerfile and Python scripts

1. In the editor of your choice, create the following Dockerfile text file locally and save it with the file
name "Dockerfile" without an extension. The docker build command expects by default to find a
file with precisely this name in the dockerfile directory. For example, in Notepad, you can save a text
file without an extension by choosing File, Save As and choosing All types(*.*).

FROM tensorflow/tensorflow:2.0.0a0

396

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Get Started with Containers

RUN pip install sagemaker-containers

Copies the training code inside the container
COPY train.py /opt/ml/code/train.py

Defines train.py as script entrypoint
ENV SAGEMAKER_PROGRAM train.py

The Dockerfile script performs the following tasks:

• FROM tensorflow/tensorflow:2.0.0a0 downloads the TensorFlow library used to run the
Python script.

• RUN pip install sagemaker-containersAmazon SageMaker Containers contains the
common functionality necessary to create a container compatible with Amazon SageMaker.

• COPY train.py /opt/ml/code/train.py copies the script to the location inside the
container that is expected by Amazon SageMaker. The script must be located in this folder.

• ENV SAGEMAKER_PROGRAM train.py defines train.py as the name of the entrypoint script that
is located in the /opt/ml/code folder for the container. This is the only environmental variable
that you must specify when, you are using your own container.

2. In the editor of your choice, create and save the following train.py text file locally.

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=1)

model.evaluate(x_test, y_test)

3. To upload the Dockerfile to a dockerfile directory, choose Open JupyterLab, choose the File
Browser icon, and then choose the New Folder icon. This creates a new directory named dockerfile.

4. Double-click the new dockerfile folder, choose the Upload Files icon, navigate to where you
saved your Dockerfile and train.py script files, and upload them to the dockerfile folder.

To build the container

1. The Jupyter Notebook opens in the SageMaker directory. The Docker build command must be run
from the dockerfile directory you created. Run the following command to change into the
dockerfile directory:

cd dockerfile

This returns your current directory: /home/ec2-user/SageMaker/dockerfile

397

https://github.com/aws/sagemaker-containers

Amazon SageMaker Developer Guide
Pre-built Docker Images - Deep Learning

2. To build the Docker container, run the following Docker build command, including the final period.

!docker build -t tf-2.0 .

To test the container locally

1. Use Local Mode the test the container locally. Replace the 'SageMakerRole' value with the
ARN for the role with the IAM role you created when configuring the notebook instance. The ARN
should look like: 'arn:aws:iam::109225375568:role/service-role/AmazonSageMaker-
ExecutionRole-20190429T110788'.

from sagemaker.estimator import Estimator

estimator = Estimator(image_name='tf-2.0',
 role='SageMakerRole',
 train_instance_count=1,
 train_instance_type='local')

estimator.fit()

This test outputs the training environment configuration, the values used for the environmental
variables, the source of the data, and the loss and accuracy obtained during training.

2. After using Local Mode, you can push the image to Amazon Elastic Container Registry and use it to
run training jobs. For an example that shows how to complete these tasks, see Building Your Own
TensorFlow Container

To clean up resources when done with the get started example

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/, stop and
then delete the notebook instance.

2. Open the Amazon S3console at https://console.aws.amazon.com/s3 and delete the bucket that you
created for storing model artifacts and the training dataset.

3. Open the IAM console at https://console.aws.amazon.com/iam/ and delete the IAM role. If you
created permission policies, you can delete them, too.

Note
The Docker container shuts down automatically after it has run. You don't need to delete it.

Prebuilt Amazon SageMaker Docker Images for
TensorFlow, MXNet, Chainer, and PyTorch

Amazon SageMaker provides prebuilt Docker images that include deep learning framework libraries and
other dependencies needed for training and inference. With the SageMaker Python SDK, you can train
and deploy models using one of these popular deep learning frameworks. For instructions on installing
and using the SDK, see Amazon SageMaker Python SDK.

The following table provides links to the GitHub repositories that contain the source code and
Dockerfiles for each framework and for TensorFlow and MXNet Serving. The instructions linked are for
using the Python SDK estimators to run your own training algorithms on Amazon SageMaker and your
own models on Amazon SageMaker hosting.

398

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/tensorflow_bring_your_own/tensorflow_bring_your_own.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/tensorflow_bring_your_own/tensorflow_bring_your_own.ipynb
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk

Amazon SageMaker Developer Guide
Pre-built Docker Images - Deep Learning

Framework Prebuilt Docker Image Source Code Instructions

TensorFlow Amazon SageMaker TensorFlow
Containers

Amazon SageMaker TensorFlow Serving
Container

Using TensorFlow with the SageMaker
Python SDK

MXNet Amazon SageMaker MXNet Containers

Amazon SageMaker MXNet Serving
Container

Using MXNet with the SageMaker
Python SDK

Chainer Amazon SageMaker Chainer SageMaker
Containers

Chainer SageMaker Estimators and
Models

PyTorch Amazon SageMaker PyTorch Containers SageMaker PyTorch Estimators and
Models

If you are not using the Amazon SageMaker Python SDK and one of its estimators to manage the
container, you have to retrieve the relevant pre-built container. The Amazon SageMaker prebuilt Docker
images are stored in Amazon Elastic Container Registry (Amazon ECR). To pull an image from an Amazon
ECR repo or to push an image to an Amazon ECR repo, use the fullname registry address of the image.
Amazon SageMaker uses the following URL patterns for the container image registery addresses:

<account_id>.dkr.ecr.<region>.amazonaws.com/<ECR repo name>:<framework
version>-<processing unit type>-<python version>

The following table itemizes the supported values for each of the components in the URL registery
addresses and how they are associated.

Here, for example, are some of the most common use cases for the deep learning frameworks supported
the Amazon SageMaker:

• If you want to use TensorFlow 1.13 or later to train a model with Python 3:

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training::1.14-gpu-py3

• If you want to use TensorFlow 1.14 or later to train a model with Python 2:

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training::1.14-gpu-py2

• If you want to use TensorFlow 1.14 or later for inference with Python 3:

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-inference::1.14-gpu-
py3

• If you want to use MxNet 1.4.1 or later to train a model or for inference with Python 3:

763104351884.dkr.ecr.<region>.amazonaws.com/mxnet-training:1.4.1-gpu-py3

763104351884.dkr.ecr.<region>.amazonaws.com/mxnet-inference:1.4.1-gpu-py3

• If you want to use Chainer or PyTorch to train a model or for inference with Python 2 or 3:

520713654638.dkr.ecr.<region>.amazonaws.com/sagemaker-chainer:5.0.0-
gpu-<python version>

520713654638.dkr.ecr.<region>.amazonaws.com/sagemaker-pytorch:1.1.0-
gpu-<python version>

399

https://github.com/aws/sagemaker-tensorflow-container
https://github.com/aws/sagemaker-tensorflow-container
https://github.com/aws/sagemaker-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-serving-container
https://sagemaker.readthedocs.io/en/stable/using_tf.html
https://sagemaker.readthedocs.io/en/stable/using_tf.html
https://github.com/aws/sagemaker-mxnet-container
https://github.com/aws/sagemaker-mxnet-serving-container
https://github.com/aws/sagemaker-mxnet-serving-container
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://github.com/aws/sagemaker-chainer-container
https://github.com/aws/sagemaker-chainer-container
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/chainer/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/chainer/README.rst
https://github.com/aws/sagemaker-python-sdk#pytorch-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/pytorch/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/pytorch/README.rst

Amazon SageMaker Developer Guide
Pre-built Docker Images - Deep Learning

URL Component Description Supported Values

<account_id> Specifies the ID for Amazon
SageMaker accounts that contain
the pre-built containers.

• 763104351884

• 871362719292

• 520713654638

• 057415533634

<region> Specifies the AWS regions that
contain the Amazon SageMaker
accounts.

• Accounts 763104351884 and
871362719292 are located in:

us-west-1, us-west-2, us-east-1, us-east-2,
ap-northeast-1, ap-northeast-2, ap-
southeast-1, ap-southeast-2, ap-south-1,
eu-west-1, eu-west-2, eu-central-1, ca-
central-1

• Accounts 520713654638 and
057415533634 are located in:

ap-east-1

<ECR repo
name>

Specifies the name of the public
repository owned by Amazon
SageMaker in the Amazon ECR.

Python 3 containers for TensorFlow-1.13
and later and for MXNet-1.4.1 and later in
accounts 763104351884 and 871362719292:

• tensorflow-training (also for Python 2)
• tensorflow-inference

• mxnet-training

• mxnet-inference

Other Python 2 and Python 3 containers in
accounts 520713654638 and 057415533634:

• sagemaker-tensorflow-scriptmode
(for Python 2 only)

• sagemaker-tensorflow-serving-eia

• sagemaker-mxnet (for Python 2 only)
• sagemaker-mxnet-serving (for Python 2

only)
• sagemaker-mxnet-serving-eia

• sagemaker-chainer

• sagemaker-pytorch

<framework
version>

Specifies the framework and
links to documentation for
the estimators for each of the
frameworks that explains how to
specify the supported versions.

• TensorFlow: TensorFlow SageMaker
Estimators

• MXNet: MXNet SageMaker Estimators
• Chainer: Chainer SageMaker Estimators
• PyTorch: PyTorch SageMaker Estimators

<processing
unit type>

Specifies whether to use a GPU or
CPU for training or hosting.

• cpu

• gpu

<python
version>

Specifies the version of Python
used. (Optional if you are using

• py2

• py3

400

https://github.com/aws/sagemaker-python-sdk#tensorflow-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk#tensorflow-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk#mxnet-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk#chainer-sagemaker-estimators
https://github.com/aws/sagemaker-python-sdk#pytorch-sagemaker-estimators

Amazon SageMaker Developer Guide
Pre-built Docker Images - Scikit-learn and Spark ML

URL Component Description Supported Values

the tensorflow-inference
container for serving.)

•

Amazon SageMaker also provides prebuilt Docker images for scikit-learn and Spark ML. For information
about Docker images that enable using scikit-learn and Spark ML solutions in Amazon SageMaker, see
Prebuilt Amazon SageMaker Docker Images for Scikit-learn and Spark ML (p. 401).

You can use prebuilt containers to deploy your custom models or models that you have purchased on
AWS Marketplace that have been trained in a framework other than Amazon SageMaker. For an overview
of the process of bringing the trained model artifacts into Amazon SageMaker and hosting them at an
endpoint, see Bring Your Own Pretrained MXNet or TensorFlow Models into Amazon SageMaker.

You can customize these prebuilt containers or extend them to handle any additional functional
requirements for your algorithm or model that the prebuilt Amazon SageMaker Docker image doesn't
support. For an example, see Extending Our PyTorch Containers.

Prebuilt Amazon SageMaker Docker Images for
Scikit-learn and Spark ML

Amazon SageMaker provides prebuilt Docker images that install the scikit-learn and Spark ML libraries
and the dependencies they need to build Docker images that are compatible with Amazon SageMaker
using the Amazon SageMaker Python SDK. With the SDK, you can use scikit-learn for machine learning
tasks and use Spark ML to create and tune machine learning pipelines. For instructions on installing
and using the SDK, see SageMaker Python SDK. The following table contains links to the GitHub
repositories with the source code and the Dockerfiles for scikit-learn and Spark ML frameworks and
to instructions that show how use the Python SDK estimators to run your own training algorithms on
Amazon SageMaker Learner and your own models on Amazon SageMaker Hosting.

Library Prebuilt Docker Image Source Code Instructions

scikit-learn SageMaker Scikit-learn Containers Using Scikit-learn with the Amazon
SageMaker Python SDK

Spark ML SageMaker Spark ML Serving
Containers

SparkML Serving

If you are not using the SM Python SDK and one of its estimators to manage the container, you have to
retrieve the relevant pre-build container. The Amazon SageMaker prebuilt Docker images are stored in
Amazon Elastic Container Registry (Amazon ECR). You can push or pull them using their fullname registry
addresses. Amazon SageMaker uses the following Docker Image URL patterns for scikit-learn and Spark
M:

• <ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/sagemaker-scikit-learn

For example, 746614075791.dkr.ecr.us-west-1.amazonaws.com/sagemaker-scikit-learn

• <ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/sagemaker-sparkml-serving

401

https://aws.amazon.com/blogs/machine-learning/bring-your-own-pre-trained-mxnet-or-tensorflow-models-into-amazon-sagemaker/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/pytorch_extending_our_containers/pytorch_extending_our_containers.ipynb
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://github.com/aws/sagemaker-scikit-learn-container
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
https://github.com/aws/sagemaker-sparkml-serving-container
https://github.com/aws/sagemaker-sparkml-serving-container
https://sagemaker.readthedocs.io/en/stable/sagemaker.sparkml.html

Amazon SageMaker Developer Guide
Example Notebooks

For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-
serving

The following table lists the supported values for account IDs and corresponding AWS Region names.

ACCOUNT_ID REGION_NAME

746614075791 us-west-1

246618743249 us-west-2

683313688378 us-east-1

257758044811 us-east-2

354813040037 ap-northeast-1

366743142698 ap-northeast-2

121021644041 ap-southeast-1

783357654285 ap-southeast-2

720646828776 ap-south-1

141502667606 eu-west-1

764974769150 eu-west-2

492215442770 eu-central-1

341280168497 ca-central-1

414596584902 us-gov-west-1

The supported values listed in the table are also available on the fw_registry.py page of the Amazon
SageMaker Python SDK GitHub repository.

Amazon SageMaker also provides prebuilt Docker images for popular deep learning frameworks. For
information about Docker images that enable using deep learning frameworks in Amazon SageMaker,
see Prebuilt Amazon SageMaker Docker Images for TensorFlow, MXNet, Chainer, and PyTorch (p. 398).

For information on Docker images for developing reinforcement learning (RL) solutions in Amazon
SageMaker, see Amazon SageMaker RL Containers.

Example Notebooks: Use Your Own Algorithm or
Model

The following sample notebooks show how to use your own algorithms or pretrained models from an
Amazon SageMaker notebook instance. . After you have created a notebook instance and opened it,
choose the SageMaker Examples tab for a list of all Amazon SageMaker example notebooks. You can
open the sample notebooks from the Advanced Functionality section in your notebook instance or in
GitHub at the provided links. To open a notebook, choose its Use tab, then choose Create copy.

402

https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/fw_registry.py
https://github.com/aws/sagemaker-rl-container

Amazon SageMaker Developer Guide
Example Notebooks

For instructions on how to create and access Jupyter notebook instances, see Use Notebook
Instances (p. 36)

To learn how to host models trained in scikit-learn for making predictions in Amazon SageMaker by
injecting them first-party k-means and XGBoost containers, see the following sample notebooks.

• kmeans_bring_your_own_model - https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/advanced_functionality/kmeans_bring_your_own_model

• xgboost_bring_your_own_model - https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/advanced_functionality/xgboost_bring_your_own_model

To learn how to package algorithms that you have developed in TensorFlow and scikit-learn
frameworks for training and deployment in the Amazon SageMaker environment, see the following
notebooks. They show you how to build, register, and deploy you own Docker containers using
Dockerfiles.

• tensorflow_bring_your_own - https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/advanced_functionality/tensorflow_bring_your_own

• scikit_bring_your_own - https://github.com/awslabs/amazon-sagemaker-examples/tree/master/
advanced_functionality/scikit_bring_your_own

To learn how to train a neural network locally using MXNet or TensorFlow, and then create an
endpoint from the trained model and deploy it on Amazon SageMaker, see the following notebooks.
The MXNet model is trained to recognize handwritten numbers from the MNIST dataset. The TensorFlow
model is trained to classify irises.

• mxnet_mnist_byom - https://github.com/awslabs/amazon-sagemaker-examples/tree/master/
advanced_functionality/mxnet_mnist_byom

• tensorflow_iris_byom - https://github.com/awslabs/amazon-sagemaker-examples/tree/master/
advanced_functionality/tensorflow_iris_byom

To learn how to use a Dockerfile to build a container that calls the train.py script and uses
pipe mode to custom train an algorithm, see the following notebook. In pipe mode, the input data is
transferred to the algorithm while it is training. This can decrease training time compared to using file-
mode.

• pipe_bring_your_own - https://github.com/awslabs/amazon-sagemaker-examples/tree/master/
advanced_functionality/pipe_bring_your_own

To learn how to use an R container to train and host a model with the R kernel installed in a notebook ,
see the following notebook. To take advantage of the AWS SDK for Python (Boto 3), we use Python
within the notebook. You can achieve the same results completely in R by invoking command line
arguments.

• r_bring_your_own - https://github.com/awslabs/amazon-sagemaker-examples/tree/master/
advanced_functionality/r_bring_your_own

To learn how to extend a prebuilt Amazon SageMaker PyTorch container image when you have
additional functional requirements for your algorithm or model that the pre-built Docker image doesn't
support, see the following notebook.

• pytorch_extending_our_containers - https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/advanced_functionality/pytorch_extending_our_containers

403

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/kmeans_bring_your_own_model
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/kmeans_bring_your_own_model
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/xgboost_bring_your_own_model
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/xgboost_bring_your_own_model
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/tensorflow_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/tensorflow_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/scikit_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/scikit_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/mxnet_mnist_byom
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/mxnet_mnist_byom
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/tensorflow_iris_byom
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/tensorflow_iris_byom
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pipe_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pipe_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/r_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/r_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pytorch_extending_our_containers
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pytorch_extending_our_containers

Amazon SageMaker Developer Guide
Use Your Own Training Algorithms

For links to the GitHub repositories with the prebuilt Dockerfiles for the TensorFlow, MXNet, Chainer,
and PyTorch frameworks and instructions on use the AWS SDK for Python (Boto 3) estimators to
run your own training algorithms on Amazon SageMaker Learner and your own models on Amazon
SageMaker hosting, see Prebuilt Amazon SageMaker Docker Images for TensorFlow, MXNet, Chainer, and
PyTorch (p. 398)

Use Your Own Training Algorithms
This section explains how Amazon SageMaker interacts with a Docker container that runs your custom
training algorithm. Use this information to write training code and create a Docker image for your
training algorithms.

Topics
• How Amazon SageMaker Runs Your Training Image (p. 404)
• How Amazon SageMaker Provides Training Information (p. 405)
• How Amazon SageMaker Signals Algorithm Success and Failure (p. 407)
• How Amazon SageMaker Processes Training Output (p. 408)

How Amazon SageMaker Runs Your Training Image
To configure a Docker container to run as an executable, use an ENTRYPOINT instruction in a Dockerfile.
Note the following:

• For model training, Amazon SageMaker runs the container as follows:

docker run image train

Amazon SageMaker overrides any default CMD statement in a container by specifying the train
argument after the image name. The train argument also overrides arguments that you provide
using CMD in the Dockerfile.

• Use the exec form of the ENTRYPOINT instruction:

ENTRYPOINT ["executable", "param1", "param2", ...]

For example:

ENTRYPOINT ["python", "k-means-algorithm.py"]

The exec form of the ENTRYPOINT instruction starts the executable directly, not as a child of /bin/
sh. This enables it to receive signals like SIGTERM and SIGKILL from Amazon SageMaker APIs. Note
the following:

• The CreateTrainingJob (p. 667) API has a stopping condition that directs Amazon SageMaker to

stop model training after a specific time.

• The StopTrainingJob (p. 834) API issues the equivalent of the docker stop, with a 2 minute

timeout, command to gracefully stop the specified container:

404

Amazon SageMaker Developer Guide
Provide Training Information

docker stop -t120

The command attempts to stop the running container by sending a SIGTERM signal. After the 2
minute timeout, SIGKILL is sent and the containers are forcibly stopped. If the container handles the
SIGTERM gracefully and exits within 120 seconds from receiving it, no SIGKILL is sent.

Note
If you want access to the intermediate model artifacts after Amazon SageMaker stops the
training, add code to handle saving artifacts in your SIGTERM handler.

• If you plan to use GPU devices for model training, make sure that your containers are nvidia-docker
compatible. Only the CUDA toolkit should be included on containers; don't bundle NVIDIA drivers with
the image. For more information about nvidia-docker, see NVIDIA/nvidia-docker.

• You can't use the tini initializer as your entry point in Amazon SageMaker containers because it gets
confused by the train and serve arguments.

• /opt/ml and all sub-directories are reserved by Amazon SageMaker training. When building your
algorithm’s docker image, please ensure you don't place any data required by your algorithm under
them as the data may no longer be visible during training.

How Amazon SageMaker Provides Training
Information
This section explains how Amazon SageMaker makes training information, such as training data,
hyperparameters, and other configuration information, available to your Docker container.

When you send a CreateTrainingJob (p. 667) request to Amazon SageMaker to start model training,
you specify the Amazon Elastic Container Registry path of the Docker image that contains the training
algorithm. You also specify the Amazon Simple Storage Service (Amazon S3) location where training
data is stored and algorithm-specific parameters. Amazon SageMaker makes this information available
to the Docker container so that your training algorithm can use it. This section explains how we make
this information available to your Docker container. For information about creating a training job, see
CreateTrainingJob.

Topics
• Hyperparameters (p. 405)
• Environment Variables (p. 405)
• Input Data Configuration (p. 406)
• Training Data (p. 406)
• Distributed Training Configuration (p. 407)

Hyperparameters
Amazon SageMaker makes the hyperparameters in a CreateTrainingJob request available in the
Docker container in the /opt/ml/input/config/hyperparameters.json file.

Environment Variables
• TRAINING_JOB_NAME—The training job name stored in the TrainingJobName parameter in a

CreateTrainingJob (p. 667) request.
• TRAINING_JOB_ARN—The Amazon Resource Name (ARN) of the training job returned as the
TrainingJobArn response element for CreateTrainingJob (p. 667).

405

https://github.com/NVIDIA/nvidia-docker

Amazon SageMaker Developer Guide
Provide Training Information

Input Data Configuration
You specify data channel information in the InputDataConfig parameter in a CreateTrainingJob
request. Amazon SageMaker makes this information available in the /opt/ml/input/config/
inputdataconfig.json file in the Docker container.

For example, suppose that you specify three data channels (train, evaluation, and validation) in
your request. Amazon SageMaker provides the following JSON:

{
"train" : {"ContentType": "trainingContentType",
 "TrainingInputMode": "File",
 "S3DistributionType": "FullyReplicated",
 "RecordWrapperType": "None"},
"evaluation" : {"ContentType": "evalContentType",
 "TrainingInputMode": "File",
 "S3DistributionType": "FullyReplicated",
 "RecordWrapperType": "None"},
"validation" : {"TrainingInputMode": "File",
 "S3DistributionType": "FullyReplicated",
 "RecordWrapperType": "None"}
}

Note
Amazon SageMaker provides only relevant information about each data channel (for example,
the channel name and the content type) to the container, as shown. S3DistributionType will
be set as FullyReplicated if specify EFS or FSxLustre as input data sources.

Training Data
The TrainingInputMode parameter in a CreateTrainingJob request specifies how to make data
available for model training: in FILE mode or PIPE mode. Depending on the specified input mode,
Amazon SageMaker does the following:

• FILE mode—Amazon SageMaker makes the data for the channel available in the /opt/ml/input/
data/channel_name directory in the Docker container. For example, if you have three channels
named training, validation, and testing, Amazon SageMaker makes three directories in the
Docker container:
• /opt/ml/input/data/training

• /opt/ml/input/data/validation

• /opt/ml/input/data/testing

• PIPE mode—Amazon SageMaker makes data for the channel available from the named pipe: /opt/
ml/input/data/channel_name_epoch_number. For example, if you have three channels named
training, validation, and testing, you will need to read from the following pipes:
• /opt/ml/input/data/training_0,/opt/ml/input/data/training_1, ...

• /opt/ml/input/data/validation_0, /opt/ml/input/data/validation_1, ...

• /opt/ml/input/data/testing_0, /opt/ml/input/data/testing_1, ...

Read the pipes sequentially. For example, if you have a channel called training, read the pipes in this
sequence:
1. Open /opt/ml/input/data/training_0 in read mode and read it to EOF (or if you are done

with the first epoch, close the file early).
2. After closing the first pipe file, look for /opt/ml/input/data/training_1 and read it to go

through the second epoch, and so on.

406

Amazon SageMaker Developer Guide
Signal Success or Failure

If the file for a given epoch doesn't exist yet, your code may need to retry until the pipe is created.
There is no sequencing restriction across channel types. That is, you can read multiple epochs for the
training channel, for example, and only start reading the validation channel when you are ready.
Or, you can read them simultaneously if your algorithm requires that.

Distributed Training Configuration

If you're performing distributed training with multiple containers, Amazon SageMaker makes
information about all containers available in the /opt/ml/input/config/resourceconfig.json
file.

To enable inter-container communication, this JSON file contains information for all containers. Amazon
SageMaker makes this file available for both FILE and PIPE mode algorithms. The file provides the
following information:

• current_host—The name of the current container on the container network. For example, algo-1.
Host values can change at any time. Don't write code with specific values for this variable.

• hosts—The list of names of all containers on the container network, sorted lexicographically. For
example, ["algo-1", "algo-2", "algo-3"] for a three-node cluster. Containers can use these
names to address other containers on the container network. Host values can change at any time.
Don't write code with specific values for these variables.

• network_interface_name—The name of the network interface that is exposed to your container.
For example, containers running the Message Passing Interface (MPI) can use this information to set
the network interface name.

• Do not use the information in /etc/hostname or /etc/hosts because it might be inaccurate.

• Hostname information may not be immediately available to the algorithm container. We recommend
adding a retry policy on hostname resolution operations as nodes become available in the cluster.

The following is an example file on node 1 in a three-node cluster:

{
"current_host": "algo-1",
"hosts": ["algo-1","algo-2","algo-3"],
"network_interface_name":"eth1"
}

How Amazon SageMaker Signals Algorithm Success
and Failure
A training algorithm indicates whether it succeeded or failed using the exit code of its process.

A successful training execution should exit with an exit code of 0 and an unsuccessful training execution
should exit with a non-zero exit code. These will be converted to "Completed" and "Failed" in the
TrainingJobStatus returned by DescribeTrainingJob. This exit code convention is standard and
is easily implemented in all languages. For example, in Python, you can use sys.exit(1) to signal a
failure exit and simply running to the end of the main routine will cause Python to exit with code 0.

In the case of failure, the algorithm can write a description of the failure to the failure file. See next
section for details.

407

Amazon SageMaker Developer Guide
Training Output

How Amazon SageMaker Processes Training Output
As your algorithm runs in a container, it generates output including the status of the training job and
model and output artifacts. Your algorithm should write this information to the following files, which are
located in the container's /output directory. Amazon SageMaker processes the information contained in
this directory as follows:

• /opt/ml/output/failure—If training fails, after all algorithm output (for example,
logging) completes, your algorithm should write the failure description to this file. In a
DescribeTrainingJob response, Amazon SageMaker returns the first 1024 characters from this file
as FailureReason.

• /opt/ml/model—Your algorithm should write all final model artifacts to this directory. Amazon

SageMaker copies this data as a single object in compressed tar format to the S3 location that you
specified in the CreateTrainingJob request. If multiple containers in a single training job write to
this directory they should ensure no file/directory names clash. Amazon SageMaker aggregates
the result in a tar file and uploads to s3.

Use Your Own Inference Code
You can use Amazon SageMaker to interact with Docker containers and run your own inference code in
one of two ways:

• To use your own inference code with a persistent endpoint to get one prediction at a time, use Amazon
SageMaker hosting services.

• To use your own inference code to get predictions for an entire dataset, use Amazon SageMaker batch
transform.

Topics
• Use Your Own Inference Code with Hosting Services (p. 408)
• Use Your Own Inference Code with Batch Transform (p. 411)

Use Your Own Inference Code with Hosting Services
This section explains how Amazon SageMaker interacts with a Docker container that runs your own
inference code for hosting services. Use this information to write inference code and create a Docker
image.

Topics
• How Amazon SageMaker Runs Your Inference Image (p. 408)
• How Amazon SageMaker Loads Your Model Artifacts (p. 410)
• How Containers Serve Requests (p. 410)
• How Your Container Should Respond to Inference Requests (p. 410)
• How Your Container Should Respond to Health Check (Ping) Requests (p. 410)

How Amazon SageMaker Runs Your Inference Image
To configure a container to run as an executable, use an ENTRYPOINT instruction in a Dockerfile. Note
the following:

408

Amazon SageMaker Developer Guide
With Hosting Services

• For model inference, Amazon SageMaker runs the container as:

docker run image serve

Amazon SageMaker overrides default CMD statements in a container by specifying the serve
argument after the image name. The serve argument overrides arguments that you provide with the
CMD command in the Dockerfile.

• We recommend that you use the exec form of the ENTRYPOINT instruction:

ENTRYPOINT ["executable", "param1", "param2"]

For example:

ENTRYPOINT ["python", "k_means_inference.py"]

The exec form of the ENTRYPOINT instruction starts the executable directly, not as a child of /bin/
sh. This enables it to receive signals like SIGTERM and SIGKILL from the Amazon SageMaker APIs,
which is a requirement.

For example, when you use the CreateEndpoint (p. 632) API to create an endpoint, Amazon
SageMaker provisions the number of ML compute instances required by the endpoint configuration,
which you specify in the request. Amazon SageMaker runs the Docker container on those instances.

If you reduce the number of instances backing the endpoint (by calling the
UpdateEndpointWeightsAndCapacities (p. 842) APIs), Amazon SageMaker runs a command to stop
the Docker container on the instances being terminated. The command sends the SIGTERM signal,
then it sends the SIGKILL signal thirty seconds later.

If you update the endpoint (by calling the UpdateEndpoint (p. 840) API), Amazon SageMaker
launches another set of ML compute instances and runs the Docker containers that contain your
inference code on them. Then it runs a command to stop the previous Docker containers. To stop
a Docker container, command sends the SIGTERM signal, then it sends the SIGKILL signal thirty
seconds later.

• Amazon SageMaker uses the container definition that you provided in your CreateModel (p. 648)
request to set environment variables and the DNS hostname for the container as follows:

• It sets environment variables using the ContainerDefinition.Environment string-to-string
map.

• It sets the DNS hostname using the ContainerDefinition.ContainerHostname.

• If you plan to use GPU devices for model inferences (by specifying GPU-based ML compute instances
in your CreateEndpointConfig request), make sure that your containers are nvidia-docker

409

Amazon SageMaker Developer Guide
With Hosting Services

compatible. Don't bundle NVIDIA drivers with the image. For more information about nvidia-
docker, see NVIDIA/nvidia-docker.

• You can't use the tini initializer as your entry point in Amazon SageMaker containers because it gets
confused by the train and serve arguments.

How Amazon SageMaker Loads Your Model Artifacts

In your CreateModel (p. 648) request, the container definition includes the ModelDataUrl parameter,
which identifies the S3 location where model artifacts are stored. Amazon SageMaker uses this
information to determine where to copy the model artifacts from. It copies the artifacts to the /opt/
ml/model directory for use by your inference code.

The ModelDataUrl must point to a tar.gz file. Otherwise, Amazon SageMaker won't download the file.

If you trained your model in Amazon SageMaker, the model artifacts are saved as a single compressed tar
file in Amazon S3. If you trained your model outside Amazon SageMaker, you need to create this single
compressed tar file and save it in a S3 location. Amazon SageMaker decompresses this tar file into /opt/
ml/model directory before your container starts.

How Containers Serve Requests

Containers need to implement a web server that responds to /invocations and /ping on port 8080.

How Your Container Should Respond to Inference Requests

To obtain inferences, the client application sends a POST request to the Amazon SageMaker endpoint.
For more information, see the InvokeEndpoint (p. 853) API. Amazon SageMaker passes the request to
the container, and returns the inference result from the container to the client. Note the following:

• Amazon SageMaker strips all POST headers except those supported by InvokeEndpoint. Amazon
SageMaker might add additional headers. Inference containers must be able to safely ignore these
additional headers.

• To receive inference requests, the container must have a web server listening on port 8080 and must
accept POST requests to the /invocations endpoint.

• A customer's model containers must accept socket connection requests within 250 ms.

• A customer's model containers must respond to requests within 60 seconds. The model itself can
have a maximum processing time of 60 seconds before responding to the /invocations. If your model
is going to take 50-60 seconds of processing time, the SDK socket timeout should be set to be 70
seconds.

How Your Container Should Respond to Health Check (Ping)
Requests

The CreateEndpoint and UpdateEndpoint API calls result in Amazon SageMaker starting new
inference containers. Soon after container startup, Amazon SageMaker starts sending periodic GET
requests to the /ping endpoint.

The simplest requirement on the container is to respond with an HTTP 200 status code and an empty
body. This indicates to Amazon SageMaker that the container is ready to accept inference requests at
the /invocations endpoint.

410

https://github.com/NVIDIA/nvidia-docker

Amazon SageMaker Developer Guide
With Batch Transform

If the container does not begin to pass health checks, by consistently responding with 200s, during the
4 minutes after startup, CreateEndPoint will fail, leaving Endpoint in a failed state, and the update
requested by UpdateEndpoint will not be completed.

While the minimum bar is for the container to return a static 200, a container developer can use this
functionality to perform deeper checks. The request timeout on /ping attempts is 2 seconds.

Use Your Own Inference Code with Batch Transform
This section explains how Amazon SageMaker interacts with a Docker container that runs your own
inference code for batch transform. Use this information to write inference code and create a Docker
image.

Topics

• How Amazon SageMaker Runs Your Inference Image (p. 411)

• How Amazon SageMaker Loads Your Model Artifacts (p. 412)

• How Containers Serve Requests (p. 412)

• How Your Container Should Respond to Health Check (Ping) Requests (p. 413)

How Amazon SageMaker Runs Your Inference Image

To configure a container to run as an executable, use an ENTRYPOINT instruction in a Dockerfile. Note
the following:

• For batch transforms, Amazon SageMaker runs the container as:

docker run image serve

Amazon SageMaker overrides default CMD statements in a container by specifying the serve
argument after the image name. The serve argument overrides arguments that you provide with the
CMD command in the Dockerfile.

• We recommend that you use the exec form of the ENTRYPOINT instruction:

ENTRYPOINT ["executable", "param1", "param2"]

For example:

ENTRYPOINT ["python", "k_means_inference.py"]

• Amazon SageMaker sets environment variables specified in CreateModel (p. 648) and
CreateTransformJob (p. 673) on your container. Additionally, the following environment variables will
be populated:

• SAGEMAKER_BATCH is always set to true when the container runs in Batch Transform.

• SAGEMAKER_MAX_PAYLOAD_IN_MB is set to the largest size payload that will be sent to the
container via HTTP.

• SAGEMAKER_BATCH_STRATEGY will be set to SINGLE_RECORD when the container will be sent a
single record per call to invocations and MULTI_RECORD when the container will get as many records
as will fit in the payload.

411

Amazon SageMaker Developer Guide
With Batch Transform

• SAGEMAKER_MAX_CONCURRENT_TRANSFORMS is set to the maximum number of /invocations
requests that can be opened simultaneously.

Note
The last three environment variables come from the API call made by the user. If the user
doesn’t set values for them, they aren't passed. In that case, either the default values or the
values requested by the algorithm (in response to the /execution-parameters) are used.

• If you plan to use GPU devices for model inferences (by specifying GPU-based ML compute instances
in your CreateTransformJob request), make sure that your containers are nvidia-docker compatible.
Don't bundle NVIDIA drivers with the image. For more information about nvidia-docker, see NVIDIA/
nvidia-docker.

• You can't use the init initializer as your entry point in Amazon SageMaker containers because it gets
confused by the train and serve arguments.

How Amazon SageMaker Loads Your Model Artifacts
In a CreateModel (p. 648) request, container definitions includes the ModelDataUrl parameter, which
identifies the location in Amazon S3 where model artifacts are stored. When you use Amazon SageMaker
to run inferences, it uses this information to determine where to copy the model artifacts from. It copies
the artifacts to the /opt/ml/model directory in the Docker container for use by your inference code.

The ModelDataUrl parameter must point to a tar.gz file. Otherwise, Amazon SageMaker can't
download the file. If you train a model in Amazon SageMaker, it saves the artifacts as a single
compressed tar file in Amazon S3. If you train a model in another framework, you need to store the
model artifacts in Amazon S3 as a compressed tar file. Amazon SageMaker decompresses this tar file and
saves it in the /opt/ml/model directory in the container before the batch transform job starts.

How Containers Serve Requests
Containers must implement a web server that responds to invocations and ping requests on port
8080. For batch transforms,you have the option to set algorithms to implement execution-parameters
requests to provide a dynamic runtime configuration to Amazon SageMaker. Amazon SageMaker uses
the following endpoints:

• ping—Used to periodically check the health of the container. Amazon SageMaker waits for an HTTP
200 status code and an empty body for a successful ping request before sending an invocations
request. You might use a ping request to load a model into memory to generate inference when
invocations requests are sent.

• (Optional) execution-parameters—Allows the algorithm to provide the optimal tuning parameters
for a job during runtime. Based on the memory and CPUs available for a container, the algorithm
chooses the appropriate MaxConcurrentTransforms, BatchStrategy, and MaxPayloadInMB
values for the job.

Before calling the invocations request, Amazon SageMaker attempts to invoke the execution-
parameters request. When you create a batch transform job, you can provide values for the
MaxConcurrentTransforms, BatchStrategy, and MaxPayloadInMB parameters. Amazon
SageMaker determines the values for these parameters using this order of precedence:

1. The parameter values that you provide when you create the CreateTransformJob request,

2. The values that the model container returns when Amazon SageMaker invokes the execution-
parameters endpoint

3. The parameters default values, listed in the following table.

412

https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker

Amazon SageMaker Developer Guide
Create Algorithm and Model Package Resources

Parameter Default Values

MaxConcurrentTransforms 1

BatchStrategy MULTI_RECORD

MaxPayloadInMB 6

The response for a GET execution-parameters request is a JSON object with keys for
MaxConcurrentTransforms, BatchStrategy, and MaxPayloadInMB parameters. This is an example
of a valid response:

{
 “MaxConcurrentTransforms”: 8,
 “BatchStrategy": "MULTI_RECORD",
 "MaxPayloadInMB": 6
}

How Your Container Should Respond to Health Check (Ping)
Requests
The simplest requirement on the container is to respond with an HTTP 200 status code and an empty
body. This indicates to Amazon SageMaker that the container is ready to accept inference requests at the
/invocations endpoint.

While the minimum bar is for the container to return a static 200, a container developer can use this
functionality to perform deeper checks. The request timeout on /ping attempts is 2 seconds.

Create Algorithm and Model Package Resources
After your training and/or inference code is packaged in Docker containers, create algorithm and model
package resources that you can use in your Amazon SageMaker account and, optionally, publish on AWS
Marketplace.

Topics
• Create an Algorithm Resource (p. 413)
• Create a Model Package Resource (p. 417)

Create an Algorithm Resource
To create an algorithm resource that you can use to run training jobs in Amazon SageMaker and publish
on AWS Marketplace specify the following information:

• The Docker containers that contains the training and, optionally, inference code.
• The configuration of the input data that your algorithm expects for training.
• The hyperparameters that your algorithm supports.
• Metrics that your algorithm sends to Amazon CloudWatch during training jobs.
• The instance types that your algorithm supports for training and inference, and whether it supports

distributed training across multiple instances.

413

Amazon SageMaker Developer Guide
Create an Algorithm Resource

• Validation profiles, which are training jobs that Amazon SageMaker uses to test your algorithm's
training code and batch transform jobs that Amazon SageMaker runs to test your algorithm's inference
code.

To ensure that buyers and sellers can be confident that products work in Amazon SageMaker, we
require that you validate your algorithms before listing them on AWS Marketplace. You can list
products in the AWS Marketplace only if validation succeeds. To validate your algorithms, Amazon
SageMaker uses your validation profile and sample data to run the following validations tasks:
1. Create a training job in your account to verify that your training image works with Amazon

SageMaker.
2. If you included inference code in your algorithm, create a model in your account using the

algorithm's inference image and the model artifacts produced by the training job.
3. If you included inference code in your algorithm, create a transform job in your account using the

model to verify that your inference image works with Amazon SageMaker.

When you list your product on AWS Marketplace, the inputs and outputs of this validation process
persist as part of your product and are made available to your buyers. This helps buyers understand
and evaluate the product before they buy it. For example, buyers can inspect the input data that you
used, the outputs generated, and the logs and metrics emitted by your code. The more comprehensive
your validation specification, the easier it is for customers to evaluate your product.

Note
In your validation profile, provide only data that you want to expose publicly.

Validation can take up to a few hours. To see the status of the jobs in your account, in the Amazon
SageMaker console, see the Training jobs and Transform jobs pages. If validation fails, you can access
the scan and validation reports from the Amazon SageMaker console. If any issues are found, you will
have to create the algorithm again.

Note
To publish your algorithm on AWS Marketplace, at least one validation profile is required.

You can create an algorithm by using either the Amazon SageMaker console or the Amazon SageMaker
API.

Topics
• Create an Algorithm Resource (Console) (p. 414)
• Create an Algorithm Resource (API) (p. 417)

Create an Algorithm Resource (Console)
To create an algorithm resource (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Algorithms, then choose Create algorithm.
3. On the Training specifications page, provide the following information:

a. For Algorithm name, type a name for your algorithm. The algorithm name must be unique in
your account and in the AWS region. The name must have 1 to 64 characters. Valid characters
are a-z, A-Z, 0-9, and - (hyphen).

b. Type a description for your algorithm. This description appears in the Amazon SageMaker
console and in the AWS Marketplace.

c. For Training image, type the path in Amazon ECR where your training container is stored.
d. For Support distributed training, Choose Yes if your algorithm supports training on multiple

instances. Otherwise, choose No.

414

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Create an Algorithm Resource

e. For Support instance types for training, choose the instance types that your algorithm
supports.

f. For Channel specification, specify up to 8 channels of input data for your algorithm. For
example, you might specify 3 input channels named train, validation, and test. For each
channel, specify the following information:

i. For Channel name, type a name for the channel. The name must have 1 to 64 characters.
Valid characters are a-z, A-Z, 0-9, and - (hyphen).

ii. To require the channel for your algorithm, choose Channel required.
iii. Type a description for the channel.
iv. For Supported input modes, choose Pipe mode if your algorithm supports streaming the

input data, and File mode if your algorithm supports downloading the input data as a file.
You can choose both.

v. For Supported content types, type the MIME type that your algorithm expects for input
data.

vi. For Supported compression type, choose Gzip if your algorithm supports Gzip
compression. Otherwise, choose None.

vii. Choose Add channel to add another data input channel, or choose Next if you are done
adding channels.

4. On the Tuning specifications page, provide the following information:

a. For Hyperparameter specification, specify the hyperparameters that your algorithm supports
by editing the JSON object. For each hyperparameter that your algorithm supports, construct a
JSON block similar to the following:

{
 "DefaultValue": "5",
 "Description": "The first hyperparameter",
 "IsRequired": true,
 "IsTunable": false,
 "Name": "intRange",
 "Range": {
 "IntegerParameterRangeSpecification": {
 "MaxValue": "10",
 "MinValue": "1"
 }
 },
 "Type": "Integer"

In the JSON, supply the following:

i. For DefaultValue, specify a default value for the hyperparameter, if there is one.
ii. For Description, specify a description for the hyperparameter.
iii. For IsRequired, specify whether the hyperparameter is required.
iv. For IsTunable, specify true if this hyperparameter can be tuned when a user runs a

hyperparameter tuning job that uses this algorithm. For information, see Automatic Model
Tuning (p. 288).

v. For Name, specify a name for the hyperparameter.
vi. For Range, specify one of the following:

• IntegerParameterRangeSpecification - the values of the hyperparameter are
integers. Specify minimum and maximum values for the hyperparameter.

•
• ContinuousParameterRangeSpecification - the values of the hyperparameter are

floating-point values. Specify minimum and maximum values for the hyperparameter.

415

Amazon SageMaker Developer Guide
Create an Algorithm Resource

• CategoricalParameterRangeSpecification - the values of the hyperparameter are
categorical values. Specify a list of all of the possible values.

vii. For Type, specify Integer, Continuous, or Categorical. The value must correspond to
the type of Range that you specified.

b. For Metric definitions, specify any training metrics that you want your algorithm to emit.
Amazon SageMaker uses the regular expression that you specify to find the metrics by parsing
the logs from your training container during training. Users can view these metrics when they
run training jobs with your algorithm, and they can monitor and plot the metrics in Amazon
CloudWatch. For information, see Monitor and Analyze Training Jobs Using Metrics (p. 276). For
each metric, provide the following information:

i. For Metric name, type a name for the metric.

ii. For Regex, type the regular expression that Amazon SageMaker uses to parse training logs
so that it can find the metric value.

iii. For Objective metric support choose Yes if this metric can be used as the objective metric
for a hyperparameter tuning job. For information, see Automatic Model Tuning (p. 288).

iv. Choose Add metric to add another metric, or choose Next if you are done adding metrics.

5. On the Inference specifications page, provide the following information if your algorithm supports
inference:

a. For Container definition, type path in Amazon ECR where your inference container is stored.

b. For Container DNS host name, type the name of a DNS host for your image.

c. For Supported instance types for real-time inference, choose the instance types that your
algorithm supports for models deployed as hosted endpoints in Amazon SageMaker. For
information, see Deploy a Model on Amazon SageMaker Hosting Services (p. 7).

d. For Supported instance types for batch transform jobs, choose the instance types that your
algorithm supports for batch transform jobs. For information, see Get Inferences for an Entire
Dataset with Batch Transform (p. 10).

e. For Supported content types, type the type of input data that your algorithm expects for
inference requests.

f. For Supported response MIME types, type the MIME types that your algorithm supports for
inference responses.

g. Choose Next.

6. On the Validation specifications page, provide the following information:

a. For Publish this algorithm on AWS Marketplace, choose Yes to publish the algorithm on AWS
Marketplace.

b. For Validate this algorithm, choose Yes if you want Amazon SageMaker to run training jobs
and/or batch transform jobs that you specify to test the training and/or inference code of your
algorithm.

Note
To publish your algorithm on AWS Marketplace, your algorithm must be validated.

c. For IAM role, choose an IAM role that has the required permissions to run training jobs and
batch transform jobs in Amazon SageMaker, or choose Create a new role to allow Amazon
SageMaker to create a role that has the AmazonSageMakerFullAccess managed policy
attached. For information, see Amazon SageMaker Roles (p. 496).

d. For Validation profile, specify the following:

• A name for the validation profile.

• A Training job definition. This is a JSON block that describes a training job. This is
in the same format as the TrainingJobDefinition (p. 1015) input parameter of the
CreateAlgorithm (p. 622) API.

416

Amazon SageMaker Developer Guide
Create a Model Package Resource

• A Transform job definition. This is a JSON block that describes a batch transform job.
This is in the same format as the TransformJobDefinition (p. 1026)input parameter of the
CreateAlgorithm (p. 622) API.

e. Choose Create algorithm.

Create an Algorithm Resource (API)

To create an algorithm resource by using the Amazon SageMaker API, call the CreateAlgorithm (p. 622)
API.

Create a Model Package Resource
To create a model package resource that you can use to create deployable models in Amazon SageMaker
and publish on AWS Marketplace specify the following information:

• The Docker container that contains the inference code, or the algorithm resource that was used to
train the model.

• The location of the model artifacts. Model artifacts can either be packaged in the same Docker
container as the inference code or stored in Amazon S3.

• The instance types that your model package supports for both real-time inference and batch
transform jobs.

• Validation profiles, which are batch transform jobs that Amazon SageMaker runs to test your model
package's inference code.

Before listing model packages on AWS Marketplace, you must validate them. This ensures that buyers
and sellers can be confident that products work in Amazon SageMaker. You can list products on AWS
Marketplace only if validation succeeds.

The validation procedure uses your validation profile and sample data to run the following validations
tasks:

1. Create a model in your account using the model package's inference image and the optional model
artifacts that are stored in Amazon S3.

Note
A model package is specific to the region in which you create it. The S3 bucket where
the model artifacts are stored must be in the same region where your created the model
package.

2. Create a transform job in your account using the model to verify that your inference image works
with Amazon SageMaker.

3. Create a validation profile.

Note
In your validation profile, provide only data that you want to expose publicly.

Validation can take up to a few hours. To see the status of the jobs in your account, in the Amazon
SageMaker console, see the Transform jobs pages. If validation fails, you can access the scan and
validation reports from the Amazon SageMaker console. After fixing issues, recreate the algorithm.
When the status of the algorithm is COMPLETED, find it in the Amazon SageMaker console and start
the listing process

Note
To publish your model package on AWS Marketplace, at least one validation profile is
required.

417

Amazon SageMaker Developer Guide
Create a Model Package Resource

You can create an model package either by using the Amazon SageMaker console or by using the
Amazon SageMaker API.

Topics

• Create a Model Package Resource (Console) (p. 418)

• Create a Model Package Resource (API) (p. 419)

Create a Model Package Resource (Console)

To create a model package in the Amazon SageMaker console:

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Model packages, then choose Create model package.

3. On the Inference specifications page, provide the following information:

a. For Model package name, type a name for your model package. The model package name must
be unique in your account and in the AWS region. The name must have 1 to 64 characters. Valid
characters are a-z, A-Z, 0-9, and - (hyphen).

b. Type a description for your model package. This description appears in the Amazon SageMaker
console and in the AWS Marketplace.

c. For Inference specification options, choose Provide the location of the inference image and
model artifacts to create a model package by using an inference container and model artifacts.
Choose Provide the algorithm used for training and its model artifacts to create a model
package from an algorithm resource that you created or subscribe to from AWS Marketplace.

d. If you chose Provide the location of the inference image and model artifacts for Inference
specification options, provide the following information for Container definition and
Supported resources:

i. For Location of inference image, type the path to the image that contains your inference
code. The image must be stored as a Docker container in Amazon ECR.

ii. For Location of model data artifacts, type the location in S3 where your model artifacts
are stored.

iii. For Container DNS host name , type the name of the DNS host to use for your container.

iv. For Supported instance types for real-time inference, choose the instance types that
your model package supports for real-time inference from Amazon SageMaker hosted
endpoints.

v. For Supported instance types for batch transform jobs, choose the instance types that
your model package supports for batch transform jobs.

vi. Supported content types, type the content types that your model package expects for
inference requests.

vii. For Supported response MIME types, type the MIME types that your model package uses
to provide inferences.

e. If you chose Provide the algorithm used for training and its model artifacts for Inference
specification options, provide the following information:

i. For Algorithm ARN, type the Amazon Resource Name (ARN) of the algorithm resource to
use to create the model package.

ii. For Location of model data artifacts, type the location in S3 where your model artifacts
are stored.

f. Choose Next.

4. On the Validation and scanning page, provide the following information:

418

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Use Algorithm and Model Package Resources

a. For Publish this model package on AWS Marketplace, choose Yes to publish the model
package on AWS Marketplace.

b. For Validate this model package, choose Yes if you want Amazon SageMaker to run batch
transform jobs that you specify to test the inference code of your model package.

Note
To publish your model package on AWS Marketplace, your model package must be
validated.

c. For IAM role, choose an IAM role that has the required permissions to run batch transform jobs
in Amazon SageMaker, or choose Create a new role to allow Amazon SageMaker to create a role
that has the AmazonSageMakerFullAccess managed policy attached. For information, see
Amazon SageMaker Roles (p. 496).

d. For Validation profile, specify the following:

• A name for the validation profile.

• A Transform job definition. This is a JSON block that describes a batch transform job.
This is in the same format as the TransformJobDefinition (p. 1026)input parameter of the
CreateAlgorithm (p. 622) API.

5. Choose Create model package.

Create a Model Package Resource (API)

To create a model package by using the Amazon SageMaker API, call the CreateModelPackage (p. 652)
API.

Use Algorithm and Model Package Resources
You can create algorithms and model packages as resources in your Amazon SageMaker account, and you
can find and subscribe to algorithms and model packages on AWS Marketplace.

Use algorithms to:

• Run training jobs. For information, see Use an Algorithm to Run a Training Job (p. 420).

• Run hyperparameter tuning jobs. For information, see Use an Algorithm to Run a Hyperparameter
Tuning Job (p. 423).

• Create model packages. After you use an algorithm resource to run a training job or a hyperparameter
tuning job, you can use the model artifacts that these jobs output along with the algorithm to create a
model package. For information, see Create a Model Package Resource (p. 417).

Note
If you subscribe to an algorithm on AWS Marketplace, you must create a model package
before you can use it to get inferences by creating hosted endpoint or running a batch
transform job.

419

Amazon SageMaker Developer Guide
Use an Algorithm to Run a Training Job

Use model packages to:

• Create models that you can use to get real-time inference or run batch transform jobs. For
information, see Use a Model Package to Create a Model (p. 425).

• Create hosted endpoints to get real-time inference. For information, see Step 6.1: Deploy the Model to
Amazon SageMaker Hosting Services (p. 26).

• Create batch transform jobs. For information, see Step 6.2: Deploy the Model with Batch
Transform (p. 28).

Topics

• Use an Algorithm to Run a Training Job (p. 420)

• Use an Algorithm to Run a Hyperparameter Tuning Job (p. 423)

• Use a Model Package to Create a Model (p. 425)

Use an Algorithm to Run a Training Job
You can create use an algorithm resource to create a training job by using the Amazon SageMaker
console, the low-level Amazon SageMaker API, or the Amazon SageMaker Python SDK.

Topics

• Use an Algorithm to Run a Training Job (Console) (p. 421)

420

Amazon SageMaker Developer Guide
Use an Algorithm to Run a Training Job

• Use an Algorithm to Run a Training Job (API) (p. 422)

• Use an Algorithm to Run a Training Job (Amazon SageMaker Python SDK) (p. 422)

Use an Algorithm to Run a Training Job (Console)

To use an algorithm to run a training job (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Algorithms.

3. Choose an algorithm that you created from the list on the My algorithms tab or choose an
algorithm that you subscribed to on the AWS Marketplace subscriptions tab.

4. Choose Create training job.

The algorithm you chose will automatically be selected.

5. On the Create training job page, provide the following information:

a. For Job name, type a name for the training job.

b. For IAM role, choose an IAM role that has the required permissions to run training jobs in
Amazon SageMaker, or choose Create a new role to allow Amazon SageMaker to create a role
that has the AmazonSageMakerFullAccess managed policy attached. For information, see
Amazon SageMaker Roles (p. 496).

c. For Resource configuration, provide the following information:

i. For Instance type, choose the instance type to use for training.

ii. For Instance count, type the number of ML instances to use for the training job.

iii. For Additional volume per instance (GB), type the size of the ML storage volume that you
want to provision. ML storage volumes store model artifacts and incremental states.

iv. For Encryption key, if you want Amazon SageMaker to use an AWS Key Management
Service key to encrypt data in the ML storage volume attached to the training instance,
specify the key.

v. For Stopping condition, specify the maximum amount of time in seconds, minutes, hours,
or days, that you want the training job to run.

d. For VPC, choose a Amazon VPC that you want to allow your training container to access. For
more information, see Give Amazon SageMaker Training Jobs Access to Resources in Your
Amazon VPC (p. 522).

e. For Hyperparameters, specify the values of the hyperparameters to use for the training job.

f. For Input data configuration, specify the following values for each channel of input data to
use for the training job. You can see what channels the algorithm you're using for training
sports, and the content type, supported compression type, and supported input modes for
each channel, under Channel specification section of the Algorithm summary page for the
algorithm.

i. For Channel name, type the name of the input channel.

ii. For Content type, type the content type of the data that the algorithm expects for the
channel.

iii. For Compression type, choose the data compression type to use, if any.

iv. For Record wrapper, choose RecordIO if the algorithm expects data in the RecordIO
format.

v. For S3 data type, S3 data distribution type, and S3 location, specify the appropriate
values. For information about what these values mean, see S3DataSource (p. 994).

421

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Use an Algorithm to Run a Training Job

vi. For Input mode, choose File to download the data from to the provisioned ML storage
volume, and mount the directory to a Docker volume. Choose PipeTo stream data directly
from Amazon S3 to the container.

vii. To add another input channel, choose Add channel. If you are finished adding input
channels, choose Done.

g. For Output location, specify the following values:

i. For S3 output path, choose the S3 location where the training job stores output, such as
model artifacts.

Note
You use the model artifacts stored at this location to create a model or model
package from this training job.

ii. For Encryption key, if you want Amazon SageMaker to use a AWS KMS key to encrypt
output data at rest in the S3 location.

h. For Tags, specify one or more tags to manage the training job. Each tag consists of a key and an
optional value. Tag keys must be unique per resource. For more information about tags, see For
more information, see AWS Tagging Strategies.

i. Choose Create training job to run the training job.

Use an Algorithm to Run a Training Job (API)

To use an algorithm to run a training job by using the Amazon SageMaker API, specify either the name or
the Amazon Resource Name (ARN) as the AlgorithmName field of the AlgorithmSpecification (p. 863)
object that you pass to CreateTrainingJob (p. 667). For information about training models in Amazon
SageMaker, see Train a Model with Amazon SageMaker (p. 4).

Use an Algorithm to Run a Training Job (Amazon SageMaker
Python SDK)

Use an algorithm that you created or subscribed to on AWS Marketplace to create a training job, create
an AlgorithmEstimator object and specify either the Amazon Resource Name (ARN) or the name
of the algorithm as the value of the algorithm_arn argument. Then call the fit method of the
estimator. For example:

from sagemaker import AlgorithmEstimator
data_path = os.path.join(DATA_DIR, 'marketplace', 'training')

algo = AlgorithmEstimator(
 algorithm_arn='arn:aws:sagemaker:us-east-2:012345678901:algorithm/my-
algorithm',
 role='SageMakerRole',
 train_instance_count=1,
 train_instance_type='ml.c4.xlarge',
 sagemaker_session=sagemaker_session,
 base_job_name='test-marketplace')

train_input = algo.sagemaker_session.upload_data(
 path=data_path, key_prefix='integ-test-data/marketplace/train')

algo.fit({'training': train_input})

422

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

Amazon SageMaker Developer Guide
Use an Algorithm to Run a Hyperparameter Tuning Job

Use an Algorithm to Run a Hyperparameter Tuning
Job
A hyperparameter tuning job finds the best version of a model by running many training jobs on your
dataset using the algorithm and ranges of hyperparameters that you specify. It then chooses the
hyperparameter values that result in a model that performs the best, as measured by a metric that you
choose. For more information, see Automatic Model Tuning (p. 288).

You can create use an algorithm resource to create a hyperparameter tuning job by using the Amazon
SageMaker console, the low-level Amazon SageMaker API, or the Amazon SageMaker Python SDK.

Topics
• Use an Algorithm to Run a Hyperparameter Tuning Job (Console) (p. 423)
• Use an Algorithm to Run a Hyperparameter Tuning Job (API) (p. 425)
• Use an Algorithm to Run a Hyperparameter Tuning Job (Amazon SageMaker Python SDK) (p. 425)

Use an Algorithm to Run a Hyperparameter Tuning Job
(Console)

To use an algorithm to run a hyperparameter tuning job (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Algorithms.
3. Choose an algorithm that you created from the list on the My algorithms tab or choose an

algorithm that you subscribed to on the AWS Marketplace subscriptions tab.
4. Choose Create hyperparameter tuning job.

The algorithm you chose will automatically be selected.
5. On the Create hyperparameter tuning job page, provide the following information:

a. For Warm start, choose Enable warm start to use the information from previous
hyperparameter tuning jobs as a starting point for this hyperparameter tuning job. For more
information, see Run a Warm Start Hyperparameter Tuning Job (p. 303).

i. Choose Identical data and algorithm if your input data is the same as the input data for
the parent jobs of this hyperparameter tuning job, or choose Transfer learning to use
additional or different input data for this hyperparameter tuning job.

ii. For Parent hyperparameter tuning job(s), choose up to 5 hyperparameter tuning jobs to
use as parents to this hyperparameter tuning job.

b. For Hyperparameter tuning job name, type a name for the tuning job.
c. For IAM role, choose an IAM role that has the required permissions to run hyperparameter

tuning jobs in Amazon SageMaker, or choose Create a new role to allow Amazon SageMaker
to create a role that has the AmazonSageMakerFullAccess managed policy attached. For
information, see Amazon SageMaker Roles (p. 496).

d. For VPC, choose a Amazon VPC that you want to allow the training jobs that the tuning job
launches to access. For more information, see Give Amazon SageMaker Training Jobs Access to
Resources in Your Amazon VPC (p. 522).

e. Choose Next.
f. For Objective metric, choose the metric that the hyperparameter tuning job uses to determine

the best combination of hyperparameters, and choose whether to minimize or maximize this
metric. For more information, see View the Best Training Job (p. 301).

423

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Use an Algorithm to Run a Hyperparameter Tuning Job

g. For Hyperparameter configuration, choose ranges for the tunable hyperparameters that you
want the tuning job to search, and set static values for hyperparameters that you want to
remain constant in all training jobs that the hyperparameter tuning job launches. For more
information, see Define Hyperparameter Ranges (p. 292).

h. Choose Next.

i. For Input data configuration, specify the following values for each channel of input data to
use for the hyperparameter tuning job. You can see what channels the algorithm you're using
for hyperparameter tuning supports, and the content type, supported compression type, and
supported input modes for each channel, under Channel specification section of the Algorithm
summary page for the algorithm.

i. For Channel name, type the name of the input channel.

ii. For Content type, type the content type of the data that the algorithm expects for the
channel.

iii. For Compression type, choose the data compression type to use, if any.

iv. For Record wrapper, choose RecordIO if the algorithm expects data in the RecordIO
format.

v. For S3 data type, S3 data distribution type, and S3 location, specify the appropriate
values. For information about what these values mean, see S3DataSource (p. 994).

vi. For Input mode, choose File to download the data from to the provisioned ML storage
volume, and mount the directory to a Docker volume. Choose PipeTo stream data directly
from Amazon S3 to the container.

vii. To add another input channel, choose Add channel. If you are finished adding input
channels, choose Done.

j. For Output location, specify the following values:

i. For S3 output path, choose the S3 location where the training jobs that this
hyperparameter tuning job launches store output, such as model artifacts.

Note
You use the model artifacts stored at this location to create a model or model
package from this hyperparameter tuning job.

ii. For Encryption key, if you want Amazon SageMaker to use a AWS KMS key to encrypt
output data at rest in the S3 location.

k. For Resource configuration, provide the following information:

i. For Instance type, choose the instance type to use for each training job that the
hyperparameter tuning job launches.

ii. For Instance count, type the number of ML instances to use for each training job that the
hyperparameter tuning job launches.

iii. For Additional volume per instance (GB), type the size of the ML storage volume that
you want to provision each training job that the hyperparameter tuning job launches. ML
storage volumes store model artifacts and incremental states.

iv. For Encryption key, if you want Amazon SageMaker to use an AWS Key Management
Service key to encrypt data in the ML storage volume attached to the training instances,
specify the key.

l. For Resource limits, provide the following information:

i. For Maximum training jobs, specify the maximum number of training jobs that you want
the hyperparameter tuning job to launch. A hyperparameter tuning job can launch a
maximum of 500 training jobs.

ii. For Maximum parallel training jobs, specify the maximum number of concurrent training
jobs that the hyperparameter tuning job can launch. A hyperparameter tuning job can
launch a maximum of 10 concurrent training jobs.

424

Amazon SageMaker Developer Guide
Use a Model Package to Create a Model

iii. For Stopping condition, specify the maximum amount of time in seconds, minutes, hours,
or days, that you want each training job that the hyperparameter tuning job launches to
run.

m. For Tags, specify one or more tags to manage the hyperparameter tuning job. Each tag consists
of a key and an optional value. Tag keys must be unique per resource. For more information
about tags, see For more information, see AWS Tagging Strategies.

n. Choose Create jobs to run the hyperparameter tuning job.

Use an Algorithm to Run a Hyperparameter Tuning Job (API)
To use an algorithm to run a hyperparameter tuning job by using the Amazon SageMaker API, specify
either the name or the Amazon Resource Name (ARN) of the algorithm as the AlgorithmName field of
the AlgorithmSpecification (p. 863) object that you pass to CreateHyperParameterTuningJob (p. 638).
For information about hyperparameter tuning in Amazon SageMaker, see Automatic Model
Tuning (p. 288).

Use an Algorithm to Run a Hyperparameter Tuning Job (Amazon
SageMaker Python SDK)
Use an algorithm that you created or subscribed to on AWS Marketplace to create a hyperparameter
tuning job, create an AlgorithmEstimator object and specify either the Amazon Resource Name
(ARN) or the name of the algorithm as the value of the algorithm_arn argument. Then initialize
a HyperparameterTuner object with the AlgorithmEstimator you created as the value of the
estimator argument. Finally, call the fit method of the AlgorithmEstimator. For example:

from sagemaker import AlgorithmEstimator
from sagemaker.tuner import HyperparameterTuner

data_path = os.path.join(DATA_DIR, 'marketplace', 'training')

algo = AlgorithmEstimator(
 algorithm_arn='arn:aws:sagemaker:us-east-2:764419575721:algorithm/scikit-
decision-trees-1542410022',
 role='SageMakerRole',
 train_instance_count=1,
 train_instance_type='ml.c4.xlarge',
 sagemaker_session=sagemaker_session,
 base_job_name='test-marketplace')

train_input = algo.sagemaker_session.upload_data(
 path=data_path, key_prefix='integ-test-data/marketplace/train')

algo.set_hyperparameters(max_leaf_nodes=10)
tuner = HyperparameterTuner(estimator=algo, base_tuning_job_name='some-name',
 objective_metric_name='validation:accuracy',
 hyperparameter_ranges=hyperparameter_ranges,
 max_jobs=2, max_parallel_jobs=2)

tuner.fit({'training': train_input}, include_cls_metadata=False)
tuner.wait()

Use a Model Package to Create a Model
Use a model package to create a deployable model that you can use to get real-time inferences by
creating a hosted endpoint or to run batch transform jobs. You can create a deployable model from a

425

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

Amazon SageMaker Developer Guide
Use a Model Package to Create a Model

model package by using the Amazon SageMaker console, the low-level Amazon SageMaker API), or the
Amazon SageMaker Python SDK.

Topics

• Use a Model Package to Create a Model (Console) (p. 426)

• Use a Model Package to Create a Model (API) (p. 426)

• Use a Model Package to Create a Model (Amazon SageMaker Python SDK) (p. 427)

Use a Model Package to Create a Model (Console)

To create a deployable model from a model package (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Model packages.

3. Choose a model package that you created from the list on the My model packages tab or choose a
model package that you subscribed to on the AWS Marketplace subscriptions tab.

4. Choose Create model.

5. For Model name, type a name for the model.

6. For IAM role, choose an IAM role that has the required permissions to call other services on your
behalf, or choose Create a new role to allow Amazon SageMaker to create a role that has the
AmazonSageMakerFullAccess managed policy attached. For information, see Amazon SageMaker
Roles (p. 496).

7. For VPC, choose a Amazon VPC that you want to allow the model to access. For more information,
see Give Amazon SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC (p. 525).

8. Leave the default values for Container input options and Choose model package.

9. For environment variables, provide the names and values of environment variables you want to pass
to the model container.

10. For Tags, specify one or more tags to manage the model. Each tag consists of a key and an optional
value. Tag keys must be unique per resource. For more information about tags, see For more
information, see AWS Tagging Strategies.

11. Choose Create model.

After you create a deployable model, you can use it to set up an endpoint for real-time inference
or create a batch transform job to get inferences on entire datasets. For information about hosted
endpoints in Amazon SageMaker, see Step 6.1: Deploy the Model to Amazon SageMaker Hosting
Services (p. 26). For information about batch transform jobs, see Step 6.2: Deploy the Model with Batch
Transform (p. 28).

Use a Model Package to Create a Model (API)

To use a model package to create a deployable model by using the Amazon SageMaker API, specify the
name or the Amazon Resource Name (ARN) of the model package as the ModelPackageName field of
the ContainerDefinition (p. 886) object that you pass to the CreateModel (p. 648) API.

After you create a deployable model, you can use it to set up an endpoint for real-time inference
or create a batch transform job to get inferences on entire datasets. For information about hosted
endpoints in Amazon SageMaker, see Step 6.1: Deploy the Model to Amazon SageMaker Hosting
Services (p. 26). For information about batch transform jobs, see Step 6.2: Deploy the Model with Batch
Transform (p. 28).

426

https://console.aws.amazon.com/sagemaker/
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

Amazon SageMaker Developer Guide
Use a Model Package to Create a Model

Use a Model Package to Create a Model (Amazon SageMaker
Python SDK)
To use a model package to create a deployable model by using the Amazon SageMaker Python SDK,
initialize a ModelPackage object, and pass the Amazon Resource Name (ARN) of the model package as
the model_package_arn argument. For example:

from sagemaker import ModelPackage
model = ModelPackage(role='SageMakerRole',
 model_package_arn='training-job-scikit-decision-
trees-1542660466-6f92',
 sagemaker_session=sagemaker_session)

After you create a deployable model, you can use it to set up an endpoint for real-time inference
or create a batch transform job to get inferences on entire datasets. For information about hosted
endpoints in Amazon SageMaker, see Step 6.1: Deploy the Model to Amazon SageMaker Hosting
Services (p. 26). For information about batch transform jobs, see Step 6.2: Deploy the Model with Batch
Transform (p. 28).

427

Amazon SageMaker Developer Guide
Topics

Amazon SageMaker Resources in
AWS Marketplace

Amazon SageMaker integrates with AWS Marketplace, enabling developers to charge other Amazon
SageMaker users for the use of their algorithms and model packages. AWS Marketplace is a curated
digital catalog that makes it easy for customers to find, buy, deploy, and manage third-party software
and services that customers need to build solutions and run their businesses. AWS Marketplace includes
thousands of software listings in popular categories, such as security, networking, storage, machine
learning, business intelligence, database, and DevOps. It simplifies software licensing and procurement
with flexible pricing options and multiple deployment methods. For information, see AWS Marketplace
Documentation.

Topics
• Amazon SageMaker Algorithms (p. 428)

• Amazon SageMaker Model Packages (p. 428)

• Sell Amazon SageMaker Algorithms and Model Packages (p. 429)

• Find and Subscribe to Algorithms and Model Packages on AWS Marketplace (p. 431)

• Use Algorithm and Model Package Resources (p. 419)

Amazon SageMaker Algorithms
An algorithm enables you to perform end-to-end machine learning. It has two logical components:
training and inference. Buyers can use the training component to create training jobs in Amazon
SageMaker and build a machine learning model. Amazon SageMaker saves the model artifacts generated
by the algorithm during training to an Amazon S3 bucket. For more information, see Train a Model with
Amazon SageMaker (p. 4).

Buyers use the inference component with the model artifacts generated during a training job to create a
deployable model in their Amazon SageMaker account. They can use the deployable model for real-time
inference by using Amazon SageMaker hosting services. Or, they can get inferences for an entire dataset
by running batch transform jobs. For more information, see Deploy a Model in Amazon SageMaker (p. 7).

Amazon SageMaker Model Packages
Buyers use a model package to build a deployable model in Amazon SageMaker. They can use the
deployable model for real-time inference by using Amazon SageMaker hosting services. Or, they can get
inferences for an entire dataset by running batch transform jobs. For more information, see Deploy a
Model in Amazon SageMaker (p. 7). As a seller, you can build your model artifacts by training in Amazon
SageMaker, or you can use your own model artifacts from a model that you trained outside of Amazon
SageMaker. You can charge buyers for inference.

428

https://docs.aws.amazon.com/marketplace/index.html#lang/en_us
https://docs.aws.amazon.com/marketplace/index.html#lang/en_us

Amazon SageMaker Developer Guide
Sell Amazon SageMaker Algorithms and Model Packages

Sell Amazon SageMaker Algorithms and Model
Packages

Selling Amazon SageMaker algorithms and model packages is a three-step process:

1. Develop your algorithm or model, and package it in a Docker container. For information, see Develop
Algorithms and Models in Amazon SageMaker (p. 429).

2. Create an algorithm or model package resource in Amazon SageMaker. For information, see Create
Algorithm and Model Package Resources (p. 413).

3. Register as a seller on AWS Marketplace and list your algorithm or model package on AWS
Marketplace. For information about registering as a seller, see Getting Started as a Seller in the User
Guide for AWS Marketplace Providers. For information about listing and monetizing your algorithms
and model packages, see Listing Algorithms and Model Packages in AWS Marketplace for Machine
Learning in the User Guide for AWS Marketplace Providers.

Topics
• Develop Algorithms and Models in Amazon SageMaker (p. 429)

• Create Algorithm and Model Package Resources (p. 413)

• List Your Algorithm or Model Package on AWS Marketplace (p. 431)

Develop Algorithms and Models in Amazon
SageMaker
Before you can create algorithm and model package resources to use in Amazon SageMaker or list on
AWS Marketplace, you have to develop them and package them in Docker containers.

429

https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html
https://docs.aws.amazon.com/marketplace/latest/userguide/listing-algorithms-and-model-packages-in-aws-marketplace-for-machine-learning.html
https://docs.aws.amazon.com/marketplace/latest/userguide/listing-algorithms-and-model-packages-in-aws-marketplace-for-machine-learning.html

Amazon SageMaker Developer Guide
Develop Algorithms and Models in Amazon SageMaker

Note
When algorithms and model packages are created for listing on AWS Marketplace, Amazon
SageMaker scans the containers for security vulnerabilities on supported operating systems.
Only the following operating system versions are supported:

• Debian: 6.0, 7, 8, 9, 10

• Ubuntu: 12.04, 12.10, 13.04, 14.04, 14.10, 15.04, 15.10, 16.04, 16.10, 17.04, 17.10, 18.04,
18.10

• CentOS: 5, 6, 7

• Oracle Linux: 5, 6, 7

• Alpine: 3.3, 3.4, 3.5

• Amazon Linux

Topics

• Develop Algorithms in Amazon SageMaker (p. 430)

• Develop Models in Amazon SageMaker (p. 430)

Develop Algorithms in Amazon SageMaker
An algorithm should be packaged as a docker container and stored in Amazon ECR to use it in Amazon
SageMaker. The Docker container contains the training code used to run training jobs and, optionally, the
inference code used to get inferences from models trained by using the algorithm.

For information about developing algorithms in Amazon SageMaker and packaging them as containers,
see Use Your Own Algorithms or Models with Amazon SageMaker (p. 384). For a complete example
of how to create an algorithm container, see the sample notebook at https://github.com/awslabs/
amazon-sagemaker-examples/blob/master/advanced_functionality/scikit_bring_your_own/
scikit_bring_your_own.ipynb. You can also find the sample notebook in an Amazon SageMaker
notebook instance. The notebook is in the Advanced Functionality section, and is named
scikit_bring_your_own.ipynb. For information about using the sample notebooks in a notebook
instance, see Use Example Notebooks (p. 42).

Always thoroughly test your algorithms before you create algorithm resources to publish on AWS
Marketplace.

Note
When a buyer subscribes to your containerized product, the Docker containers run in an isolated
(internet-free) environment. When you create your containers, do not rely on making outgoing
calls over the internet. Calls to AWS services are also not allowed.

Develop Models in Amazon SageMaker
A deployable model in Amazon SageMaker consists of inference code, model artifacts, an IAM role that
is used to access resources, and other information required to deploy the model in Amazon SageMaker.
Model artifacts are the results of training a model by using a machine learning algorithm. The inference
code must be packaged in a Docker container and stored in Amazon ECR. You can either package the
model artifacts in the same container as the inference code, or store them in Amazon S3.

You create a model by running a training job in Amazon SageMaker, or by training a machine
learning algorithm outside of Amazon SageMaker. If you run a training job in Amazon SageMaker, the
resulting model artifacts are available in the ModelArtifacts field in the response to a call to the
DescribeTrainingJob (p. 744) operation. For information about how to develop an Amazon SageMaker
model container, see Use Your Own Inference Code (p. 408). For a complete example of how to create

430

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb

Amazon SageMaker Developer Guide
List Your Algorithm or Model Package on AWS Marketplace

a model container from a model trained outside of Amazon SageMaker, see the sample notebook at
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/
xgboost_bring_your_own_model/xgboost_bring_your_own_model.ipynb. You can also find the sample
notebook in an Amazon SageMaker notebook instance. The notebook is in the Advanced Functionality
section, and is named xgboost_bring_your_own_model.ipynb. For information about using the
sample notebooks in a notebook instance, see Use Example Notebooks (p. 42).

Always thoroughly test your models before you create model packages to publish on AWS Marketplace.

Note
When a buyer subscribes to your containerized product, the Docker containers run in an isolated
(internet-free) environment. When you create your containers, do not rely on making outgoing
calls over the internet. Calls to AWS services are also not allowed.

List Your Algorithm or Model Package on AWS
Marketplace
After creating and validating your algorithm or model in Amazon SageMaker, list your product on AWS
Marketplace. The listing process makes your products available in the AWS Marketplace and the Amazon
SageMaker console.

To list products on AWS Marketplace, you must be a registered seller. To register, use the self-registration
process from the AWS Marketplace Management Portal (AMMP). For information, see Getting Started as
a Seller in the User Guide for AWS Marketplace Providers. When you start the product listing process from
the Amazon SageMaker console, we check your seller registration status. If you have not registered, we
direct you to do so.

To start the listing process, do one of the following:

• From the Amazon SageMaker console, choose the product, choose Actions, and choose Publish new
ML Marketplace listing. This carries over your product reference, the Amazon Resource Name (ARN),
and directs you to the AMMP to create the listing.

• Go to ML listing process, manually enter the Amazon Resource Name (ARN), and start your product
listing. This process carries over the product metadata that you entered when creating the product in
Amazon SageMaker. For an algorithm listing, the information includes the supported instance types
and hyperparameters. In addition, you can enter a product description, promotional information, and
support information as you would with other AWS Marketplace products.

Find and Subscribe to Algorithms and Model
Packages on AWS Marketplace

With AWS Marketplace, you can browse and search for hundreds of machine learning algorithms and
models in a broad range of categories, such as computer vision, natural language processing, speech
recognition, text, data, voice, image, video analysis, fraud detection, predictive analysis, and more.

431

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/xgboost_bring_your_own_model/xgboost_bring_your_own_model.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/xgboost_bring_your_own_model/xgboost_bring_your_own_model.ipynb
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html
https://aws.amazon.com/marketplace/management/ml-products/

Amazon SageMaker Developer Guide
Use Algorithms and Model Packages

To find algorithms on AWS Marketplace

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Algorithms, then choose Find algorithms.

This takes you to the AWS Marketplace algorithms page. For information about finding and
subscribing to algorithms on AWS Marketplace, see Machine Learning Products in the AWS
Marketplace User Guide for AWS Consumers.

To find model packages on AWS Marketplace

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Model packages, then choose Find model packages.

This takes you to the AWS Marketplace model packages page. For information about finding and
subscribing to model packages on AWS Marketplace, see Machine Learning Products in the AWS
Marketplace User Guide for AWS Consumers.

Use Algorithms and Model Packages
For information about using algorithms and model packages that you subscribe to in Amazon
SageMaker, see Use Algorithm and Model Package Resources (p. 419).

Note
When you create a training job, inference endpoint, and batch transform job from an algorithm
or model package that you subscribe to on AWS Marketplace, the training and inference
containers do not have access to the internet. Because the containers do not have access to the
internet, the seller of the algorithm or model package does not have access to your data.

432

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/marketplace/latest/buyerguide/aws-machine-learning-marketplace.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/marketplace/latest/buyerguide/aws-machine-learning-marketplace.html

Amazon SageMaker Developer Guide
Sample Notebooks

Manage Machine Learning
Experiments with Amazon
SageMaker Model Tracking
Capability

To organize, find, and evaluate machine leaning model experiments, use Amazon SageMaker model
tracking capabilities. Developing models typically requires extensive experimenting with different
datasets, algorithms, and parameter values. Using the model tracking capability, you can search, filter
and sort through hundreds and possibly thousands of experiments using model attributes such as
parameters, metrics and tags. This helps you find the best model for your use case quickly.

Amazon SageMaker model tracking capability can be used to:

• Find, organize, or evaluate training jobs using properties, hyperparameters, performance metrics, or
any other metadata.

• Find the best performing model by ranking the results of training jobs and models based on metrics,
such as training loss or validation accuracy.

• Trace the lineage of a model back to the training job and its related resources, such as the training
datasets.

Sample Notebooks that Manage ML Experiments
with Amazon SageMaker Model Tracking
Capability

For a sample notebook that uses Amazon SageMaker model tracking capability to manage ML
experiments, see Managing ML Experimentation using Amazon SageMaker Model Tracking Capability. For
instructions on how to create and access Jupyter notebook instances that you can use to run the example
in Amazon SageMaker, see Use Notebook Instances (p. 36). After you have created a notebook instance
and opened it, choose the SageMaker Examples tab to see a list of all of the Amazon SageMaker
samples. The notebook managing ML experiments is located in the Advanced Functionality section. To
open a notebook, choose its Use tab and choose Create copy. If you have questions, post them on our
developer forum.

Topics

• Use Model Tracking to Find, Organize, and Evaluate Training Jobs (Console) (p. 434)

• Use Model Tracking to Find and Evaluate Training Jobs (API) (p. 436)

• Verify the Contents of Your Training Jobs (p. 438)

• Trace the Lineage of your Models (p. 438)

433

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/search/ml_experiment_management_using_search.ipynb
https://forums.aws.amazon.com/forum.jspa?forumID=285

Amazon SageMaker Developer Guide
Use Model Tracking to Find, Organize,
and Evaluate Training Jobs (Console)

Use Model Tracking to Find, Organize, and
Evaluate Training Jobs (Console)

To create and test a model, you need to conduct experiments. You can perform an experiment to test
different algorithms, tune hyperparameters, or use different datasets. Typically, you study the effect
of the changes made in these experiments on the performance of a model. You can organize these
experiments by tagging them with key/ value pairs that are seaerchable.

To find a specific training job, model, or resource, use Amazon SageMaker model tracking to search
on keywords in any items that are searchable. Searchable items include training jobs, models,
hyperparameters, metadata, tags, and URLs. You can use model tracking with tags to help organize your
training jobs. To refine your tracking results, you can search using multiple criteria.

To choose the optimal model for deployment, you need to evaluate how they performed against one
or more metrics. You can use model tracking results to list, sort, and evaluate the performance of the
models in your experiments.

Topics

• Use Tags to Track Training Jobs (Console) (p. 434)

• Find Training Jobs (Console) (p. 435)

• Evaluate Models Returned by a Search (Console) (p. 435)

Use Tags to Track Training Jobs (Console)
You can use tags as search criteria. To group training jobs, create tags with descriptive keys and value. For
example, create tag keys for: project, owner, customer, and industry.

Add tags to training job and search for taged jobs (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker.

2. In the left navigation pane, choose Training jobs and select Create training job.

3. Scroll down to the bottom of the page to enter the Key and Value for the tag.

4. To add more tags to the search, choose Add tag and add a another tag key-value pair for each new
tag that you want to add.

5. After you have trained models that have been tagged, you can search for the models that had them
added. In the left navigation pane, choose Search.

6. For Property, enter a tag key and a tag value.

434

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide
Find Training Jobs (Console)

When you use tags in a search, in the results, the key is a column name and the values are entries in rows.

Find Training Jobs (Console)
To use Amazon SageMaker model tracking capability (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker.

2. In the left navigation pane, choose Search.

3. For Resource type, choose Training jobs.

4. To add a parameter, for Parameters, provide the following:

a. Enter a parameter in the search box and choose a parameter type, for example
TrainingJobName.

b. Choose the conditional operation to use. This sets the condition that values must satisfy to be
included in a search result. For numeral values, use operators such as is equals to, lesser than,
or or greater than. For text-based values use operators, such as equals to or contains.

c. Enter the value for the parameter.

5. (optional) To refine your search, add additional search criteria, choose Add parameter and enter
the parameter values. When you provide multiple parameters, Amazon SageMaker includes all
parameters in the search.

6. Choose Search.

Evaluate Models Returned by a Search (Console)
To evaluate different models, find their metrics with a search. To highlight metrics, adjust the view to
show only metrics and important hyperparameters.

To change the viewable metadata, hyperparameters, and metrics:

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker.

2. In the left navigation pane, choose Search and run a search on training jobs for relevant parameters.
The results are displayed in a table.

435

https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide
Use Model Tracking to Find and

Evaluate Training Jobs (API)

3. After performing a search, choose the cog icon at the search results table to show the preferences
window.

4. To show or hide a Hyperparameter or Metric, use its toggle switch.

5. To update the view after making changes, choose Update view.

After viewing metrics and important hyperparameters, you can compare and contrast the result. From
there, you can choose the best model to host or investigate the models that are performing poorly.

Use Model Tracking to Find and Evaluate Training
Jobs (API)

You can also use Search (p. 819) to the find and evaluate training jobs or to get suggestions for items
used in experiments that are searchable.

Topics

• Use Search to Find Training Jobs Tagged with Specific Values (API) (p. 436)

• Evaluate Models (API) (p. 436)

• Get Suggestions for a Search (API) (p. 437)

Use Search to Find Training Jobs Tagged with Specific
Values (API)
To use Amazon SageMaker model tracking capability, create a search parameter, search_params, then
use the search function found in the smclient of the AWS SDK for Python (Boto 3).

The following example shows how to use search using the API:

436

Amazon SageMaker Developer Guide
Evaluate Models (API)

import boto3

search_params={
 "MaxResults": 10,
 "Resource": "TrainingJob",
 "SearchExpression": {
 "Filters": [{
 "Name": "Tags.Project",
 "Operator": "Equals",
 "Value": "Project_Binary_Classifier"
 }]},
 "SortBy": "Metrics.train:binary_classification_accuracy",
 "SortOrder": "Descending"
}

smclient = boto3.client(service_name='sagemaker')
results = smclient.search(**search_params)

Evaluate Models (API)
To evaluate different models, see the metrics in a search result. To evaluate models using the AWS SDK
for Python (Boto 3), create a table and plot it.

The following example shows how to use model tracking capability to evaluate models and to display
the results in a table:

import pandas

headers=["Training Job Name", "Training Job Status", "Batch Size", "Binary Classification
 Accuracy"]
rows=[]
for result in results['Results']:
 trainingJob = result['TrainingJob']
 metrics = trainingJob['FinalMetricDataList']
 rows.append([trainingJob['TrainingJobName'],
 trainingJob['TrainingJobStatus'],
 trainingJob['HyperParameters']['mini_batch_size'],
 metrics[[x['MetricName'] for x in
 metrics].index('train:binary_classification_accuracy')]['Value']
])

df = pandas.DataFrame(data=rows,columns=headers)

from IPython.display import display, HTMLdisplay(HTML(df.to_html()))

Get Suggestions for a Search (API)
To get suggestions for a search, use GetSearchSuggestions (p. 759) in the API.

The following code example for AWS SDK for Python (Boto 3) shows a get_search_suggestions
request for items containing "linear":

search_suggestion_params={
 "Resource": "TrainingJob",
 "SuggestionQuery": {
 "PropertyNameQuery": {
 "PropertyNameHint": "linear"
 }
 }

437

Amazon SageMaker Developer Guide
Verify the Contents of Your Training Jobs

}

The following code shows an example of an expected response for get_search_suggestions:

{
 'PropertyNameSuggestions': [{'PropertyName': 'hyperparameters.linear_init_method'},
 {'PropertyName': 'hyperparameters.linear_init_value'},
 {'PropertyName': 'hyperparameters.linear_init_sigma'},
 {'PropertyName': 'hyperparameters.linear_lr'},
 {'PropertyName': 'hyperparameters.linear_wd'}]
}

After you get the search suggestions, you can use one of the property names in a search.

Verify the Contents of Your Training Jobs
You can use Amazon SageMaker model tracking capability to verify which datasets were used in training,
where the holdout datasets were used, and other details about training jobs. Use it, for example, if you
need to verify that a dataset was used in a training job for an audit or to verify compliance.

To check if a holdout dataset or any other dataset was used in a training job, search for its Amazon S3
URL. Amazon SageMaker model tracking uses the dataset as a search parameter and lists the training
jobs that used the dataset. If your search result is empty, it means that the dataset was not used in a
training job.

Trace the Lineage of your Models
You can use Amazon SageMaker model tracking to trace information about the lineage of training jobs
and model resources related to it, including the dataset, algorithm, hyperparameters, and metrics used.
For example, if you find that the performance of a hosted model has declined, you can review its training
job and the resources it used to determine what is causing the problem. This investigation can be done
from the console or by using the API.

Use Single-click on the Amazon SageMaker Console
to Trace the Lineage of Your Models (Console)
In the left navigation pane of the Amazon SageMaker, choose Endpoints, and select the relevant
endpoint from the list of your deployed endpoints. Scroll to Endpoint Configuration Settings, which
lists all the model versions deployed at the endpoint. Here you have access to a hyperlink to the Model
Training Job that created that model in the first place. For an example that used a linear-learner model,
you would see:

438

Amazon SageMaker Developer Guide
Use Code to Trace the Lineage of Your Models (API)

Use Code to Trace the Lineage of Your Models (API)
To trace a model's lineage, you need to obtain the model's name, then use it to search for training jobs.

The following example shows how to use model tracking capability to trace a model's lineage using the
API:

Get the name of model deployed at endpoint
endpoint_config = smclient.describe_endpoint_config(EndpointConfigName=endpointName)
model_name = endpoint_config['ProductionVariants'][0]['ModelName']

Get the model's name
model = smclient.describe_model(ModelName=model_name)

Search the training job by Amazon S3 location of model artifacts
search_params={
 "MaxResults": 1,
 "Resource": "TrainingJob",
 "SearchExpression": {
 "Filters": [
 {
 "Name": "ModelArtifacts.S3ModelArtifacts",
 "Operator": "Equals",
 "Value": model['PrimaryContainer']['ModelDataUrl']
 }]},
}
results = smclient.search(**search_params)

After you find your training job, you can investigate the resources used to train the model.

439

Amazon SageMaker Developer Guide
Using Apache Spark

Use Machine Learning Frameworks
with Amazon SageMaker

The Amazon SageMaker Python SDK provides open source APIs and containers that make it easy to
train and deploy models in Amazon SageMaker with several different machine learning and deep
learning frameworks. For general information about the Amazon SageMaker Python SDK, see https://
github.com/aws/sagemaker-python-sdk. For information about using specific frameworks in Amazon
SageMaker, see the following topics:

Topics

• Use Apache Spark with Amazon SageMaker (p. 440)

• Use TensorFlow with Amazon SageMaker (p. 449)

• Use Apache MXNet with Amazon SageMaker (p. 450)

• Use Scikit-learn with Amazon SageMaker (p. 451)

• Use PyTorch with Amazon SageMaker (p. 451)

• Use Chainer with Amazon SageMaker (p. 452)

• Use SparkML Serving with Amazon SageMaker (p. 453)

Use Apache Spark with Amazon SageMaker
This section provides information for developers who want to use Apache Spark for preprocessing data
and Amazon SageMaker for model training and hosting. For information about supported versions of
Apache Spark, see https://github.com/aws/sagemaker-spark#getting-sagemaker-spark.

Amazon SageMaker provides an Apache Spark library, in both Python and Scala, that you can use to
easily train models in Amazon SageMaker using org.apache.spark.sql.DataFrame data frames in
your Spark clusters. After model training, you can also host the model using Amazon SageMaker hosting
services.

The Amazon SageMaker Spark library, com.amazonaws.services.sagemaker.sparksdk, provides
the following classes, among others:

• SageMakerEstimator—Extends the org.apache.spark.ml.Estimator interface. You can use
this estimator for model training in Amazon SageMaker.

• KMeansSageMakerEstimator, PCASageMakerEstimator, and XGBoostSageMakerEstimator—
Extend the SageMakerEstimator class.

• SageMakerModel—Extends the org.apache.spark.ml.Model class. You can use this
SageMakerModel for model hosting and obtaining inferences in Amazon SageMaker.

Download the Amazon SageMaker Spark Library
You have the following options for downloading the Spark library provided by Amazon SageMaker:

440

https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-spark#getting-sagemaker-spark

Amazon SageMaker Developer Guide
Integrate Your Apache Spark

Application with Amazon SageMaker

• You can download the source code for both PySpark and Scala libraries from GitHub at https://
github.com/aws/sagemaker-spark.

• For the Python Spark library, you have the following additional options:

• Use pip install:

$ pip install sagemaker_pyspark

• In a notebook instance, create a new notebook that uses either the Sparkmagic (PySpark) or
the Sparkmagic (PySpark3) kernel and connect to a remote Amazon EMR cluster. For more
information, see Build Amazon SageMaker Notebooks Backed by Spark in Amazon EMR.

Note
The EMR cluster must be configured with an IAM role that has the
AmazonSageMakerFullAccess policy attached. For information about configuring roles
for an EMR cluster, see Configure IAM Roles for Amazon EMR Permissions to AWS Services
in the Amazon EMR Management Guide.

• You can get the Scala library from Maven. Add the Spark library to your project by adding the

following dependency to your pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>sagemaker-spark_2.11</artifactId>
 <version>spark_2.2.0-1.0</version>
</dependency>

Integrate Your Apache Spark Application with
Amazon SageMaker
The following is high-level summary of the steps for integrating your Apache Spark application with
Amazon SageMaker.

1. Continue data preprocessing using the Apache Spark library that you are familiar with. Your dataset
remains a DataFrame in your Spark cluster.

Note
Load your data into a DataFrame and preprocess it so that you have a features column
with org.apache.spark.ml.linalg.Vector of Doubles, and an optional label
column with values of Double type.

2. Use the estimator in the Amazon SageMaker Spark library to train your model. For example, if you
choose the k-means algorithm provided by Amazon SageMaker for model training, you call the
KMeansSageMakerEstimator.fit method.

Provide your DataFrame as input. The estimator returns a SageMakerModel object.

Note
SageMakerModel extends the org.apache.spark.ml.Model.

The fit method does the following:

a. Converts the input DataFrame to the protobuf format by selecting the features and label
columns from the input DataFrame and uploading the protobuf data to an Amazon S3 bucket.
The protobuf format is efficient for model training in Amazon SageMaker.

441

https://github.com/aws/sagemaker-spark
https://github.com/aws/sagemaker-spark
http://aws.amazon.com/blogs/machine-learning/build-amazon-sagemaker-notebooks-backed-by-spark-in-amazon-emr/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-iam-roles.html

Amazon SageMaker Developer Guide
Example 1: Amazon SageMaker with Apache Spark

b. Starts model training in Amazon SageMaker by sending an Amazon SageMaker
CreateTrainingJob (p. 667) request. After model training has completed, Amazon SageMaker
saves the model artifacts to an S3 bucket.

Amazon SageMaker assumes the IAM role that you specified for model training to perform tasks
on your behalf. For example, it uses the role to read training data from an S3 bucket and to
write model artifacts to a bucket.

c. Creates and returns a SageMakerModel object. The constructor does the following tasks, which
are related to deploying your model to Amazon SageMaker.

i. Sends a CreateModel (p. 648) request to Amazon SageMaker.

ii. Sends a CreateEndpointConfig (p. 635) request to Amazon SageMaker.

iii. Sends a CreateEndpoint (p. 632) request to Amazon SageMaker, which then launches the
specified resources, and hosts the model on them.

3. You can get inferences from your model hosted in Amazon SageMaker with the
SageMakerModel.transform.

Provide an input DataFrame with features as input. The transform method transforms it to
a DataFrame containing inferences. Internally, the transform method sends a request to the
InvokeEndpoint (p. 853) Amazon SageMaker API to get inferences. The transform method
appends the inferences to the input DataFrame.

Example 1: Use Amazon SageMaker for Training and
Inference with Apache Spark
Topics

• Use Custom Algorithms for Model Training and Hosting on Amazon SageMaker with Apache
Spark (p. 446)

• Use the SageMakerEstimator in a Spark Pipeline (p. 447)

Amazon SageMaker provides an Apache Spark library (in both Python and Scala) that you can use
to integrate your Apache Spark applications with Amazon SageMaker. For example, you might use
Apache Spark for data preprocessing and Amazon SageMaker for model training and hosting. For more
information, see Use Apache Spark with Amazon SageMaker (p. 440). This section provides example
code that uses the Apache Spark Scala library provided by Amazon SageMaker to train a model in
Amazon SageMaker using DataFrames in your Spark cluster. The example also hosts the resulting model
artifacts using Amazon SageMaker hosting services. Specifically, this example does the following:

• Uses the KMeansSageMakerEstimator to fit (or train) a model on data

Because the example uses the k-means algorithm provided by Amazon SageMaker to train a model,
you use the KMeansSageMakerEstimator. You train the model using images of handwritten single-
digit numbers (from the MNIST dataset). You provide the images as an input DataFrame. For your
convenience, Amazon SageMaker provides this dataset in an S3 bucket.

In response, the estimator returns a SageMakerModel object.

• Obtains inferences using the trained SageMakerModel

442

Amazon SageMaker Developer Guide
Example 1: Amazon SageMaker with Apache Spark

To get inferences from a model hosted in Amazon SageMaker, you call the
SageMakerModel.transform method. You pass a DataFrame as input. The method transforms the
input DataFrame to another DataFrame containing inferences obtained from the model.

For a given input image of a handwritten single-digit number, the inference identifies a cluster that the
image belongs to. For more information, see K-Means Algorithm (p. 141).

This is the example code:

import org.apache.spark.sql.SparkSession
import com.amazonaws.services.sagemaker.sparksdk.IAMRole
import com.amazonaws.services.sagemaker.sparksdk.algorithms
import com.amazonaws.services.sagemaker.sparksdk.algorithms.KMeansSageMakerEstimator

val spark = SparkSession.builder.getOrCreate

// load mnist data as a dataframe from libsvm
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")
val testData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")

val roleArn = "arn:aws:iam::account-id:role/rolename"

val estimator = new KMeansSageMakerEstimator(
 sagemakerRole = IAMRole(roleArn),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1)
 .setK(10).setFeatureDim(784)

// train
val model = estimator.fit(trainingData)

val transformedData = model.transform(testData)
transformedData.show

The code does the following:

• Loads the MNIST dataset from an S3 bucket provided by Amazon SageMaker (awsai-sparksdk-
dataset) into a Spark DataFrame (mnistTrainingDataFrame):

// Get a Spark session.

val spark = SparkSession.builder.getOrCreate

// load mnist data as a dataframe from libsvm
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")
val testData = spark.read.format("libsvm")
 .option("numFeatures", "784")

443

Amazon SageMaker Developer Guide
Example 1: Amazon SageMaker with Apache Spark

 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")

val roleArn = "arn:aws:iam::account-id:role/rolename"
trainingData.show()

The show method displays the first 20 rows in the data frame:

+-----+--------------------+
|label| features|
+-----+--------------------+
5.0	(784,[152,153,154...
0.0	(784,[127,128,129...
4.0	(784,[160,161,162...
1.0	(784,[158,159,160...
9.0	(784,[208,209,210...
2.0	(784,[155,156,157...
1.0	(784,[124,125,126...
3.0	(784,[151,152,153...
1.0	(784,[152,153,154...
4.0	(784,[134,135,161...
3.0	(784,[123,124,125...
5.0	(784,[216,217,218...
3.0	(784,[143,144,145...
6.0	(784,[72,73,74,99...
1.0	(784,[151,152,153...
7.0	(784,[211,212,213...
2.0	(784,[151,152,153...
8.0	(784,[159,160,161...
6.0	(784,[100,101,102...
9.0	(784,[209,210,211...
+-----+--------------------+
only showing top 20 rows

In each row:

• The label column identifies the image's label. For example, if the image of the handwritten number
is the digit 5, the label value is 5.

• The features column stores a vector (org.apache.spark.ml.linalg.Vector) of Double
values. These are the 784 features of the handwritten number. (Each handwritten number is a 28 x
28-pixel image, making 784 features.)

• Creates an Amazon SageMaker estimator (KMeansSageMakerEstimator)

The fit method of this estimator uses the k-means algorithm provided by Amazon SageMaker to train
models using an input DataFrame. In response, it returns a SageMakerModel object that you can use
to get inferences.

Note
The KMeansSageMakerEstimator extends the Amazon SageMaker SageMakerEstimator,
which extends the Apache Spark Estimator.

val estimator = new KMeansSageMakerEstimator(
 sagemakerRole = IAMRole(roleArn),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1)
 .setK(10).setFeatureDim(784)

444

Amazon SageMaker Developer Guide
Example 1: Amazon SageMaker with Apache Spark

The constructor parameters provide information that is used for training a model and deploying it on
Amazon SageMaker:

• trainingInstanceType and trainingInstanceCount—Identify the type and number of ML
compute instances to use for model training.

• endpointInstanceType—Identifies the ML compute instance type to use when hosting the model
in Amazon SageMaker. By default, one ML compute instance is assumed.

• endpointInitialInstanceCount—Identifies the number of ML compute instances initially
backing the endpoint hosting the model in Amazon SageMaker.

• sagemakerRole—Amazon SageMaker assumes this IAM role to perform tasks on your behalf. For
example, for model training, it reads data from S3 and writes training results (model artifacts) to S3.

Note
This example implicitly creates an Amazon SageMaker client. To create this client, you must
provide your credentials. The API uses these credentials to authenticate requests to Amazon
SageMaker. For example, it uses the credentials to authenticate requests to create a training
job and API calls for deploying the model using Amazon SageMaker hosting services.

• After the KMeansSageMakerEstimator object has been created, you set the following parameters,
are used in model training:

• The number of clusters that the k-means algorithm should create during model training. You
specify 10 clusters, one for each digit, 0 through 9.

• Identifies that each input image has 784 features (each handwritten number is a 28 x 28-pixel
image, making 784 features).

• Calls the estimator fit method

// train
val model = estimator.fit(trainingData)

You pass the input DataFrame as a parameter. The model does all the work of training the model
and deploying it to Amazon SageMaker. For more information see, Integrate Your Apache Spark
Application with Amazon SageMaker (p. 441). In response, you get a SageMakerModel object, which
you can use to get inferences from your model deployed in Amazon SageMaker.

You provide only the input DataFrame. You don't need to specify the registry path to the k-means
algorithm used for model training because the KMeansSageMakerEstimator knows it.

• Calls the SageMakerModel.transform method to get inferences from the model deployed in
Amazon SageMaker.

The transform method takes a DataFrame as input, transforms it, and returns another DataFrame
containing inferences obtained from the model.

val transformedData = model.transform(testData)
transformedData.show

445

Amazon SageMaker Developer Guide
Example 1: Amazon SageMaker with Apache Spark

For simplicity, we use the same DataFrame as input to the transform method that we used for
model training in this example. The transform method does the following:

• Serializes the features column in the input DataFrame to protobuf and sends it to the Amazon
SageMaker endpoint for inference.

• Deserializes the protobuf response into the two additional columns (distance_to_cluster and
closest_cluster) in the transformed DataFrame.

The show method gets inferences to the first 20 rows in the input DataFrame:

+-----+--------------------+-------------------+---------------+
|label| features|distance_to_cluster|closest_cluster|
+-----+--------------------+-------------------+---------------+
5.0	(784,[152,153,154...	1767.897705078125	4.0
0.0	(784,[127,128,129...	1392.157470703125	5.0
4.0	(784,[160,161,162...	1671.5711669921875	9.0
1.0	(784,[158,159,160...	1182.6082763671875	6.0
9.0	(784,[208,209,210...	1390.4002685546875	0.0
2.0	(784,[155,156,157...	1713.988037109375	1.0
1.0	(784,[124,125,126...	1246.3016357421875	2.0
3.0	(784,[151,152,153...	1753.229248046875	4.0
1.0	(784,[152,153,154...	978.8394165039062	2.0
4.0	(784,[134,135,161...	1623.176513671875	3.0
3.0	(784,[123,124,125...	1533.863525390625	4.0
5.0	(784,[216,217,218...	1469.357177734375	6.0
3.0	(784,[143,144,145...	1736.765869140625	4.0
6.0	(784,[72,73,74,99...	1473.69384765625	8.0
1.0	(784,[151,152,153...	944.88720703125	2.0
7.0	(784,[211,212,213...	1285.9071044921875	3.0
2.0	(784,[151,152,153...	1635.0125732421875	1.0
8.0	(784,[159,160,161...	1436.3162841796875	6.0
6.0	(784,[100,101,102...	1499.7366943359375	7.0
9.0	(784,[209,210,211...	1364.6319580078125	6.0
+-----+--------------------+-------------------+---------------+

You can interpret the data, as follows:

• A handwritten number with the label 5 belongs to cluster 5 (closest_cluster).

• A handwritten number with the label 0 belongs to cluster 2.

• A handwritten number with the label 4 belongs to cluster 4.

• A handwritten number with the label 1 belongs to cluster 1.

For more information on how to run these examples, see https://github.com/aws/sagemaker-spark/
blob/master/README.md on GitHub.

Use Custom Algorithms for Model Training and Hosting on
Amazon SageMaker with Apache Spark

In Example 1: Use Amazon SageMaker for Training and Inference with Apache Spark (p. 442), you
use the kMeansSageMakerEstimator because the example uses the k-means algorithm provided by
Amazon SageMaker for model training. You might choose to use your own custom algorithm for model
training instead. Assuming that you have already created a Docker image, you can create your own
SageMakerEstimator and specify the Amazon Elastic Container Registry path for your custom image.

The following example shows how to create a KMeansSageMakerEstimator from the
SageMakerEstimator. In the new estimator, you explicitly specify the Docker registry path to your
training and inference code images.

446

https://github.com/aws/sagemaker-spark/blob/master/README.md
https://github.com/aws/sagemaker-spark/blob/master/README.md

Amazon SageMaker Developer Guide
Example 1: Amazon SageMaker with Apache Spark

import com.amazonaws.services.sagemaker.sparksdk.IAMRole
import com.amazonaws.services.sagemaker.sparksdk.SageMakerEstimator
import
 com.amazonaws.services.sagemaker.sparksdk.transformation.serializers.ProtobufRequestRowSerializer
import
 com.amazonaws.services.sagemaker.sparksdk.transformation.deserializers.KMeansProtobufResponseRowDeserializer

val estimator = new SageMakerEstimator(
 trainingImage =
 "811284229777.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
 modelImage =
 "811284229777.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
 requestRowSerializer = new ProtobufRequestRowSerializer(),
 responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(),
 hyperParameters = Map("k" -> "10", "feature_dim" -> "784"),
 sagemakerRole = IAMRole(roleArn),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1,
 trainingSparkDataFormat = "sagemaker")

In the code, the parameters in the SageMakerEstimator constructor include:

• trainingImage —Identifies the Docker registry path to the training image containing your custom
code.

• modelImage —Identifies the Docker registry path to the image containing inference code.
• requestRowSerializer —Implements
com.amazonaws.services.sagemaker.sparksdk.transformation.RequestRowSerializer.

This parameter serializes rows in the input DataFrame to send them to the model hosted in Amazon
SageMaker for inference.

• responseRowDeserializer —Implements

com.amazonaws.services.sagemaker.sparksdk.transformation.ResponseRowDeserializer.

This parameter deserializes responses from the model, hosted in Amazon SageMaker, back into a
DataFrame.

• trainingSparkDataFormat —Specifies the data format that Spark uses when uploading training
data from a DataFrame to S3. For example, "sagemaker" for protobuf format, "csv" for comma-
separated values, and "libsvm" for LibSVM format.

You can implement your own RequestRowSerializer and ResponseRowDeserializer to serialize
and deserialize rows from a data format that your inference code supports, such as .libsvm or ..csv.

Use the SageMakerEstimator in a Spark Pipeline
You can use org.apache.spark.ml.Estimator estimators and org.apache.spark.ml.Model
models, and SageMakerEstimator estimators and SageMakerModel models in
org.apache.spark.ml.Pipeline pipelines, as shown in the following example:

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.PCA
import org.apache.spark.sql.SparkSession
import com.amazonaws.services.sagemaker.sparksdk.IAMRole
import com.amazonaws.services.sagemaker.sparksdk.algorithms
import com.amazonaws.services.sagemaker.sparksdk.algorithms.KMeansSageMakerEstimator

447

Amazon SageMaker Developer Guide
Example 1: Amazon SageMaker with Apache Spark

val spark = SparkSession.builder.getOrCreate

// load mnist data as a dataframe from libsvm
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")
val testData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")

// substitute your SageMaker IAM role here
val roleArn = "arn:aws:iam::account-id:role/rolename"

val pcaEstimator = new PCA()
 .setInputCol("features")
 .setOutputCol("projectedFeatures")
 .setK(50)

val kMeansSageMakerEstimator = new KMeansSageMakerEstimator(
 sagemakerRole = IAMRole(integTestingRole),
 requestRowSerializer =
 new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures"),
 trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures"),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1)
 .setK(10).setFeatureDim(50)

val pipeline = new Pipeline().setStages(Array(pcaEstimator, kMeansSageMakerEstimator))

// train
val pipelineModel = pipeline.fit(trainingData)

val transformedData = pipelineModel.transform(testData)
transformedData.show()

The parameter trainingSparkDataFormatOptions configures Spark to serialize to protobuf the
"projectedFeatures" column for model training. Additionally, Spark serializes to protobuf the "label"
column by default.

Because we want to make inferences using the "projectedFeatures" column, we pass the column name
into the ProtobufRequestRowSerializer.

The following example shows a transformed DataFrame:

+-----+--------------------+--------------------+-------------------+---------------+
|label| features| projectedFeatures|distance_to_cluster|closest_cluster|
+-----+--------------------+--------------------+-------------------+---------------+
5.0	(784,[152,153,154...	[880.731433034386...	1500.470703125	0.0
0.0	(784,[127,128,129...	[1768.51722024166...	1142.18359375	4.0
4.0	(784,[160,161,162...	[704.949236329314...	1386.246826171875	9.0
1.0	(784,[158,159,160...	[-42.328192193771...	1277.0736083984375	5.0
9.0	(784,[208,209,210...	[374.043902028333...	1211.00927734375	3.0
2.0	(784,[155,156,157...	[941.267714528850...	1496.157958984375	8.0
1.0	(784,[124,125,126...	[30.2848596410594...	1327.6766357421875	5.0
3.0	(784,[151,152,153...	[1270.14374062052...	1570.7674560546875	0.0
1.0	(784,[152,153,154...	[-112.10792566485...	1037.568359375	5.0
4.0	(784,[134,135,161...	[452.068280676606...	1165.1236572265625	3.0
3.0	(784,[123,124,125...	[610.596447285397...	1325.953369140625	7.0
5.0	(784,[216,217,218...	[142.959601818422...	1353.4930419921875	5.0
3.0	(784,[143,144,145...	[1036.71862533658...	1460.4315185546875	7.0
6.0	(784,[72,73,74,99...	[996.740157435754...	1159.8631591796875	2.0

448

Amazon SageMaker Developer Guide
Additional Examples: Amazon
SageMaker with Apache Spark

1.0	(784,[151,152,153...	[-107.26076167417...	960.963623046875	5.0
7.0	(784,[211,212,213...	[619.771820430940...	1245.13623046875	6.0
2.0	(784,[151,152,153...	[850.152101817161...	1304.437744140625	8.0
8.0	(784,[159,160,161...	[370.041887230547...	1192.4781494140625	0.0
6.0	(784,[100,101,102...	[546.674328209335...	1277.0908203125	2.0
9.0	(784,[209,210,211...	[-29.259112927426...	1245.8182373046875	6.0
+-----+--------------------+--------------------+-------------------+---------------+

Additional Examples: Use Amazon SageMaker with
Apache Spark
Additional examples of using Amazon SageMaker with Apache Spark are available at https://
github.com/aws/sagemaker-spark/tree/master/examples.

Use TensorFlow with Amazon SageMaker
You can use Amazon SageMaker to train and deploy a model using custom TensorFlow code. The
Amazon SageMaker Python SDK TensorFlow estimators and models and the Amazon SageMaker open-
source TensorFlow containers make writing a TensorFlow script and running it in Amazon SageMaker
easier.

Use TensorFlow Version 1.11 and Later
For TensorFlow versions 1.11 and later, the Amazon SageMaker Python SDK supports script mode
training scripts.

What do you want to do?
I want to train a custom TensorFlow model in Amazon SageMaker.

For a sample Jupyter notebook, see https://github.com/awslabs/amazon-sagemaker-examples/
tree/master/sagemaker-python-sdk/tensorflow_distributed_mnist.

For documentation, see Train a Model with TensorFlow.
I have a TensorFlow model that I trained in Amazon SageMaker, and I want to deploy it to a hosted
endpoint.

Deploy TensorFlow Serving models.
I have a TensorFlow model that I trained outside of Amazon SageMaker, and I want to deploy it to an
Amazon SageMaker endpoint

Deploying directly from model artifacts.
I want to see the API documentation for Amazon SageMaker Python SDK TensorFlow classes.

TensorFlow Estimator
I want to see information about Amazon SageMaker TensorFlow containers.

https://github.com/aws/sagemaker-tensorflow-container.

For general information about writing TensorFlow script mode training scripts and using TensorFlow
script mode estimators and models with Amazon SageMaker, see Using TensorFlow with the SageMaker
Python SDK.

449

https://github.com/aws/sagemaker-spark/tree/master/examples
https://github.com/aws/sagemaker-spark/tree/master/examples
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_distributed_mnist
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_distributed_mnist
https://sagemaker.readthedocs.io/en/stable/using_tf.html#train-a-model-with-tensorflow
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploy-tensorflow-serving-models
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-directly-from-model-artifacts
https://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html
https://github.com/aws/sagemaker-tensorflow-container
https://sagemaker.readthedocs.io/en/stable/using_tf.html
https://sagemaker.readthedocs.io/en/stable/using_tf.html

Amazon SageMaker Developer Guide
Use TensorFlow Legacy Mode for Versions 1.11 and Earlier

For information about TensorFlow versions supported by the Amazon SageMaker TensorFlow container,
see https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/
README.rst.

Use TensorFlow Legacy Mode for Versions 1.11 and
Earlier
The Amazon SageMaker Python SDK provides a legacy mode that supports TensorFlow versions 1.11 and
earlier. Use legacy mode TensorFlow training scripts to run TensorFlow jobs in Amazon SageMaker if:

• You have existing legacy mode scripts that you do not want to convert to script mode.
• You want to use a TensorFlow version earlier than 1.11.

For information about writing legacy mode TensorFlow scipts to use with the Amazon SageMaker
Python SDK, see https://github.com/aws/sagemaker-python-sdk/tree/v1.12.0/src/sagemaker/
tensorflow#tensorflow-sagemaker-estimators-and-models.

Use Apache MXNet with Amazon SageMaker
You can use Amazon SageMaker to train and deploy a model using custom MXNet code. The Amazon
SageMaker Python SDK MXNet estimators and models and the Amazon SageMaker open-source MXNet
container make writing a MXNet script and running it in Amazon SageMaker easier.

What do you want to do?
I want to train a custom MXNet model in Amazon SageMaker.

For a sample Jupyter notebook, see https://github.com/awslabs/amazon-sagemaker-examples/
tree/master/sagemaker-python-sdk/mxnet_mnist.

For documentation, see Train a Model with MXNet.
I have an MXNet model that I trained in Amazon SageMaker, and I want to deploy it to a hosted
endpoint.

Deploy MXNet models.
I have an MXNet model that I trained outside of Amazon SageMaker, and I want to deploy it to an
Amazon SageMaker endpoint

Deploy Endpoints from Model Data.
I want to see the API documentation for Amazon SageMaker Python SDK MXNet classes.

MXNet Classes
I want to see information about Amazon SageMaker MXNet containers.

https://github.com/aws/sagemaker-mxnet-container.

For general information about writing MXNet script mode training scripts and using MXNet script mode
estimators and models with Amazon SageMaker, see Using MXNet with the SageMaker Python SDK.

For information about MXNet versions supported by the Amazon SageMaker MXNet container, see
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst.

450

https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst
https://github.com/aws/sagemaker-python-sdk/tree/v1.12.0/src/sagemaker/tensorflow#tensorflow-sagemaker-estimators-and-models
https://github.com/aws/sagemaker-python-sdk/tree/v1.12.0/src/sagemaker/tensorflow#tensorflow-sagemaker-estimators-and-models
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/mxnet_mnist
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/mxnet_mnist
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html#train-a-model-with-mxnet
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html#deploy-mxnet-models
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html#deploy-endpoints-from-model-data
https://sagemaker.readthedocs.io/en/stable/sagemaker.mxnet.html
https://github.com/aws/sagemaker-mxnet-container
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst

Amazon SageMaker Developer Guide
Using Scikit-learn

Use Scikit-learn with Amazon SageMaker
You can use Amazon SageMaker to train and deploy a model using custom Scikit-learn code. The
Amazon SageMaker Python SDK Scikit-learn estimators and models and the Amazon SageMaker open-
source Scikit-learn container make writing a Scikit-learn script and running it in Amazon SageMaker
easier.

What do you want to do?
I want to train a custom Scikit-learn model in Amazon SageMaker.

For a sample Jupyter notebook, see https://github.com/awslabs/amazon-sagemaker-examples/
tree/master/sagemaker-python-sdk/scikit_learn_iris.

For documentation, see Train a Model with Scikit-learn.

I have a Scikit-learn model that I trained in Amazon SageMaker, and I want to deploy it to a hosted
endpoint.

Deploy Scikit-learn models.

I have a Scikit-learn model that I trained outside of Amazon SageMaker, and I want to deploy it to an
Amazon SageMaker endpoint

Deploy Endpoints from Model Data.

I want to see the API documentation for Amazon SageMaker Python SDK Scikit-learn classes.

Scikit-learn Classes

I want to see information about Amazon SageMaker Scikit-learn containers.

https://github.com/aws/sagemaker-scikit-learn-container.

For general information about writing Scikit-learn training scripts and using Scikit-learn estimators and
models with Amazon SageMaker, see Using Scikit-learn with the SageMaker Python SDK.

For information about Scikit-learn versions supported by the Amazon SageMaker Scikit-learn container,
see https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/sklearn/README.rst.

Use PyTorch with Amazon SageMaker
You can use Amazon SageMaker to train and deploy a model using custom PyTorch code. The Amazon
SageMaker Python SDK PyTorch estimators and models and the Amazon SageMaker open-source
PyTorch container make writing a PyTorch script and running it in Amazon SageMaker easier.

What do you want to do?
I want to train a custom PyTorch model in Amazon SageMaker.

For a sample Jupyter notebook, see https://github.com/awslabs/amazon-sagemaker-examples/
tree/master/sagemaker-python-sdk/pytorch_mnist.

For documentation, see Train a Model with PyTorch.

451

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html#train-a-model-with-sklearn
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html#deploy-sklearn-models
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html#deploy-endpoints-from-model-data
https://sagemaker.readthedocs.io/en/stable/sagemaker.sklearn.html
https://github.com/aws/sagemaker-scikit-learn-container
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/sklearn/README.rst
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/pytorch_mnist
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/pytorch_mnist
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html#train-a-model-with-pytorch

Amazon SageMaker Developer Guide
Using Chainer

I have a PyTorch model that I trained in Amazon SageMaker, and I want to deploy it to a hosted
endpoint.

Deploy PyTorch models.
I have a PyTorch model that I trained outside of Amazon SageMaker, and I want to deploy it to an
Amazon SageMaker endpoint

Deploy Endpoints from Model Data.
I want to see the API documentation for Amazon SageMaker Python SDK PyTorch classes.

PyTorch Classes
I want to see information about Amazon SageMaker PyTorch containers.

https://github.com/aws/sagemaker-pytorch-container.

For general information about writing PyTorch training scripts and using PyTorch estimators and models
with Amazon SageMaker, see Using PyTorch with the SageMaker Python SDK.

For information about PyTorch versions supported by the Amazon SageMaker PyTorch container, see
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/pytorch/README.rst.

Use Chainer with Amazon SageMaker
You can use Amazon SageMaker to train and deploy a model using custom Chainer code. The Amazon
SageMaker Python SDK Chainer estimators and models and the Amazon SageMaker open-source Chainer
container make writing a Chainer script and running it in Amazon SageMaker easier.

What do you want to do?
I want to train a custom Chainer model in Amazon SageMaker.

For a sample Jupyter notebook, see https://github.com/awslabs/amazon-sagemaker-examples/
tree/master/sagemaker-python-sdk/chainer_mnist.

For documentation, see Train a Model with Chainer.
I have a Chainer model that I trained in Amazon SageMaker, and I want to deploy it to a hosted endpoint.

Deploy Chainer models.
I have a Chainer model that I trained outside of Amazon SageMaker, and I want to deploy it to an
Amazon SageMaker endpoint

Deploy Endpoints from Model Data.
I want to see the API documentation for Amazon SageMaker Python SDK Chainer classes.

Chainer Classes
I want to see information about Amazon SageMaker Chainer containers.

https://github.com/aws/sagemaker-chainer-container.

For general information about writing Chainer training scripts and using Chainer estimators and models
with Amazon SageMaker, see Using Chainer with the SageMaker Python SDK.

For information about Chainer versions supported by the Amazon SageMaker Chainer container, see
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/chainer/README.rst.

452

https://sagemaker.readthedocs.io/en/stable/using_pytorch.html#deploy-pytorch-models
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html#deploy-endpoints-from-model-data
https://sagemaker.readthedocs.io/en/stable/sagemaker.pytorch.html
https://github.com/aws/sagemaker-pytorch-container
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/pytorch/README.rst
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/chainer_mnist
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/chainer_mnist
https://sagemaker.readthedocs.io/en/stable/using_chainer.html#train-a-model-with-chainer
https://sagemaker.readthedocs.io/en/stable/using_chainer.html#deploy-chainer-models
https://sagemaker.readthedocs.io/en/stable/using_chainer.html#deploy-endpoints-from-model-data
https://sagemaker.readthedocs.io/en/stable/sagemaker.chainer.html
https://github.com/aws/sagemaker-chainer-container
https://sagemaker.readthedocs.io/en/stable/using_chainer.html
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/chainer/README.rst

Amazon SageMaker Developer Guide
Use SparkML Serving

Use SparkML Serving with Amazon SageMaker
The Amazon SageMaker Python SDK SparkML Serving model and predictor and the Amazon SageMaker
open-source SparkML Serving container support deploying Apache Spark ML pipelines serialized with
MLeap in Amazon SageMaker to get inferences.

For information about using the SparkML Serving container to deploy models to Amazon SageMaker,
see https://github.com/aws/sagemaker-sparkml-serving-container. For information about the Amazon
SageMaker Python SDK SparkML Serving model and predictors, see https://sagemaker.readthedocs.io/
en/stable/sagemaker.sparkml.html.

453

https://github.com/aws/sagemaker-sparkml-serving-container
https://sagemaker.readthedocs.io/en/stable/sagemaker.sparkml.html
https://sagemaker.readthedocs.io/en/stable/sagemaker.sparkml.html

Amazon SageMaker Developer Guide
Why is Reinforcement Learning Important?

Reinforcement Learning with
Amazon SageMaker RL

Reinforcement learning (RL) is a machine learning technique that attempts to learn a strategy, called
a policy, that optimizes an objective for an agent acting in an environment. For example, the agent
might be a robot, the environment might be a maze, and the goal might be to successfully navigate
the maze in the smallest amount of time. In RL, the agent takes an action, observes the state of the
environment, and gets a reward based on the value of the current state of the environment. The goal is
to maximize the long-term reward that the agent receives as a result of its actions. RL is well-suited for
solving problems where an agent can make autonomous decisions.

Topics

• Why is Reinforcement Learning Important? (p. 454)

• Markov Decision Process (MDP) (p. 454)

• Key Features of Amazon SageMaker RL (p. 455)

• Sample RL Workflow Using Amazon SageMaker RL (p. 457)

• RL Environments in Amazon SageMaker (p. 458)

• Distributed Training with Amazon SageMaker RL (p. 459)

• Hyperparameter Tuning with Amazon SageMaker RL (p. 460)

Why is Reinforcement Learning Important?
RL is well-suited for solving large, complex problems. For example, supply chain management, HVAC
systems, industrial robotics, game artificial intelligence, dialog systems, and autonomous vehicles.
Because RL models learn by a continuous process of receiving rewards and punishments for every action
taken by the agent, it is possible to train systems to make decisions under uncertainty and in dynamic
environments.

Markov Decision Process (MDP)
RL is based on models called Markov Decision Processes (MDPs). An MDP consists of a series of time
steps. Each time step consists of the following:

Environment

Defines the space in which the RL model operates. This can be either a real-world environment or
a simulator. For example, if you train a physical autonomous vehicle on a physical road, that would
be a real-world environment. If you train a computer program that models an autonomous vehicle
driving on a road, that would be a simulator.

State

Specifies all information about the environment and past steps that is relevant to the future. For
example, in an RL model in which a robot can move in any direction at any time step, then the

454

Amazon SageMaker Developer Guide
Key Features of Amazon SageMaker RL

position of the robot at the current time step is the state, because if we know where the robot is, it
isn't necessary to know the steps it took to get there.

Action

What the agent does. For example, the robot takes a step forward.

Reward

A number that represents the value of the state that resulted from the last action that the agent
took. For example, if the goal is for a robot to find treasure, the reward for finding treasure might be
5, and the reward for not finding treasure might be 0. The RL model attempts to find a strategy that
optimizes the cumulative reward over the long term. This strategy is called a policy.

Observation

Information about the state of the environment that is available to the agent at each step. This
might be the entire state, or it might be just a part of the state. For example, the agent in a chess-
playing model would be able to observe the entire state of the board at any step, but a robot in a
maze might only be able to observe a small portion of the maze that it currently occupies.

Typically, training in RL consists of many episodes. An episode consists of all of the time steps in an MDP
from the initial state until the environment reaches the terminal state.

Key Features of Amazon SageMaker RL
To train RL models in Amazon SageMaker RL, use the following components:

• A deep learning (DL) framework. Currently, Amazon SageMaker supports RL in TensorFlow and Apache
MXNet.

• An RL toolkit. An RL toolkit manages the interaction between the agent and the environment,
and provides a wide selection of state of the art RL algorithms. Amazon SageMaker supports
the Intel Coach and Ray RLlib toolkits. For information about Intel Coach, see https://
nervanasystems.github.io/coach/. For information about Ray RLlib, see https://ray.readthedocs.io/en/
latest/rllib.html.

• An RL environment. You can use custom environments, open-source environments, or commercial
environments. For information, see RL Environments in Amazon SageMaker (p. 458).

The following diagram shows the RL components that are supported in Amazon SageMaker RL.

455

https://nervanasystems.github.io/coach/
https://nervanasystems.github.io/coach/
https://ray.readthedocs.io/en/latest/rllib.html
https://ray.readthedocs.io/en/latest/rllib.html

Amazon SageMaker Developer Guide
Key Features of Amazon SageMaker RL

456

Amazon SageMaker Developer Guide
Sample RL Workflow Using Amazon SageMaker RL

Sample RL Workflow Using Amazon SageMaker RL
The following example describes the steps for developing RL models using Amazon SageMaker RL.

For complete code examples, see the sample notebooks at https://github.com/awslabs/amazon-
sagemaker-examples/tree/master/reinforcement-learning.

1. Formulate the RL problem—First, formulate the business problem into an RL problem. For example,
auto scaling enables services to dynamically increase or decrease capacity depending on conditions
that you define. Currently, this requires setting up alarms, scaling policies, and thresholds, and other
manual steps. To solve this with RL, we define the components of the Markov Decision Process:

a. Objective—Scale instance capacity so that it matches the desired load profile.

b. Environment—A custom environment that includes the load profile. It generates a simulated
load with daily and weekly variations and occasional spikes. The simulated system has a delay
between when new resources are requested and when they become available for serving
requests.

c. State—The current load, number of failed jobs, and number of active machines

d. Action—Remove, add, or keep the same number of instances.

e. Reward—A positive reward for successful transactions, a high penalty for failing transactions
beyond a specified threshold.

2. Define the RL environment—The RL environment can be the real world where the RL agent
interacts or a simulation of the real world. You can connect open source and custom environments
developed using Gym interfaces, and commercial simulation environments such as MATLAB and
Simulink.

3. Define the presets—The presets configure the RL training jobs and define the hyperparameters for
the RL algorithms.

4. Write the training code—Write training code as a Python script and pass the script to an Amazon
SageMaker training job. In your training code, import the environment files and the preset files, and
then define the main() function.

5. Train the RL Model— Use the Amazon SageMaker RLEstimator in the Amazon SageMaker Python
SDK to start an RL training job. If you are using local mode, the training job runs on the notebook
instance. When you use Amazon SageMaker for training, you can select GPU or CPU instances. Store
the output from the training job in a local directory if you train in local mode, or on Amazon S3 if
you use Amazon SageMaker training.

For information about using the Amazon SageMaker Python SDK for RL, see https://github.com/
aws/sagemaker-python-sdk/blob/master/src/sagemaker/rl/README.rst .

The RLEstimator requires the following information as parameters.

a. The source directory where the environment, presets, and training code are uploaded.

b. The path to the training script.

c. The RL toolkit and deep learning framework you want to use. This automatically resolves to the
Amazon ECR path for the RL container.

d. The training parameters, such as the instance count, job name, and S3 path for output.

e. Metric definitions that you want to capture in your logs. These can also be visualized in
CloudWatch and in Amazon SageMaker notebooks.

6. Visualize training metrics and output—After a training job that uses an RL model completes, you
can view the metrics you defined in the training jobs in CloudWatch,. You can also plot the metrics in
a notebook by using the Amazon SageMaker Python SDK analytics library. Visualizing metrics helps
you understand how the performance of the model as measured by the reward improves over time.

457

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/rl/README.rst
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/rl/README.rst

Amazon SageMaker Developer Guide
RL Environments in Amazon SageMaker

Note
If you train in local mode, you can't visualize metrics in CloudWatch.

7. Evaluate the model—Checkpointed data from the previously trained models can be passed on for
evaluation and inference in the checkpoint channel. In local mode, use the local directory. In Amazon
SageMaker training mode, you need to upload the data to S3 first.

8. Deploy RL models—Finally, deploy the trained model on an endpoint hosted on Amazon SageMaker
or on an Edge device by using AWS IoT Greengrass.

RL Environments in Amazon SageMaker
Amazon SageMaker RL uses environments to mimic real-world scenarios. Given the current state of the
environment and an action taken by the agent or agents, the simulator processes the impact of the
action, and returns the next state and a reward. Simulators are useful in cases where it is not safe to
train an agent in the real world (for example, flying a drone) or if the RL algorithm takes a long time to
converge (for example, when playing chess).

The following diagram shows an example of the interactions with a simulator for a car racing game.

The simulation environment consists of an agent and a simulator. Here, a convolutional neural network
(CNN) consumes images from the simulator and generates actions to control the game controller. With
multiple simulations, this environment generates training data of the form state_t, action, state_t
+1, and reward_t+1. Defining the reward is not trivial and impacts the RL model quality. We want to
provide a few examples of reward functions, but would like to make it user-configurable.

Topics

• Use OpenAI Gym Interface for Environments in Amazon SageMaker RL (p. 459)

• Use Open Source Environments (p. 459)

• Use Commercial Environments (p. 459)

458

Amazon SageMaker Developer Guide
Use OpenAI Gym Interface for

Environments in Amazon SageMaker RL

Use OpenAI Gym Interface for Environments in
Amazon SageMaker RL
To use OpenAI Gym environments in Amazon SageMaker RL, use the following API elements. For more
information about OpenAI Gym, see https://gym.openai.com/docs/.

• env.action_space—Defines the actions the agent can take, specifies whether each action is
continuous or discrete, and specifies the minimum and maximum if the action is continuous.

• env.observation_space—Defines the observations the agent receives from the environment, as
well as minimum and maximum for continuous observations.

• env.reset()—Initializes a training episode. The reset() function returns the initial state of the
environment, and the agent uses the initial state to take its first action. The action is then sent to the
step() repeatedly until the episode reaches a terminal state. When step() returns done = True,
the episode ends. The RL toolkit re-initializes the environment by calling reset().

• step()—Takes the agent action as input and outputs the next state of the environment, the reward,
whether the episode has terminated, and an info dictionary to communicate debugging information.
It is the responsibility of the environment to validate the inputs.

• env.render()Used for environments that have visualization. The RL toolkit calls this function to
capture visualizations of the environment after each call to the step() function.

Use Open Source Environments
You can use open source environments, such as EnergyPlus and RoboSchool, in Amazon SageMaker RL
by building your own container. For more information about EnergyPlus, see https://energyplus.net/.
For more information about RoboSchool, see https://github.com/openai/roboschool. The HVAC and
RoboSchool examples in the samples repository at https://github.com/awslabs/amazon-sagemaker-
examples/tree/master/reinforcement_learning show how to build a custom container to use with
Amazon SageMaker RL:

Use Commercial Environments
You can use commercial environments, such as MATLAB and Simulink, in Amazon SageMaker RL by
building your own container. You need to manage your own licenses.

Distributed Training with Amazon SageMaker RL
Amazon SageMaker RL supports multi-core and multi-instance distributed training. Depending on your
use case, training and/or environment rollout can be distributed. For example, Amazon SageMaker RL
works for the following distributed scenarios:

• Single training instance and multiple rollout instances of the same instance type. For an example, see
the Neural Network Compression example in the Amazon SageMaker examples repository at https://
github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning.

• Single trainer instance and multiple rollout instances, where different instance types for training
and rollouts. For an example, see the AWS DeepRacer / AWS RoboMaker example in the Amazon
SageMaker examples repository at https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/reinforcement_learning.

• Single trainer instance that uses multiple cores for rollout. For an example, see the Roboschool
example in the Amazon SageMaker examples repository at https://github.com/awslabs/amazon-
sagemaker-examples/tree/master/reinforcement_learning. This is useful if the simulation environment
is light-weight and can run on a single thread.

459

https://gym.openai.com/docs/
https://energyplus.net/
https://github.com/openai/roboschool
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning

Amazon SageMaker Developer Guide
Hyperparameter Tuning with Amazon SageMaker RL

• Multiple instances for training and rollouts. For an example, see the Roboschool example in the
Amazon SageMaker examples repository at https://github.com/awslabs/amazon-sagemaker-
examples/tree/master/reinforcement_learning.

Hyperparameter Tuning with Amazon SageMaker
RL

You can run a hyperparameter tuning job to optimize hyperparameters for Amazon SageMaker RL. The
Roboschool example in the sample notebooks at https://github.com/awslabs/amazon-sagemaker-
examples/tree/master/'reinforcement-learning shows how you can do this with RL Coach. The launcher
script shows how you can abstract parameters from the Coach preset file and optimize them.

460

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning

Amazon SageMaker Developer Guide
Monitoring with CloudWatch

Monitor Amazon SageMaker
Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
SageMaker and your other AWS solutions. AWS provides the following monitoring tools to watch
Amazon SageMaker, report when something is wrong, and take automatic actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that notify you
or take actions when a specified metric reaches a threshold that you specify. For example, you can have
CloudWatch track CPU usage or other metrics of your Amazon EC2 instances and automatically launch
new instances when needed. For more information, see the Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from EC2 instances,
AWS CloudTrail, and other sources. CloudWatch Logs can monitor information in the log files and
notify you when certain thresholds are met. You can also archive your log data in highly durable
storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the calls
occurred. For more information, see the AWS CloudTrail User Guide.

• CloudWatch Events delivers a near real-time stream of system events that describe changes in AWS
resources. Create CloudWatch Events rules react to a status change in a Amazon SageMaker training,
hyperparameter tuning, or batch transform job

Topics

• Monitor Amazon SageMaker with Amazon CloudWatch (p. 461)

• Log Amazon SageMaker Events with Amazon CloudWatch (p. 466)

• Log Amazon SageMaker API Calls with AWS CloudTrail (p. 467)

• React to Amazon SageMaker Job Status Changes with CloudWatch Events (p. 470)

Monitor Amazon SageMaker with Amazon
CloudWatch

You can monitor Amazon SageMaker using Amazon CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. These statistics are kept for 15 months, so that you can
access historical information and gain a better perspective on how your web application or service is
performing. However, the Amazon CloudWatch console limits the search to metrics that were updated
in the last 2 weeks. This limitation ensures that the most current jobs are shown in your namespace. To
graph metrics without using a search, specify its exact name in the source view. You can also set alarms
that watch for certain thresholds, and send notifications or take actions when those thresholds are met.
For more information, see the Amazon CloudWatch User Guide.

Amazon SageMaker model training jobs and endpoints write CloudWatch metrics and logs. The following
tables list the metrics and dimensions for Amazon SageMaker.

Endpoint Invocation Metrics

461

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon SageMaker Developer Guide
Monitoring with CloudWatch

The AWS/SageMaker namespace includes the following request metrics from calls to
InvokeEndpoint (p. 853) .

Metrics are available at a 1-minute frequency.

For information about how long CloudWatch metrics are retained for, see GetMetricStatistics in the
Amazon CloudWatch API Reference.

Metric Description

Invocation4XXErrors The number of InvokeEndpoint requests where the model returned a 4xx
HTTP response code. For each 4xx response, 1 is sent; otherwise, 0 is sent.

Units: None

Valid statistics: Average, Sum

Invocation5XXErrors The number of InvokeEndpoint requests where the model returned a 5xx
HTTP response code. For each 5xx response, 1 is sent; otherwise, 0 is sent.

Units: None

Valid statistics: Average, Sum

Invocations The number of InvokeEndpoint requests sent to a model endpoint.

To get the total number of requests sent to a model endpoint, use the Sum
statistic.

Units: None

Valid statistics: Sum, Sample Count

InvocationsPerInstanceThe number of invocations sent to a model, normalized by InstanceCount
in each ProductionVariant. 1/numberOfInstances is sent as the value on
each request, where numberOfInstances is the number of active instances
for the ProductionVariant behind the endpoint at the time of the request.

Units: None

Valid statistics: Sum

ModelLatency The interval of time taken by a model to respond as viewed from Amazon
SageMaker. This interval includes the local communication times taken to
send the request and to fetch the response from the container of a model
and the time taken to complete the inference in the container.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

OverheadLatency The interval of time added to the time taken to respond to a client request
by Amazon SageMaker overheads. This interval is measured from the time
Amazon SageMaker receives the request until it returns a response to the
client, minus the ModelLatency. Overhead latency can vary depending
on multiple factors, including request and response payload sizes, request
frequency, and authentication/authorization of the request.

Units: Microseconds

462

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide
Monitoring with CloudWatch

Metric Description

Valid statistics: Average, Sum, Min, Max, Sample Count

Dimensions for Endpoint Invocation Metrics

Dimension Description

EndpointName,
VariantName

Filters endpoint invocation metrics for a ProductionVariant of the
specified endpoint and variant.

Training Job, Batch Transform Job, and Endpoint Instance Metrics

The /aws/sagemaker/TrainingJobs, /aws/sagemaker/TransformJobs and /aws/sagemaker/
Endpoints namespaces include the following metrics for the training jobs and endpoint instances.

Metrics are available at a 1-minute frequency.

Metric Description

CPUUtilization The percentage of CPU units that are used by the containers on an instance.
The value can range between 0 and 100, and is multiplied by the number of
CPUs. For example, if there are four CPUs, CPUUtilization can range from
0% to 400%.

For training jobs, the value is the CPU utilization of the algorithm container
on the instance.

For batch transform jobs, the value is the CPU utilization of the transform
container on the instance.

For endpoint variants, the value is the sum of the CPU utilization of the
primary and supplementary containers on the instance.

Note
For multi-instance, each instance reports CPU utilization metrics.
However, the default view in CloudWatch shows the average CPU
utilization across all instances.

Units: Percent

MemoryUtilization The percentage of memory that is used by the containers on an instance.
This value can range between 0% and 100%.

For training jobs, the value is the memory utilization of the algorithm
container on the instance.

For batch transform jobs, the value is the memory utilization of the
transform container on the instance.

For endpoint variants, the value is the sum of the memory utilization of the
primary and supplementary containers on the instance.

Units: Percent

463

Amazon SageMaker Developer Guide
Monitoring with CloudWatch

Metric Description

Note
For multi-instance, each instance reports memory utilization
metrics. However, the default view in CloudWatch shows the
average memory utilization across all instances.

GPUUtilization The percentage of GPU units that are used by the containers on an instance.
The value can range between 0 and 100 and is multiplied by the number
of GPUs. For example, if there are four GPUs, GPUUtilization can range
from 0% to 400%.

For training jobs, the value is the GPU utilization of the algorithm container
on the instance.

For batch transform jobs, the value is the GPU utilization of the transform
container on the instance.

For endpoint variants, the value is the sum of the GPU utilization of the
primary and supplementary containers on the instance.

Note
For multi-instance, each instance reports GPU utilization metrics.
However, the default view in CloudWatch shows the average GPU
utilization across all instances.

Units: Percent

GPUMemoryUtilizationThe percentage of GPU memory used by the containers on an instance. The
value can range between 0 and 100 and is multiplied by the number of
GPUs. For example, if there are four GPUs, GPUMemoryUtilization can
range from 0% to 400%.

For training jobs, the value is the GPU memory utilization of the algorithm
container on the instance.

For batch transform jobs, the value is the GPU memory utilization of the
transform container on the instance.

For endpoint variants, the value is the sum of the GPU memory utilization of
the primary and supplementary containers on the instance.

Note
For multi-instance, each instance reports GPU memory utilization
metrics. However, the default view in CloudWatch shows the
average GPU memory utilization across all instances.

Units: Percent

464

Amazon SageMaker Developer Guide
Monitoring with CloudWatch

Metric Description

DiskUtilization The percentage of disk space used by the containers on an instance uses.
This value can range between 0% and 100%. This metric is not supported
for batch transform jobs.

For training jobs, the value is the disk space utilization of the algorithm
container on the instance.

For endpoint variants, the value is the sum of the disk space utilization of
the primary and supplementary containers on the instance.

Units: Percent

Note
For multi-instance, each instance reports disk utilization metrics.
However, the default view in CloudWatch shows the average disk
utilization across all instances.

Dimensions for Training Job, Batch Transform Job, and Endpoint Instance Metrics

Dimension Description

Host For training jobs, the value for this dimension has the format [training-
job-name]/algo-[instance-number-in-cluster]. Use this
dimension to filter instance metrics for the specified training job and
instance. This dimension format is present only in the /aws/sagemaker/
TrainingJobs namespace.

For batch transform jobs, the value for this dimension has the format
[transform-job-name]/[instance-id]. Use this dimension to
filter instance metrics for the specified batch transform job and instance.
This dimension format is present only in the /aws/sagemaker/
TransformJobs namespace.

For endpoints, the value for this dimension has the format [endpoint-
name]/[production-variant-name]/[instance-id]. Use this
dimension to filter instance metrics for the specified endpoint, variant, and
instance. This dimension format is present only in the /aws/sagemaker/
Endpoints namespace.

Amazon SageMaker Ground Truth Metrics

Metric Description

DatasetObjectsAutoAnnotatedThe number of dataset objects auto-annotated in a labeling job. This metric
is only emitted when automated labeling is enabled. To view the labeling job
progress, use the Max metric.

Units: None

Valid statistics: Max

DatasetObjectsHumanAnnotatedThe number of dataset objects annotated by a human in a labeling job. To
view the labeling job progress, use the Max metric.

465

Amazon SageMaker Developer Guide
Logging with CloudWatch

Metric Description

Units: None

Valid statistics: Max

DatasetObjectsLabelingFailedThe number of dataset objects that failed labeling in a labeling job. To view
the labeling job progress, use the Max metric.

Units: None

Valid statistics: Max

JobsFailed The number of labeling jobs that failed. To get the total number of labeling
jobs that failed, use the Sum statistic.

Units: None

Valid statistics: Sum, Sample Count

JobsSucceeded The number of labeling jobs that succeeded. To get the total number of
labeling jobs that succeeded, use the Sum statistic.

Units: None

Valid statistics: Sum, Sample Count

JobsStopped The number of labeling jobs that were stopped. To get the total number of
labeling jobs that were stopped, use the Sum statistic.

Units: None

Valid statistics: Sum, Sample Count

TotalDatasetObjectsLabeledThe number of dataset objects labeled successfully in a labeling job. To view
the labeling job progress, use the Max metric.

Units: None

Valid statistics: Max

Dimensions for Dataset Object Metrics

Dimension Description

LabelingJobName Filters dataset object count metrics for a labeling job.

Log Amazon SageMaker Events with Amazon
CloudWatch

To help you debug your training jobs, endpoints, transform jobs, notebook instances, and notebook
instance lifecycle configurations, anything an algorithm container, a model container, or a notebook
instance lifecycle configuration sends to stdout or stderr is also sent to Amazon CloudWatch Logs. In
addition to debugging, you can use these for progress analysis.

Logs

466

Amazon SageMaker Developer Guide
Log Amazon SageMaker API Calls with AWS CloudTrail

The following table lists all of the logs provided by Amazon SageMaker.

Logs

Log Group Name Log Stream Name

/aws/sagemaker/
TrainingJobs

[training-job-name]/algo-[instance-number-in-cluster]-
[epoch_timestamp]

[production-variant-name]/[instance-id]/aws/sagemaker/
Endpoints/
[EndpointName] [production-variant-name]/[instance-id]/[container-name

provided in SageMaker model] (For Inference Pipelines)

[notebook-instance-name]/[LifecycleConfigHook]/aws/sagemaker/
NotebookInstances

[notebook-instance-name]/jupyter.log

[transform-job-name]/[instance-id]-[epoch_timestamp]

[transform-job-name]/[instance-id]-[epoch_timestamp]/data-
log

/aws/sagemaker/
TransformJobs

[transform-job-name]/[instance-id]-[epoch_timestamp]/
[container-name provided in SageMaker model] (For
Inference Pipelines)

Note
1. The /aws/sagemaker/NotebookInstances/[LifecycleConfigHook] log stream
is created when you create a notebook instance with a lifecycle configuration. For more
information, see Customize a Notebook Instance (p. 40).
2. For Inference Pipelines, if you don't provide container names, the platform uses **container-1,
container-2**, and so on, corresponding to the order provided in the Amazon SageMaker model.

For more information about logging events with CloudWatch logging, see What is Amazon CloudWatch
Logs? in the Amazon CloudWatch User Guide.

Log Amazon SageMaker API Calls with AWS
CloudTrail

Amazon SageMaker is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Amazon SageMaker. CloudTrail captures all API calls for Amazon
SageMaker, with the exception of InvokeEndpoint (p. 853), as events. The calls captured include
calls from the Amazon SageMaker console and code calls to the Amazon SageMaker API operations.
If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket,
including events for Amazon SageMaker. If you don't configure a trail, you can still view the most recent
events in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon SageMaker, the IP address from which the request was
made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

By default, log data is stored in CloudWatch Logs indefinitely. Howerver, you can configure how long to
store log data in a log group. For information, see Change Log Data Retention in CloudWatch Logs in the
Amazon CloudWatch Logs User Guide.

467

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon SageMaker Developer Guide
Amazon SageMaker Information in CloudTrail

Amazon SageMaker Information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in Amazon
SageMaker, that activity is recorded in a CloudTrail event along with other AWS service events in Event
history. You can view, search, and download recent events in your AWS account. For more information,
see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon SageMaker, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following:

• Overview for Creating a Trail
• CloudTrail Supported Services and Integrations
• Configuring Amazon SNS Notifications for CloudTrail
• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple

Accounts

All Amazon SageMaker actions, with the exception of InvokeEndpoint (p. 853), are logged by CloudTrail
and are documented in the Actions (p. 616). For example, calls to the CreateTrainingJob,
CreateEndpoint and CreateNotebookInstance actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.
• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Operations Performed by Automatic Model Tuning
Amazon SageMaker supports logging non-API service events to your CloudTrail log files,for automatic
model tuning jobs. These events are related to your tuning jobs but, are not the direct result of a
customer request to the public AWS API. For example, when you create a hyperparameter tuning job
by calling CreateHyperParameterTuningJob (p. 638), Amazon SageMaker creates training jobs to
evaluate various combinations of hyperparameters to find the best result. Similarly, when you call
StopHyperParameterTuningJob (p. 828) to stop a hyperparameter tuning job, Amazon SageMaker
might stop any of the associated running training jobs. Non-API events for your tuning jobs are logged to
CloudTrail to help you improve governance, compliance, and operational and risk auditing of your AWS
account.

Log entries that result from non-API service events have an eventType of AwsServiceEvent instead
of AwsApiCall.

Understanding Amazon SageMaker Log File Entries
A trail is a configuration that enables delivery of events as log files to an S3 bucket that you specify.
CloudTrail log files contain one or more log entries. An event represents a single request from any

468

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon SageMaker Developer Guide
Understanding Amazon SageMaker Log File Entries

source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files are not an ordered stack trace of the public API calls, so they
do not appear in any specific order.

The following examples a log entry for the CreateEndpoint action, which creates an endpoint to
deploy a trained model.

{
 "eventVersion":"1.05",
 "userIdentity": {
 "type":"IAMUser",
 "principalId":"AIXDAYQEXAMPLEUMLYNGL",
 "arn":"arn:aws:iam::123456789012:user/intern",
 "accountId":"123456789012",
 "accessKeyId":"ASXIAGXEXAMPLEQULKNXV",
 "userName":"intern"
 },
 "eventTime":"2018-01-02T13:39:06Z",
 "eventSource":"sagemaker.amazonaws.com",
 "eventName":"CreateEndpoint",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"USER_AGENT",
 "requestParameters": {
 "endpointName":"ExampleEndpoint",
 "endpointConfigName":"ExampleEndpointConfig"
 },
 "responseElements": {
 "endpointArn":"arn:aws:sagemaker:us-west-2:123456789012:endpoint/exampleendpoint"
 },
 "requestID":"6b1b42b9-EXAMPLE",
 "eventID":"a6f85b21-EXAMPLE",
 "eventType":"AwsApiCall",
 "recipientAccountId":"444455556666"
}

The following example is a log entry for the CreateModel action, which creates one or more containers
to host a previously trained model.

{
 "eventVersion":"1.05",
 "userIdentity": {
 "type":"IAMUser",
 "principalId":"AIXDAYQEXAMPLEUMLYNGL",
 "arn":"arn:aws:iam::123456789012:user/intern",
 "accountId":"123456789012",
 "accessKeyId":"ASXIAGXEXAMPLEQULKNXV",
 "userName":"intern"
 },
 "eventTime":"2018-01-02T15:23:46Z",
 "eventSource":"sagemaker.amazonaws.com",
 "eventName":"CreateModel",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"USER_AGENT",
 "requestParameters": {
 "modelName":"ExampleModel",
 "primaryContainer": {
 "image":"174872318107.dkr.ecr.us-west-2.amazonaws.com/kmeans:latest"
 },
 "executionRoleArn":"arn:aws:iam::123456789012:role/EXAMPLEARN"
 },
 "responseElements": {

469

Amazon SageMaker Developer Guide
React to Amazon SageMaker Job Status

Changes with CloudWatch Events

 "modelArn":"arn:aws:sagemaker:us-west-2:123456789012:model/
barkinghappy2018-01-02t15-23-32-275z-ivrdog"
 },
 "requestID":"417b8dab-EXAMPLE",
 "eventID":"0f2b3e81-EXAMPLE",
 "eventType":"AwsApiCall",
 "recipientAccountId":"444455556666"
}

React to Amazon SageMaker Job Status Changes
with CloudWatch Events

To react to a status change in a Amazon SageMaker training, hyperparameter tuning, or batch transform
job, create a rule in CloudWatch Events that use the SageMaker Training Job State Change, SageMaker
Hyperparameter Tuning Job State Change, or SageMaker Transform Job State Change event type as
the event source for the rule.

Every time the status of a Amazon SageMaker job changes, it triggers an event that CloudWatch Events
monitors, and you can create a rule that calls a AWS Lambda function when the status changes. For
information about the status values and meanings for Amazon SageMaker jobs, see the following:

• TrainingJobStatus
• HyperParameterTuningJobStatus
• TransformJobStatus

For information about creating CloudWatch Events rules, see Creating a CloudWatch Events Rule That
Triggers on an Event in the CloudWatch Events User Guide. For detailed information about the format of
the Amazon SageMaker events that CloudWatch Events monitors, see Amazon SageMaker Events.

470

https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeTrainingJob.html#SageMaker-DescribeTrainingJob-response-TrainingJobStatus
https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeHyperParameterTuningJob.html#SageMaker-DescribeHyperParameterTuningJob-response-HyperParameterTuningJobStatus
https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeTransformJob.html#SageMaker-DescribeTransformJob-response-TransformJobStatus
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html#sagemaker_event_types

Amazon SageMaker Developer Guide
Data Protection

Security in Amazon SageMaker
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS compliance programs. To
learn about the compliance programs that apply to Amazon SageMaker, see AWS Services in Scope by
Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using
Amazon SageMaker. The following topics show you how to configure Amazon SageMaker to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your Amazon SageMaker resources.

Topics

• Data Protection in Amazon SageMaker (p. 471)

• Identity and Access Management for Amazon SageMaker (p. 475)

• Logging and Monitoring (p. 514)

• Compliance Validation for Amazon SageMaker (p. 514)

• Resilience in Amazon SageMaker (p. 515)

• Infrastructure Security in Amazon SageMaker (p. 515)

Data Protection in Amazon SageMaker
Amazon SageMaker conforms to the AWS shared responsibility model, which includes regulations and
guidelines for data protection. AWS is responsible for protecting the global infrastructure that runs all
the AWS services. AWS maintains control over data hosted on this infrastructure, including the security
configuration controls for handling customer content and personal data. AWS customers and APN
partners, acting either as data controllers or data processors, are responsible for any personal data that
they put in the AWS Cloud.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM), so that each user is given only
the permissions necessary to fulfill their job duties. We also recommend that you secure your data in the
following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources.

471

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/shared-responsibility-model/

Amazon SageMaker Developer Guide
Protecting Data at Rest Using Encryption

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

We strongly recommend that you never put sensitive identifying information, such as your customers'
account numbers, into free-form fields such as a Name field. This includes when you work with Amazon
SageMaker or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that you enter
into Amazon SageMaker or other services might get picked up for inclusion in diagnostic logs. When you
provide a URL to an external server, don't include credentials information in the URL to validate your
request to that server.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

Topics

• Protecting Data at Rest Using Encryption (p. 472)

• Protecting Data in Transit with Encryption (p. 473)

• Key Management (p. 475)

• Internetwork Traffic Privacy (p. 475)

Protecting Data at Rest Using Encryption
You can use encrypted Amazon Simple Storage Service buckets for model artifacts and data, as
well as pass a AWS Key Management Service key to Amazon SageMaker notebooks, training jobs,
hyperparameter tuning jobs, batch transform jobs, and endpoints, to encrypt the attached machine
learning (ML) storage volume. If you do not specify a AWS KMS key, Amazon SageMaker encrypts storage
volumes with a transient key. A transient key is discarded immediately after it is used to encrypt the
storage volume.

All instance OS volumes are encrypted with an AWS-managed AWS KMS key.

All ML data volumes for all Amazon SageMaker instances may be encrypted with customer specified AWS
KMS keys. ML data volumes are mounted as follows:

• Notebooks - /home/ec2-user/SageMaker

• Training - /opt/ml/ and /tmp/

• Batch - /opt/ml/ and /tmp/

• Endpoints - /opt/ml/ and /tmp/

Batch and training job containers and their storage are ephemeral in nature. When the job completes,
output is uploaded to Amazon S3 (with optional AWS KMS encryption) and the instance is torn down.

Data of a sensitive nature that needs to be encrypted with a customer owned AWS KMS key for
compliance reasons should be stored in the ML Amazon EBS volume or Amazon S3, both of which can
be KMS encrypted with customer managed keys. Notebook instances mount all default folders used by
Jupyter or the algorithm containers onto the ML volume.

The Amazon SageMaker folder in the ML Amazon EBS volume is the default storage location when
you open a notebook instance. Amazon SageMaker saves any files within the SageMaker folder. The /
sample-notebooks subfolder is located on the OS volume but that location is read only. When you stop
a Notebook instance any customizations to the OS (like custom libraries installed or OS level settings)

472

http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon SageMaker Developer Guide
Protecting Data in Transit with Encryption

are lost. Consider utilizing lifecycle options to automate any customizations to the default image. If
a Notebook instance is stopped, a snapshot of the ML volume is retained by Amazon in the service
platform to support resumption. This snapshot is deleted on termination as well as the ML volume, so
any data to be persisted beyond the notebook lifecycle should be transferred to customer Amazon S3
buckets.

Protecting Data in Transit with Encryption
All inter-network data in transit supports TLS 1.2 encryption.

Amazon SageMaker ensures that machine learning (ML) model artifacts and other system artifacts are
encrypted in transit and at rest. Requests to the Amazon SageMaker API and console are made over a
secure (SSL) connection. You pass AWS Identity and Access Management roles to Amazon SageMaker
to provide permissions to access resources on your behalf for training and deployment. You can use
encrypted Amazon S3 buckets for model artifacts and data, as well as pass a AWS KMS key to Amazon
SageMaker instances to encrypt the attached ML storage volumes.

Some intra-network data in-transit (inside the service platform) is unencrypted. This includes:

• Command and control communications between the service control plane and training job instances
(not customer data).

• Communications between nodes in distributed training jobs (intra-network).

There are no inter-node communications for batch processing.

You can choose to encrypt internode training communications. Enabling inter-container traffic
encryption can increase training time, especially if you are using distributed deep learning algorithms.
For affected algorithms, adding this additional level of security also increases cost. The training time
for most Amazon SageMaker built-in algorithms, such as XGBoost, DeepAR, and linear learner, typically
aren't affected.

FIPS validated endpoints are available for the Amazon SageMaker API and request router for hosted
models (runtime). For information about FIPS compliant endpoints, see Federal Information Processing
Standard (FIPS) 140-2.

Protect Communications Between ML Compute Instances in a
Distributed Training Job
By default, Amazon SageMaker runs training jobs in an Amazon Virtual Private Cloud (Amazon VPC) to
help keep your data secure. You can add another level of security to protect your training containers
and data by configuring a private VPC. Distributed ML frameworks and algorithms usually transmit
information that is directly related to the model such as weights, not the training dataset. When
performing distributed training, you can further protect data that is transmitted between instances. This
can help you to comply with regulatory requirements. To do this, use inter-container traffic encryption.

Enabling inter-container traffic encryption can increase training time, especially if you are using
distributed deep learning algorithms. Enabling inter-container traffic encryption doesn't affect training
jobs with a single compute instance. However, for training jobs with several compute instances, the
effect on training time depends on the amount of communication between compute instances. For
affected algorithms, adding this additional level of security also increases cost. The training time for
most Amazon SageMaker built-in algorithms, such as XGBoost, DeepAR, and linear learner, typically
aren't affected.

You can enable inter-container traffic encryption for training jobs or hyperparameter tuning jobs. You
can use Amazon SageMaker APIs or console to enable inter-container traffic encryption.

473

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/

Amazon SageMaker Developer Guide
Protecting Data in Transit with Encryption

For information about running training jobs in a private VPC, see Give Amazon SageMaker Training Jobs
Access to Resources in Your Amazon VPC (p. 522).

Enable Inter-Container Traffic Encryption (API)

Before enabling inter-container traffic encryption on training or hyperparameter tuning jobs with APIs,
you need to add inbound and outbound rules to your private VPC's security group.

To enable inter-container traffic encryption (API)

1. Add the following inbound and outbound rules in the security group for your private VPC:

Protocol Port Range Source

UDP 500 Self Security Group ID

50 N/A Self Security Group ID

2. When you send a request to the CreateTrainingJob (p. 667) or
CreateHyperParameterTuningJob (p. 638) API, specify True for the
EnableInterContainerTrafficEncryption parameter.

Note
The AWS Security Group Console might show display ports range as "All", however EC2 ignores
the specified port range because it is not applicable for the ESP 50 IP protocol.

Enable Inter-Container Traffic Encryption (Console)

Enable Inter-container Traffic Encryption in a Training Job

To enable inter-container traffic encryption in a training job

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker
2. In the navigation pane, choose Training, then choose Training jobs.
3. Choose Create training job.
4. Under Network, choose a VPC. You can use the default VPC or one that you have created.
5. Choose Enable inter-container traffic encryption.

After you enable inter-container traffic encryption, finish creating the training job. For more information,
see Step 5: Train a Model (p. 21).

Enable Inter-container Traffic Encryption in a Hyperparameter Tuning Job

To enable inter-container traffic encryption in a hyperparameter tuning job

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker.
2. In the navigation pane, choose Training, then choose Hyperparameter tuning jobs.
3. Choose Create hyperparameter tuning job.
4. Under Network, choose a VPC. You can use the default VPC or one that you created.
5. Choose Enable inter-container traffic encryption.

After enabling inter-container traffic encryption, finish creating the hyperparameter tuning job. For more
information, see Configure and Launch a Hyperparameter Tuning Job (p. 296).

474

https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide
Key Management

Key Management
Customers can specify AWS KMS keys, including bring your own keys (BYOK), to use for envelope
encryption with Amazon S3 input/output buckets and machine learning (ML) Amazon EBS volumes. ML
volumes for notebook instances and training and hosted model Docker containers can be optionally
encrypted by using AWS KMS customer-owned keys. All instance OS volumes are encrypted with an
AWS-managed AWS KMS key.

For information about AWS KMS keys see What is AWS Key Management Service? in the AWS Key
Management Service Developer Guide.

Internetwork Traffic Privacy
This topic describes how Amazon SageMaker secures connections from the service to other locations.

Internetwork communications support TLS 1.2 encryption between all components and clients.

Instances can be connected to Customer VPC, providing access to S3 VPC endpoints or customer
repositories. Internet egress can be managed through this interface by the customer if service platform
internet egress is disabled for notebooks. For training and hosting, egress through the service platform is
not available when connected to the customer's VPC.

By default, API calls made to published endpoints traverse the public network to the request router.
Amazon SageMaker supports Amazon Virtual Private Cloud interface endpoints powered by AWS
PrivateLink for private connectivity between the customer's VPC and the request router to access hosted
model endpoints. For information about Amazon VPC, see Connect to Amazon SageMaker Through a
VPC Interface Endpoint (p. 517)

Identity and Access Management for Amazon
SageMaker

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use Amazon SageMaker resources. IAM is an AWS service that you can
use with no additional charge.

Topics
• Audience (p. 475)
• Authenticating With Identities (p. 476)
• Managing Access Using Policies (p. 478)
• How Amazon SageMaker Works with IAM (p. 479)
• Amazon SageMaker Identity-Based Policy Examples (p. 481)
• Amazon SageMaker Roles (p. 496)
• AWS Managed (Predefined) Policies for Amazon SageMaker (p. 507)
• Amazon SageMaker API Permissions: Actions, Permissions, and Resources Reference (p. 508)
• Troubleshooting Amazon SageMaker Identity and Access (p. 512)

Audience
How you use AWS Identity and Access Management (IAM) differs, depending on the work you do in
Amazon SageMaker.

475

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide
Authenticating With Identities

Service user – If you use the Amazon SageMaker service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon SageMaker features
to do your work, you might need additional permissions. Understanding how access is managed can help
you request the right permissions from your administrator. If you cannot access a feature in Amazon
SageMaker, see Troubleshooting Amazon SageMaker Identity and Access (p. 512).

Service administrator – If you're in charge of Amazon SageMaker resources at your company, you
probably have full access to Amazon SageMaker. It's your job to determine which Amazon SageMaker
features and resources your employees should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page to
understand the basic concepts of IAM. To learn more about how your company can use IAM with Amazon
SageMaker, see How Amazon SageMaker Works with IAM (p. 479).

IAM administrator – If you're an IAM administrator, you might want to learn details about how you can
write policies to manage access to Amazon SageMaker. To view example Amazon SageMaker identity-
based policies that you can use in IAM, see Amazon SageMaker Identity-Based Policy Examples (p. 481).

Authenticating With Identities
Authentication is how you sign in to AWS using your identity credentials. For more information about
signing in using the AWS Management Console, see The IAM Console and Sign-in Page in the IAM User
Guide.

You must be authenticated (signed in to AWS) as the AWS account root user, an IAM user, or by assuming
an IAM role. You can also use your company's single sign-on authentication, or even sign in using Google
or Facebook. In these cases, your administrator previously set up identity federation using IAM roles.
When you access AWS using credentials from another company, you are assuming a role indirectly.

To sign in directly to the AWS Management Console, use your password with your root user email or your
IAM user name. You can access AWS programmatically using your root user or IAM user access keys. AWS
provides SDK and command line tools to cryptographically sign your request using your credentials. If
you don’t use AWS tools, you must sign the request yourself. Do this using Signature Version 4, a protocol
for authenticating inbound API requests. For more information about authenticating requests, see
Signature Version 4 Signing Process in the AWS General Reference.

Regardless of the authentication method that you use, you might also be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication (MFA) to
increase the security of your account. To learn more, see Using Multi-Factor Authentication (MFA) in AWS
in the IAM User Guide.

AWS Account Root User
When you first create an AWS account, you begin with a single sign-in identity that has complete access
to all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you do not use the root user for your everyday tasks, even the administrative
ones. Instead, adhere to the best practice of using the root user only to create your first IAM user. Then
securely lock away the root user credentials and use them to perform only a few account and service
management tasks.

IAM Users and Groups
An IAM user is an identity within your AWS account that has specific permissions for a single person or
application. An IAM user can have long-term credentials such as a user name and password or a set of
access keys. To learn how to generate access keys, see Managing Access Keys for IAM Users in the IAM
User Guide. When you generate access keys for an IAM user, make sure you view and securely save the key

476

https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://console.aws.amazon.com/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon SageMaker Developer Guide
Authenticating With Identities

pair. You cannot recover the secret access key in the future. Instead, you must generate a new access key
pair.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to
manage for large sets of users. For example, you could have a group named IAMAdmins and give that
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role
is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to Create an IAM User (Instead of a Role) in
the IAM User Guide.

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM
user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS
Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API
operation or by using a custom URL. For more information about methods for using roles, see Using IAM
Roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Temporary IAM user permissions – An IAM user can assume an IAM role to temporarily take on
different permissions for a specific task.

• Federated user access – Instead of creating an IAM user, you can use existing identities from AWS
Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated Users and Roles in the IAM User
Guide.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a different
account to access resources in your account. Roles are the primary way to grant cross-account access.
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role
as a proxy). To learn the difference between roles and resource-based policies for cross-account access,
see How IAM Roles Differ from Resource-based Policies in the IAM User Guide.

• AWS service access – A service role is an IAM role that a service assumes to perform actions in your
account on your behalf. When you set up some AWS service environments, you must define a role
for the service to assume. This service role must include all the permissions that are required for the
service to access the AWS resources that it needs. Service roles vary from service to service, but many
allow you to choose your permissions as long as you meet the documented requirements for that
service. Service roles provide access only within your account and cannot be used to grant access
to services in other accounts. You can create, modify, and delete a service role from within IAM. For
example, you can create a role that allows Amazon Redshift to access an Amazon S3 bucket on your
behalf and then load data from that bucket into an Amazon Redshift cluster. For more information, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests.
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2
instance and make it available to all of its applications, you create an instance profile that is attached
to the instance. An instance profile contains the role and enables programs that are running on the
EC2 instance to get temporary credentials. For more information, see Using an IAM Role to Grant
Permissions to Applications Running on Amazon EC2 Instances in the IAM User Guide.

To learn whether to use IAM roles, see When to Create an IAM Role (Instead of a User) in the IAM User
Guide.

477

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

Amazon SageMaker Developer Guide
Managing Access Using Policies

Managing Access Using Policies
You control access in AWS by creating policies and attaching them to IAM identities or AWS resources. A
policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
AWS evaluates these policies when an entity (root user, IAM user, or IAM role) makes a request.
Permissions in the policies determine whether the request is allowed or denied. Most policies are stored
in AWS as JSON documents. For more information about the structure and contents of JSON policy
documents, see Overview of JSON Policies in the IAM User Guide.

An IAM administrator can use policies to specify who has access to AWS resources, and what actions
they can perform on those resources. Every IAM entity (user or role) starts with no permissions. In other
words, by default, users can do nothing, not even change their own password. To give a user permission
to do something, an administrator must attach a permissions policy to a user. Or the administrator can
add the user to a group that has the intended permissions. When an administrator gives permissions to a
group, all users in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-Based Policies
Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, role, or group. These policies control what actions that identity can perform, on which
resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM
Policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies
are embedded directly into a single user, group, or role. Managed policies are standalone policies that
you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or
an inline policy, see Choosing Between Managed Policies and Inline Policies in the IAM User Guide.

Resource-Based Policies
Resource-based policies are JSON policy documents that you attach to a resource such as an Amazon S3
bucket. Service administrators can use these policies to define what actions a specified principal (account
member, user, or role) can perform on that resource and under what conditions. Resource-based policies
are inline policies. There are no managed resource-based policies.

Access Control Lists (ACLs)
Access control policies (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they are the only
policy type that does not use the JSON policy document format. Amazon S3, AWS WAF, and Amazon
VPC are examples of services that support ACLs. To learn more about ACLs, see Access Control List (ACL)
Overview in the Amazon Simple Storage Service Developer Guide.

Other Policy Types
AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role).
You can set a permissions boundary for an entity. The resulting permissions are the intersection of
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify

478

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Amazon SageMaker Developer Guide
How Amazon SageMaker Works with IAM

the user or role in the Principal field are not limited by the permissions boundary. An explicit deny
in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions Boundaries for IAM Entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions for
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all
features in an organization, then you can apply service control policies (SCPs) to any or all of your
accounts. The SCP limits permissions for entities in member accounts, including each AWS account
root user. For more information about Organizations and SCPs, see How SCPs Work in the AWS
Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session policies.
Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow. For more information, see Session Policies in the IAM User Guide.

Multiple Policy Types
When multiple types of policies apply to a request, the resulting permissions are more complicated to
understand. To learn how AWS determines whether to allow a request when multiple policy types are
involved, see Policy Evaluation Logic in the IAM User Guide.

How Amazon SageMaker Works with IAM
Before you use IAM to manage access to Amazon SageMaker, you should understand what IAM features
are available to use with Amazon SageMaker. To get a high-level view of how Amazon SageMaker and
other AWS services work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics
• Amazon SageMaker Identity-Based Policies (p. 479)

Amazon SageMaker Identity-Based Policies
With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the
conditions under which actions are allowed or denied. Amazon SageMaker supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see IAM
JSON Policy Elements Reference in the IAM User Guide.

Actions

The Action element of an IAM identity-based policy describes the specific action or actions that will be
allowed or denied by the policy. Policy actions usually have the same name as the associated AWS API
operation. The action is used in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon SageMaker use the following prefix before the action: sagemaker:. For
example, to grant someone permission to run an Amazon SageMaker training job with the Amazon
SageMaker CreateTrainingJob API operation, you include the sagemaker:CreateTrainingJob
action in their policy. Policy statements must include either an Action or NotAction element. Amazon
SageMaker defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "sagemaker:action1",

479

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon SageMaker Developer Guide
How Amazon SageMaker Works with IAM

 "sagemaker:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with
the word Describe, include the following action:

"Action": "sagemaker:Describe*"

To see a list of Amazon SageMaker actions, see Actions Defined by Amazon SageMaker in the IAM User
Guide.

Resources

Amazon SageMaker does not support specifying resource ARNs in a policy.

Condition Keys

The Condition element (or Condition block) lets you specify conditions in which a statement is in
effect. The Condition element is optional. You can build conditional expressions that use condition
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM
user permission to access a resource only if it is tagged with their IAM user name. For more information,
see IAM Policy Elements: Variables and Tags in the IAM User Guide.

Amazon SageMaker defines its own set of condition keys and also supports using some global condition
keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User Guide.

Amazon SageMaker supports a number of service-specific condition keys that you can use for fine-
grained access control for the following operations:

• the section called “CreateTrainingJob” (p. 667)
• the section called “CreateModel” (p. 648)
• the section called “CreateEndpointConfig” (p. 635)
• the section called “CreateTransformJob” (p. 673)
• the section called “CreateHyperParameterTuningJob” (p. 638)
• the section called “CreateNotebookInstance” (p. 656)
• the section called “UpdateNotebookInstance” (p. 844)

To see a list of Amazon SageMaker condition keys, see Condition Keys for Amazon SageMaker in the IAM
User Guide. To learn with which actions and resources you can use a condition key, see Actions Defined by
Amazon SageMaker.

For examples of using Amazon SageMaker condition keys, see the following:

Examples

To view examples of Amazon SageMaker identity-based policies, see Amazon SageMaker Identity-Based
Policy Examples (p. 481).

480

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-actions-as-permissions

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

Amazon SageMaker Resource-Based Policies

Amazon SageMaker does not support resource-based policies.

Authorization Based on Amazon SageMaker Tags

You can attach tags to Amazon SageMaker resources or pass tags in a request to Amazon SageMaker.
To control access based on tags, you provide tag information in the condition element of a policy using
the sagemaker:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition
keys. For more information about tagging Amazon SageMaker resources, see Control Access to Amazon
SageMaker Resources by Using Tags (p. 493).

To view an example identity-based policy for limiting access to a resource based on the tags on that
resource, see Control Access to Amazon SageMaker Resources by Using Tags (p. 493).

Amazon SageMaker IAM Roles

An IAM role is an entity within your AWS account that has specific permissions.

Using Temporary Credentials with Amazon SageMaker

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a cross-
account role. You obtain temporary security credentials by calling AWS STS API operations such as
AssumeRole or GetFederationToken.

Amazon SageMaker supports using temporary credentials.

Service-Linked Roles

Amazon SageMaker doesn't support service-linked roles.

Service Roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

Amazon SageMaker supports service roles.

Choosing an IAM Role in Amazon SageMaker

When you create a notebook instance, training job, hosted endpoint, or batch transform job resource in
Amazon SageMaker, you must choose a role to allow Amazon SageMaker to access Amazon SageMaker
on your behalf. If you have previously created a service role or service-linked role, then Amazon
SageMaker provides you with a list of roles to choose from. It's important to choose a role that allows
access to the AWS operations and resources you need. For more information, see Amazon SageMaker
Roles (p. 496).

Amazon SageMaker Identity-Based Policy Examples
By default, IAM users and roles don't have permission to create or modify Amazon SageMaker resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific API
operations on the specified resources they need. The administrator must then attach those policies to
the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see
Creating Policies on the JSON Tab in the IAM User Guide.

481

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

Topics

• Policy Best Practices (p. 482)

• Using the Amazon SageMaker Console (p. 482)

• Allow Users to View Their Own Permissions (p. 485)

• Control Creation of Amazon SageMaker Resources with Condition Keys (p. 486)

• Control Access to the Amazon SageMaker API by Using Identity-based Policies (p. 491)

• Limit Access to Amazon SageMaker API and Runtime Calls by IP Address (p. 492)

• Limit Access to a Notebook Instance by IP Address (p. 492)

• Control Access to Amazon SageMaker Resources by Using Tags (p. 493)

Policy Best Practices
Identity-based policies are very powerful. They determine whether someone can create, access, or delete
Amazon SageMaker resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get Started Using AWS Managed Policies – To start using Amazon SageMaker quickly, use AWS
managed policies to give your employees the permissions they need. These policies are already
available in your account and are maintained and updated by AWS. For more information, see Get
Started Using Permissions With AWS Managed Policies in the IAM User Guide.

• Grant Least Privilege – When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions as
necessary. Doing so is more secure than starting with permissions that are too lenient and then trying
to tighten them later. For more information, see Grant Least Privilege in the IAM User Guide.

• Enable MFA for Sensitive Operations – For extra security, require IAM users to use multi-factor
authentication (MFA) to access sensitive resources or API operations. For more information, see Using
Multi-Factor Authentication (MFA) in AWS in the IAM User Guide.

• Use Policy Conditions for Extra Security – To the extent that it's practical, define the conditions under
which your identity-based policies allow access to a resource. For example, you can write conditions to
specify a range of allowable IP addresses that a request must come from. You can also write conditions
to allow requests only within a specified date or time range, or to require the use of SSL or MFA. For
more information, see IAM JSON Policy Elements: Condition in the IAM User Guide.

Using the Amazon SageMaker Console
To access the Amazon SageMaker console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon SageMaker resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (IAM users or roles) with that policy.

To ensure that those entities can still use the Amazon SageMaker console, also attach the following AWS
managed policy to the entities. For more information, see Adding Permissions to a User in the IAM User
Guide:

You don't need to allow minimum console permissions for users that are making calls only to the AWS
CLI or the AWS API. Instead, allow access to only the actions that match the API operation that you're
trying to perform.

Topics

• Permissions Required to Use the Amazon SageMaker Console (p. 483)

• Permissions Required to Use the Amazon SageMaker Ground Truth Console (p. 484)

482

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

Permissions Required to Use the Amazon SageMaker Console

The permissions reference table lists the Amazon SageMaker API operations and shows the required
permissions for each operation. For more information about Amazon SageMaker API operations, see
Amazon SageMaker API Permissions: Actions, Permissions, and Resources Reference (p. 508).

To use the Amazon SageMaker console, you need to grant permissions for additional actions. Specifically,
the console needs permissions that allow the ec2 actions to display subnets, VPCs, and security groups.
Optionally, the console needs permission to create execution roles for tasks such as CreateNotebook,
CreateTrainingJob, and CreateModel. Grant these permissions with the following permissions
policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SageMakerApis",
 "Effect": "Allow",
 "Action": [
 "sagemaker:*"
],
 "Resource": "*"
 },
 {
 "Sid": "VpcConfigurationForCreateForms",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 },
 {
 "Sid":"KmsKeysForCreateForms",
 "Effect":"Allow",
 "Action":[
 "kms:DescribeKey",
 "kms:ListAliases"
],
 "Resource":"*"
 },
 {
 "Sid": "AccessAwsMarketplaceSubscritions",
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:ViewSubscriptions"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:BatchGetRepositories",
 "codecommit:CreateRepository",
 "codecommit:GetRepository",
 "codecommit:ListRepositories",
 "codecommit:ListBranches",
 "secretsmanager:CreateSecret",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 },

483

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

 {
 "Sid":"ListAndCreateExecutionRoles",
 "Effect":"Allow",
 "Action":[
 "iam:ListRoles",
 "iam:CreateRole",
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy"
],
 "Resource":"*"
 },
 {
 "Sid": "DescribeECRMetaData",
 "Effect": "Allow",
 "Action": [
 "ecr:Describe*"
],
 "Resource": "*"
 },
 {
 "Sid": "PassRoleForExecutionRoles",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

Permissions Required to Use the Amazon SageMaker Ground Truth Console

To use the Amazon SageMaker Ground Truth console, you need to grant permissions for additional
resources. Specifically, the console needs permissions for the AWS Marketplace to view subscriptions,
Amazon Cognito operations to manage your private workforce, Amazon S3 actions for access to your
input and output files, and AWS Lambda actions to list and invoke functions. Grant these permissions
with the following permissions policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GroundTruthConsole",
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:DescribeListings",
 "aws-marketplace:ViewSubscriptions",

 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:AdminDeleteUser",
 "cognito-idp:AdminDisableUser",
 "cognito-idp:AdminEnableUser",
 "cognito-idp:AdminRemoveUserFromGroup",
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:CreateUserPoolDomain",

484

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:ListGroups",
 "cognito-idp:ListIdentityProviders",
 "cognito-idp:ListUsers",
 "cognito-idp:ListUsersInGroup",
 "cognito-idp:ListUserPoolClients",
 "cognito-idp:ListUserPools",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient",

 "groundtruthlabeling:DescribeConsoleJob",
 "groundtruthlabeling:ListDatasetObjects",
 "groundtruthlabeling:RunFilterOrSampleManifestJob",
 "groundtruthlabeling:RunGenerateManifestByCrawlingJob",

 "lambda:InvokeFunction",
 "lambda:ListFunctions",

 "s3:GetObject",
 "s3:PutObject",
 "s3:SelectObjectContent"
],
 "Resource": "*"
 }
]
}

Allow Users to View Their Own Permissions
This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action
on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": [
 "arn:aws:iam::*:user/${aws:username}"
]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],

485

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

 "Resource": "*"
 }
]
 }

Control Creation of Amazon SageMaker Resources with
Condition Keys
Control fine-grained access to creation of Amazon SageMaker resources by using Amazon SageMaker-
specific condition keys. For information about using condition keys in IAM policies, see IAM JSON Policy
Elements: Condition in the IAM User Guide.

The following examples show how to use Amazon SageMaker condition keys to control access.

Topics
• Control Access to Amazon SageMaker Resources by Using File System Condition Keys (p. 486)
• Restrict Training to a Specific VPC (p. 488)
• Enforcing Encryption of Input Data (p. 488)
• Enforcing Encryption of Notebook Instance Storage Volume (p. 489)
• Enforcing Network Isolation for Training Jobs (p. 489)
• Enforcing a Specific Instance Type for Training Jobs (p. 490)
• Enforce Disabling Internet Access and Root Access for Creating Notebook Instances (p. 490)

Control Access to Amazon SageMaker Resources by Using File System Condition
Keys

Amazon SageMaker training provides a secure infrastructure for the training algorithm to run in, but for
some cases you may want increased defense in depth. For example, you minimize the risk of running
untrusted code in your algorithm, or you have specific security mandates in your organization. For these
scenarios, you can use the following service-specific condition keys in the Condition element of an IAM
policy to scope down the user to specific file systems, directories, access modes (read-write, read-only)
and security groups:

Topics
• Restrict an IAM User to Specific Directories and Access Modes (p. 486)
• Restrict an IAM User to Specific File System (p. 487)

Restrict an IAM User to Specific Directories and Access Modes

The policy below restricts an IAM user to the /sagemaker/xgboost-dm/train and /sagemaker/
xgboost-dm/validation directories of an EFS file system to ro (read-only) AccessMode:

Note
When a directory is allowed, all of its subdirectories are also accessible by the training
algorithm. POSIX permissions are ignored.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessToElasticFileSystem",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",

486

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:FileSystemId": "fs-12345678",
 "sagemaker:FileSystemAccessMode": "ro",
 "sagemaker:FileSystemType": "EFS",
 "sagemaker:FileSystemDirectoryPath": "/sagemaker/xgboost-dm/train"
 }
 }
 },
 {
 "Sid": "AccessToElasticFileSystemValidation",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:FileSystemId": "fs-12345678",
 "sagemaker:FileSystemAccessMode": "ro",
 "sagemaker:FileSystemType": "EFS",
 "sagemaker:FileSystemDirectoryPath": "/sagemaker/xgboost-dm/validation"
 }
 }
 }
]
}

Restrict an IAM User to Specific File System

To prevent a malicious algorithm using a user space client from accessing any file system directly in your
account, you can restrict networking traffic by allowing ingress from a specific security group. In the
following example, the IAM user can only use the specified security group to access the file system:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessToLustreFileSystem",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:FileSystemId": "fs-12345678",
 "sagemaker:FileSystemAccessMode": "ro",
 "sagemaker:FileSystemType": "FSxLustre",
 "sagemaker:FileSystemDirectoryPath": "/fsx/sagemaker/xgboost/train"
 },
 "ForAllValues:StringEquals": {
 "sagemaker:VpcSecurityGroupIds": [
 "sg-12345678"
]
 }
 }
 }
]

487

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

}

Although the above example can restrict an algorithm to a specific file system, it does not prevent an
algorithm from accessing any directory within that file system using the user space client. To mitigate
this, you can:

• Ensure that the file system only contains data that you trust your IAM users to access
• Create an IAM role that restricts your IAM users to launching training jobs with algorithms from

approved ECR repositories

For more information on how to use roles with Amazon SageMaker, see Amazon SageMaker Roles.

Restrict Training to a Specific VPC

Restrict an AWS user to creating training jobs from within a Amazon VPC. When a training job is created
within a VPC, you can use VPC flow logs to monitor all traffic to and from the training cluster. For
information about using VPC flow logs, see VPC Flow Logs in the Amazon Virtual Private Cloud User
Guide.

The following policy enforces that a training job is created by an IAM user calling the section called
“CreateTrainingJob” (p. 667) from within a VPC:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowFromVpc",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:VpcSubnets": ["10.24.34.0/23"],
 "sagemaker:VpcSecurityGroupIds": ["vpc-12345678"]
 }
 }
 }

]
}

Enforcing Encryption of Input Data

The following policy restricts an IAM user to specify a AWS KMS key to encrypt input data when creating
training and hyperparameter tuning jobs by using the sagemaker:VolumeKmsKey condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceEncryption",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",

488

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

 "Condition": {
 "Null": {
 "sagemaker:VolumeKmsKey": "false"
 }
 }
 }

]
}

Enforcing Encryption of Notebook Instance Storage Volume

The following policy restricts an IAM user to specify a AWS KMS key to encrypt the attached storage
volume when creating or updating a notebook instance by using the sagemaker:VolumeKmsKey
condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceEncryption",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateNotebookInstance",
 "sagemaker:UpdateNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "sagemaker:VolumeKmsKey": "false"
 }
 }
 }

]
}

Enforcing Network Isolation for Training Jobs

The following policy restricts an IAM user to enable network isolation when creating training jobs by
using the sagemaker:NetworkIsolation condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceIsolation",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:NetworkIsolation": "True"
 }
 }
 }

]
}

489

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

Enforcing a Specific Instance Type for Training Jobs

The following policy restricts an IAM user to use a specific instance type when creating training jobs by
using the sagemaker:InstanceTypes condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceInstanceType",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "sagemaker:InstanceTypes": ["ml.c5dn.*"]
 }
 }
 }

]
}

Enforce Disabling Internet Access and Root Access for Creating Notebook
Instances

You can disable both internet access and root access to notebook instances to help make them more
secure. For information about controling root access to a notebook instance, see Control Root Access to
a Notebook Instance (p. 40). for information about disabling internet access for a notebook instance, see
Connect a Notebook Instance to Resources in a VPC (p. 516).

The following policy requires an IAM user to disable network access and root access when creating or
updating a notebook instance:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LockdownNotebook",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateNotebookInstance",
 "sagemaker:UpdateNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:RootAccess": "False",
 "sagemaker:DirectInternetAccess": "False"
 }
 "Null": {
 "sagemaker:VpcSubnets": "false",
 "sagemaker:VpcSecurityGroupIds": "false"
 }
 }

]
}

490

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

Control Access to the Amazon SageMaker API by Using Identity-
based Policies
To control access to Amazon SageMaker API calls and calls to Amazon SageMaker hosted endpoints, use
identity-based IAM policies.

Topics
• Restrict Access to Amazon SageMaker API and Runtime to Calls from Within Your VPC (p. 491)

Restrict Access to Amazon SageMaker API and Runtime to Calls from Within
Your VPC

If you set up an interface endpoint in your VPC, individuals outside the VPC can still connect to
the Amazon SageMaker API and runtime over the internet unless you attach an IAM policy that
restricts access to calls coming from within the VPC to all users and groups that have access to your
Amazon SageMaker resources. For information about creating a VPC interface endpoint for the
Amazon SageMaker API and runtime, see Connect to Amazon SageMaker Through a VPC Interface
Endpoint (p. 517).

Important
If you apply an IAM policy similar to one of the following, users can't access the specified
Amazon SageMaker APIs through the console.

To restrict access to only connections made from within your VPC, create an AWS Identity and Access
Management policy that restricts access to only calls that come from within your VPC. Then add that
policy to every AWS Identity and Access Management user, group, or role used to access the Amazon
SageMaker API or runtime.

Note
This policy allows connections only to callers within a subnet where you created an interface
endpoint.

{
 "Id": "api-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable API Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:*
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": "vpc-111bbaaa"
 }
 }
 }
]
}

If you want to restrict access to the API to only calls made using the interface endpoint, use the
aws:SourceVpce condition key instead of aws:SourceVpc:

{
 "Id": "api-example-1",
 "Version": "2012-10-17",
 "Statement": [

491

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

 {
 "Sid": "Enable API Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "aws:sourceVpce": [
 "vpce-111bbccc",
 "vpce-111bbddd"
]
 }
 }
 }
]
}

Limit Access to Amazon SageMaker API and Runtime Calls by IP
Address
To allow access to Amazon SageMaker API calls and runtime invocations only from IP addresses in a
list that you specify, attach an IAM policy that denies access to the API unless the call comes from an IP
address in the list to every AWS Identity and Access Management user, group, or role used to access the
API or runtime. For information about creating IAM policies, see Creating IAM Policies in the AWS Identity
and Access Management User Guide. To specify the list of IP addresses that you want to have access to
the API call, use the IpAddress condition operator and the aws:SourceIP condition context key. For
information about IAM condition operators, see IAM JSON Policy Elements: Condition Operators in the
AWS Identity and Access Management User Guide. For information about IAM condition context keys, see
AWS Global Condition Context Keys.

For example, the following policy allows access to the CreateTrainingJob (p. 667) only from IP
addresses in the ranges 192.0.2.0-192.0.2.255 and 203.0.113.0-203.0.113.255:

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": "sagemaker:CreateTrainingJob",
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 }
 }
]
}

Limit Access to a Notebook Instance by IP Address
To allow access to a notebook instance only from IP addresses in a list that you specify, attach an IAM
policy that denies access to CreatePresignedNotebookInstanceUrl (p. 665) unless the call comes from
an IP address in the list to every AWS Identity and Access Management user, group, or role used to access

492

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

the notebook instance. For information about creating IAM policies, see Creating IAM Policies in the
AWS Identity and Access Management User Guide. To specify the list of IP addresses that you want to
have access to the notebook instance, use the IpAddress condition operator and the aws:SourceIP
condition context key. For information about IAM condition operators, see IAM JSON Policy Elements:
Condition Operators in the AWS Identity and Access Management User Guide. For information about IAM
condition context keys, see AWS Global Condition Context Keys.

For example, the following policy allows access to a notebook instance only from IP addresses in the
ranges 192.0.2.0-192.0.2.255 and 203.0.113.0-203.0.113.255:

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": "sagemaker:CreatePresignedNotebookInstanceUrl",
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 }
 }
]
}

The policy restricts access to both the call to CreatePresignedNotebookInstanceUrl and to the
URL that the call returns. The policy also restricts access to opening a notebook instance in the console
and is enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook
instance.

Note
Using this method to filter by IP address is incompatible when connecting to Amazon
SageMaker through a VPC interface endpoint.. For information about restricting access to
a notebook instance when connecting through a VPC interface endpoint, see Connect to a
Notebook Instance Through a VPC Interface Endpoint (p. 519).

Control Access to Amazon SageMaker Resources by Using Tags
Control access to groups of Amazon SageMaker resources by attaching tags to the resources and
specifying ResourceTag conditions in IAM policies.

Note
Tag-based policies do not work to restrict the following API calls:

• ListAlgorithms
• ListCodeRepositories
• ListCompilationJobs
• ListEndpointConfigs
• ListEndpoints
• ListHyperparameterTuningJobs
• ListLabelingJobs
• ListLabelingJobsForWorkteam
• ListModelPackages
• ListModels

493

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

• ListNotebookInstanceLifecycleConfigs
• ListNotebookInstances
• ListSubscribedWorkteams
• ListTags
• ListTrainingJobs
• ListTrainingJobsForHyperParameterTuningJob
• ListTransformJobs
• ListWorkteams
• Search

For example, suppose you've defined two different IAM groups, named DevTeam1 and DevTeam2, in
your AWS account. Suppose also that you've created 10 notebook instances, 5 of which are used for one
project, and 5 of which are used for a second project. You want to allow members of DevTeam1 to make
API calls on notebook instances used for the first project, and members of DevTeam2 to make API calls
on notebook instances used for the second project.

You can control access to API calls by completing the following steps:

1. Add a tag with the key Project and value A to the notebook instances used for the first project. For
information about adding tags to Amazon SageMaker resources, see AddTags (p. 620).

2. Add a tag with the key Project and value B to the notebook instances used for the second project.
3. Create an IAM policy with a ResourceTag condition that denies access to the notebook instances

used for the second project, and attach that policy to DevTeam1. The following is an example of a
policy that denies all API calls on any notebook instance that has a tag with a key of Project and a
value of B:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sagemaker:*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "sagemaker:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:ResourceTag/Project": "B"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateTags",
 "sagemaker:DeleteTags"
],
 "Resource": "*"
 }
]
}

For information about creating IAM policies and attaching them to identities, see Controlling Access
Using Policies in the AWS Identity and Access Management User Guide.

494

https://docs.aws.amazon.com//IAM/latest/UserGuide/access_controlling.html
https://docs.aws.amazon.com//IAM/latest/UserGuide/access_controlling.html

Amazon SageMaker Developer Guide
Identity-Based Policy Examples

4. Create an IAM policy with a ResourceTag condition that denies access to the notebook instances
used for the first project, and attach that policy to DevTeam2. The following is an example of a
policy that denies all API calls on any notebook instance that has a tag with a key of Project and a
value of A:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "sagemaker:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:ResourceTag/Project": "A"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateTags",
 "sagemaker:DeleteTags"
],
 "Resource": "*"
 }
]
}

Require the Presence or Absence of Tags for API Calls

Require the presence or absence of specific tags or specific tag values by using RequestTag condition
keys in an IAM policy. For example, if you want to require that every endpoint created by any member
of an IAM group to be created with a tag with the key environment and value dev, create a policy as
follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "sagemaker:CreateEndpoint",
 "Resource": [
 "arn:aws:sagemaker:*:*:endpoint/*"
]
 {
 "Effect": "Allow",
 "Action": "sagemaker:CreateEndpoint",
 "Resource": [
 "arn:aws:sagemaker:*:*:endpoint/*"
],
 "Condition": {

495

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 "StringEquals": {
 "aws:RequestTag/environment": "dev"
 }
 }
 }
]
}

Use Tags with Hyperparameter Tuning Jobs

You can add tags to a hyperparameter tuning job when you create the tuning job by specifying the
tags as the Tags parameter when you call CreateHyperParameterTuningJob (p. 638). If you do this,
the tags you specify for the hyperparameter tuning job are also added to all training jobs that the
hyperparameter tuning job launches.

If you add tags to a hyperparameter tuning job by calling AddTags (p. 620), the tags you add are also
added to any training jobs that the hyperparameter tuning job launches after you call AddTags, but
are not added to training jobs the hyperparameter tuning jobs launched before you called AddTags.
Similarly, when you remove tags from a hyperparameter tuning job by calling DeleteTags (p. 693),
those tags are not removed from training jobs that the hyperparameter tuning job launched previously.
Because of this, the tags associated with training jobs can be out of sync with the tags associated with
the hyperparameter tuning job that launched them. If you use tags to control access to a hyperparameter
tuning job and the training jobs it launches, you might want to keep the tags in sync. To make sure the
tags associated with training jobs stay sync with the tags associated with the hyperparameter tuning
job that launched them, first call ListTrainingJobsForHyperParameterTuningJob (p. 808) for the
hyperparameter tuning job to get a list of the training jobs that the hyperparameter tuning job launched.
Then, call AddTags or DeleteTags for the hyperparameter tuning job and for each of the training jobs
in the list of training jobs to add or delete the same set of tags for all of the jobs. The following Python
example demonstrates this:

tuning_job_arn =
 smclient.describe_hyper_parameter_tuning_job(HyperParameterTuningJobName='MyTuningJob')
['HyperParameterTuningJobArn']
smclient.add_tags(ResourceArn=tuning_job_arn, Tags=[{'Key':'Env', 'Value':'Dev'}])
training_jobs = smclient.list_training_jobs_for_hyper_parameter_tuning_job(
 HyperParameterTuningJobName='MyTuningJob')['TrainingJobSummaries']
 for training_job in training_jobs:
 time.sleep(1) # Wait for 1 second between calls to avoid being throttled
 smclient.add_tags(ResourceArn=training_job['TrainingJobArn'], Tags=[{'Key':'Env',
 'Value':'Dev'}])

Amazon SageMaker Roles
As a managed service, Amazon SageMaker performs operations on your behalf on the AWS hardware
that is managed by Amazon SageMaker. Amazon SageMaker can perform only operations that the user
permits.

An Amazon SageMaker user can grant these permissions with an IAM role (referred to as an execution
role). The user passes the role when making these API calls: CreateNotebookInstance (p. 656),
CreateHyperParameterTuningJob (p. 638), CreateTrainingJob (p. 667), and CreateModel (p. 648).

You attach the following trust policy to the IAM role which grants Amazon SageMaker principal
permissions to assume the role, and is the same for all of the execution roles:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

496

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The permissions that you need to grant to the role vary depending on the API that you call. The
following sections explain these permissions.

Note
Instead of managing permissions by crafting a permission policy, you can use the AWS-managed
AmazonSageMakerFullAccess permission policy. The permissions in this policy are fairly
broad, to allow for any actions you might want to perform in Amazon SageMaker. For a listing
of the policy including information about the reasons for adding many of the permisions,
see AmazonSageMakerFullAccess Policy (p. 506). If you prefer to create custom policies and
manage permissions to scope the permissions only to the actions you need to perform with the
execution role, see the following topics.

For more information about IAM roles, see IAM Roles in the IAM User Guide.

Topics
• CreateNotebookInstance API: Execution Role Permissions (p. 497)
• CreateHyperParameterTuningJob API: Execution Role Permissions (p. 500)
• CreateTrainingJob API: Execution Role Permissions (p. 502)
• CreateModel API: Execution Role Permissions (p. 505)
• AmazonSageMakerFullAccess Policy (p. 506)

CreateNotebookInstance API: Execution Role Permissions
The permissions that you grant to the execution role for calling the CreateNotebookInstance API
depend on what you plan to do with the notebook instance. If you plan to use it to invoke Amazon
SageMaker APIs and pass the same role when calling the CreateTrainingJob and CreateModel APIs,
attach the following permissions policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*",
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability",
 "ecr:SetRepositoryPolicy",
 "ecr:CompleteLayerUpload",
 "ecr:BatchDeleteImage",
 "ecr:UploadLayerPart",
 "ecr:DeleteRepositoryPolicy",
 "ecr:InitiateLayerUpload",
 "ecr:DeleteRepository",
 "ecr:PutImage",
 "ecr:CreateRepository",
 "cloudwatch:PutMetricData",
 "cloudwatch:GetMetricData",
 "cloudwatch:GetMetricStatistics",

497

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 "cloudwatch:ListMetrics",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "robomaker:CreateSimulationApplication",
 "robomaker:DescribeSimulationApplication",
 "robomaker:DeleteSimulationApplication",
 "robomaker:CreateSimulationJob",
 "robomaker:DescribeSimulationJob",
 "robomaker:CancelSimulationJob",
 "ec2:CreateVpcEndpoint",
 "ec2:DescribeRouteTables",
 "fsx:DescribeFileSystem",
 "elasticfilesystem:DescribeMountTargets
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:GitPull",
 "codecommit:GitPush"
],
 "Resource": [
 "arn:aws:codecommit:*:*:*sagemaker*",
 "arn:aws:codecommit:*:*:*SageMaker*",
 "arn:aws:codecommit:*:*:*Sagemaker*"
]
 }
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

To tighten the permissions, limit them to specific Amazon S3 and Amazon ECR resources, by replacing
"Resource": "*", as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*",
 "ecr:GetAuthorizationToken",
 "cloudwatch:PutMetricData",

498

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::inputbucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object1",
 "arn:aws:s3:::outputbucket/path",
 "arn:aws:s3:::inputbucket/object2",
 "arn:aws:s3:::inputbucket/object3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": [
 "arn:aws:ecr:::repository/my-repo1",
 "arn:aws:ecr:::repository/my-repo2",
 "arn:aws:ecr:::repository/my-repo3"
]
 }
]
}

If you plan to access other resources, such as Amazon DynamoDB or Amazon Relational Database
Service, add the relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

499

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

• Scope the s3:ListBucket permission to the specific bucket that you specify as
InputDataConfig.DataSource.S3DataSource.S3Uri in a CreateTrainingJob request.

• Scope s3:GetObject , s3:PutObject, and s3:DeleteObject permissions as follows:
• Scope to the following values that you specify in a CreateTrainingJob request:

InputDataConfig.DataSource.S3DataSource.S3Uri

OutputDataConfig.S3OutputPath

• Scope to the following values that you specify in a CreateModel request:

PrimaryContainer.ModelDataUrl

SuplementalContainers.ModelDataUrl

• Scope ecr permissions as follows:
• Scope to the AlgorithmSpecification.TrainingImage value that you specify in a
CreateTrainingJob request.

• Scope to the PrimaryContainer.Image value that you specify in a CreateModel request:

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

CreateHyperParameterTuningJob API: Execution Role
Permissions
For an execution role that you can pass in a CreateHyperParameterTuningJob API request, you can
attach the following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

Instead of the specifying "Resource": "*", you could scope these permissions to specific Amazon S3
and Amazon ECR resources:

{
 "Version": "2012-10-17",
 "Statement": [

500

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::inputbucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object",
 "arn:aws:s3:::outputbucket/path"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "arn:aws:ecr:::repository/my-repo"
 }
]
}

If the training container associated with the hyperparameter tuning job needs to access other data
sources, such as DynamoDB or Amazon RDS resources, add relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope the s3:ListBucket permission to a specific bucket that you specify as the
InputDataConfig.DataSource.S3DataSource.S3Uri in a CreateTrainingJob request.

• Scope the s3:GetObject and s3:PutObject permissions to the following objects that you specify
in the input and output data configuration in a CreateHyperParameterTuningJob request:

InputDataConfig.DataSource.S3DataSource.S3Uri

OutputDataConfig.S3OutputPath

• Scope Amazon ECR permissions to the registry path (AlgorithmSpecification.TrainingImage)
that you specify in a CreateHyperParameterTuningJob request.

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

501

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

If you specify a private VPC for your hyperparameter tuning job, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"

If your input is encrypted using server-side encryption with an AWS KMS–managed key (SSE-KMS), add
the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
]
}

If you specify a KMS key in the output configuration of your hyperparameter tuning job, add the
following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
]
}

If you specify a volume KMS key in the resource configuration of your hyperparameter tuning job, add
the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
]
}

CreateTrainingJob API: Execution Role Permissions
For an execution role that you can pass in a CreateTrainingJob API request, you can attach the
following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",

502

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

Instead of the specifying "Resource": "*", you could scope these permissions to specific Amazon S3
and Amazon ECR resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::inputbucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object",
 "arn:aws:s3:::outputbucket/path"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "arn:aws:ecr:::repository/my-repo"
 }
]
}

503

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

If CreateTrainingJob.AlgorithSpecifications.TrainingImage needs to access other data
sources, such as DynamoDB or Amazon RDS resources, add relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope the s3:ListBucket permission to a specific bucket that you specify as the
InputDataConfig.DataSource.S3DataSource.S3Uri in a CreateTrainingJob request.

• Scope the s3:GetObject and s3:PutObject permissions to the following objects that you specify
in the input and output data configuration in a CreateTrainingJob request:

InputDataConfig.DataSource.S3DataSource.S3Uri

OutputDataConfig.S3OutputPath

• Scope Amazon ECR permissions to the registry path (AlgorithmSpecification.TrainingImage)
that you specify in a CreateTrainingJob request.

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

If you specify a private VPC for your training job, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"

If your input is encrypted using server-side encryption with an AWS KMS–managed key (SSE-KMS), add
the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
]
}

If you specify a KMS key in the output configuration of your training job, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
]
}

If you specify a volume KMS key in the resource configuration of your training job, add the following
permissions:

{

504

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
]
}

CreateModel API: Execution Role Permissions
For an execution role that you can pass in a CreateModel API request, you can attach the following
permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

Instead of the specifying "Resource": "*", you can scope these permissions to specific Amazon S3
and Amazon ECR resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object",
 "arn:aws:s3:::inputbucket/object"
]
 },
 {

505

Amazon SageMaker Developer Guide
Amazon SageMaker Roles

 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": [
 "arn:aws:ecr:::repository/my-repo",
 "arn:aws:ecr:::repository/my-repo"
]
 }
]
}

If CreateModel.PrimaryContainer.Image need to access other data sources, such as Amazon
DynamoDB or Amazon RDS resources, add relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope S3 permissions to objects that you specify in the PrimaryContainer.ModelDataUrl in a
CreateModel (p. 648) request.

• Scope Amazon ECR permissions to a specific registry path that you specify as the
PrimaryContainer.Image and SecondaryContainer.Image in a CreateModel request.

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

If you specify a private VPC for your model, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"

AmazonSageMakerFullAccess Policy
The AmazonSageMakerFullAccess managed policy includes all of the necessary permissions to perform
most actions in Amazon SageMaker. You can use attach this policy to any role that you pass to an
Amazon SageMaker execution role. You can also create more narrowly-scoped policies if you want more
granular control of the permissions that you grant to your execution role.

The following list explains why some of the categories of permissions in the
AmazonSageMakerFullAccess policy are needed.

application-autoscaling

Needed for automatically scaling an Amazon SageMaker real-time inference endpoint.

aws-marketplace

Needed to view AWS AI Marketplace subscriptions.

506

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide
AWS Managed (Predefined) Policies for Amazon SageMaker

cloudwatch

Needed to post CloudWatch metrics, interact with alarms, and upload CloudWatch Logs logs in your
account.

codecommit

Needed for AWS CodeCommit integration with Amazon SageMaker notebook instances.
cognito

Needed for Amazon SageMaker Ground Truth to define your private workforce and work teams.
ec2

Needed to manage elastic network interfaces when you specify a Amazon VPC for your Amazon
SageMaker jobs and notebook instances.

ec2:DescribeVpcs

All Amazon SageMaker services launch Amazon EC2 instances and require this permission set.
ecr

Needed to pull and store Docker artifacts for training and inference. This is required only if you use
your own container in Amazon SageMaker.

elastic-inference

Needed to integrate Amazon Elastic Inference with Amazon SageMaker.
glue

Needed for inference pipeline pre-processing from within Amazon SageMaker notebook instances.
groundtruthlabeling

Needed for Amazon SageMaker Ground Truth.
iam:ListRoles

Needed to give the Amazon SageMaker console access to list available roles.
kms

Needed to give the Amazon SageMaker console access to list the avialable AWS KMS keys.
logs

Needed to allow Amazon SageMaker jobs and endpoints to publish log streams.

AWS Managed (Predefined) Policies for Amazon
SageMaker
AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. These AWS managed policies grant necessary permissions for common use cases
so that you can avoid having to investigate which permissions are needed. For more information, see
AWS Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon SageMaker:

• AmazonSageMakerReadOnly – Grants read-only access to Amazon SageMaker resources.
• AmazonSageMakerFullAccess – Grants full access to Amazon SageMaker resources and the supported

operations. (This does not provide unrestricted S3 access, but supports buckets/objects with specific
sagemaker tags.)

507

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon SageMaker Developer Guide
Amazon SageMaker API Permissions Reference

The following AWS managed policies can also be attached to users in your account:

• AdministratorAccess – Grants all actions for all AWS services and for all resources in the account.
• DataScientist – Grants a wide range of permissions to cover most of the use cases (primarily for

analytics and business intelligence) encountered by data scientists.

You can review these permissions policies by signing in to the IAM console and searching for them.

You can also create your own custom IAM policies to allow permissions for Amazon SageMaker actions
and resources as you need them. You can attach these custom policies to the IAM users or groups that
require them.

Amazon SageMaker API Permissions: Actions,
Permissions, and Resources Reference
When you are setting up access control and writing a permissions policy that you can attach to an IAM
identity (an identity-based policy), use the following as a reference. The each Amazon SageMaker API
operation, the corresponding actions for which you can grant permissions to perform the action, and the
AWS resource for which you can grant the permissions. You specify the actions in the policy's Action
field, and you specify the resource value in the policy's Resource field.

Note
Except for the ListTags API, resource-level restrictions are not available on List- calls . Any
user calling a List- API will see all resources of that type in the account.

To express conditions in your Amazon SageMaker policies, you can use AWS-wide condition keys. For a
complete list of AWS-wide keys, see Available Keys in the IAM User Guide.

Amazon SageMaker API and Required Permissions for Actions

API Operation: AddTags (p. 620)

Required Permissions (API Action): sagemaker:AddTags

Resources: *
API Operation: CreateEndpoint (p. 632)

Required Permissions (API Action): sagemaker:CreateEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName
API Operation: CreateEndpointConfig (p. 635)

Required Permissions (API Action): sagemaker:CreateEndpointConfig

Resources: arn:aws:sagemaker:region:account-id:endpoint-
config/endpointConfigName

API Operation: CreateModel (p. 648)

Required Permissions (API Action): sagemaker:CreateModel, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:model/modelName
API Operation: CreateLabelingJob (p. 643)

Required Permissions (API Action): sagemaker:CreateLabelingJob, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:labeling-job/labelingJobName

508

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_data-scientist
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon SageMaker Developer Guide
Amazon SageMaker API Permissions Reference

API Operation: CreateNotebookInstance (p. 656)

Required Permissions (API Action): sagemaker:CreateNotebookInstance,
iam:PassRole, ec2:CreateNetworkInterface, ec2:AttachNetworkInterface,
ec2:ModifyNetworkInterfaceAttribute, ec2:DescribeAvailabilityZones,
ec2:DescribeInternetGateways, ec2:DescribeSecurityGroups,
ec2:DescribeSubnets, ec2:DescribeVpcs, kms:CreateGrant

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: CreateTrainingJob (p. 667)

Required Permissions (API Action): sagemaker:CreateTrainingJob, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:training-job/trainingJobName
API Operation: CreateWorkteam (p. 678)

Required Permissions (API Action): sagemaker:CreateWorkteam, sagemaker:CreateWorkteam,
cognito-idp:DescribeUserPoolClient, cognito-idp:UpdateUserPool, cognito-
idp:DescribeUserPool, cognito-idp:UpdateUserPoolClient

Resources:arn:aws:sagemaker:region:account-id:workteam/private-crowd/work team
name, arn:aws:sagemaker:region:account-id:workteam/vendor-crowd/work team
name, arn:aws:sagemaker:region:account-id:workteam/public-crowd/work team
name

API Operation: DeleteEndpoint (p. 683)

Required Permissions (API Action): sagemaker:DeleteEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName
API Operation: DeleteEndpointConfig (p. 685)

Required Permissions (API Action): sagemaker:DeleteEndpointConfig

Resources: arn:aws:sagemaker:region:account-id:endpoint-
config/endpointConfigName

API Operation: DeleteModel (p. 686)

Required Permissions (API Action): sagemaker:DeleteModel

Resources: arn:aws:sagemaker:region:account-id:model/modelName
API Operation: DeleteNotebookInstance (p. 690)

Required Permissions (API Action): sagemaker:DeleteNotebookInstance,
ec2:DeleteNetworkInterface, ec2:DetachNetworkInterface,
ec2:DescribeAvailabilityZones, ec2:DescribeInternetGateways,
ec2:DescribeSecurityGroups, ec2:DescribeSubnets, ec2:DescribeVpcs

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: DeleteTags (p. 693)

Required Permissions (API Action): sagemaker:DeleteTags

Resources: *
API Operation: DeleteWorkteam (p. 695)

Required Permissions (API Action): sagemaker:DeleteWorkteam

509

Amazon SageMaker Developer Guide
Amazon SageMaker API Permissions Reference

Resources: arn:aws:sagemaker:region:account-id:workteam/*
API Operation: DescribeEndpoint (p. 709)

Required Permissions (API Action): sagemaker:DescribeEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName
API Operation: DescribeEndpointConfig (p. 712)

Required Permissions (API Action): sagemaker:DescribeEndpointConfig

Resources: arn:aws:sagemaker:region:account-id:endpoint-
config/endpointConfigName

API Operation: DescribeLabelingJob (p. 721)

Required Permissions (API Action): sagemaker:DescribeLabelingJob

Resources: arn:aws:sagemaker:region:account-id:labeling-job/labelingJobName
API Operation: DescribeModel (p. 727)

Required Permissions (API Action): sagemaker:DescribeModel

Resources: arn:aws:sagemaker:region:account-id:model/modelName
API Operation: DescribeNotebookInstance (p. 734)

Required Permissions (API Action): sagemaker:DescribeNotebookInstance

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: DescribeSubscribedWorkteam (p. 742)

Required Permissions (API Action): sagemaker:DescribeSubscribedWorkteam, aws-
marketplace:ViewSubscriptions

Resources: arn:aws:sagemaker:region:account-id:workteam/*
API Operation: DescribeTrainingJob (p. 744)

Required Permissions (API Action): sagemaker:DescribeTrainingJob

Resources: arn:aws:sagemaker:region:account-id:training-job/trainingJobName
API Operation: DescribeWorkteam (p. 757)

Required Permissions (API Action): sagemaker:DescribeWorkteam

Resources: arn:aws:sagemaker:region:account-id:workteam/*
API Operation: CreatePresignedNotebookInstanceUrl (p. 665)

Required Permissions (API Action): sagemaker:CreatePresignedNotebookInstanceUrl

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: InvokeEndpoint (p. 853)

Required Permissions (API Action): sagemaker:InvokeEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName
API Operation: ListEndpointConfigs (p. 771)

Required Permissions (API Action): sagemaker:ListEndpointConfigs

510

Amazon SageMaker Developer Guide
Amazon SageMaker API Permissions Reference

Resources: *
API Operation: ListEndpoints (p. 774)

Required Permissions (API Action): sagemaker:ListEndpoints

Resources: *
API Operation: ListLabelingJobs (p. 781)

Required Permissions (API Action): sagemaker:ListLabelingJobs

Resources: *
API Operation: ListLabelingJobsForWorkteam (p. 785)

Required Permissions (API Action): sagemaker:ListLabelingJobsForWorkteam

Resources: *
API Operation: ListModels (p. 791)

Required Permissions (API Action): sagemaker:ListModels

Resources: *
API Operation: ListNotebookInstances (p. 797)

Required Permissions (API Action): sagemaker:ListNotebookInstances

Resources: *
API Operation: ListSubscribedWorkteams (p. 801)

Required Permissions (API Action): sagemaker:ListSubscribedWorkteam, aws-
marketplace:ViewSubscriptions

Resources: arn:aws:sagemaker:region:account-id:workteam/*
API Operation: ListTags (p. 803)

Required Permissions (API Action): sagemaker:ListTags

Resources: *
API Operation: ListTrainingJobs (p. 805)

Required Permissions (API Action): sagemaker:ListTrainingJobs

Resources: *
API Operation: ListWorkteams (p. 814)

Required Permissions (API Action): sagemaker:ListWorkteams

Resources: arn:aws:sagemaker:region:account-id:workteam/*
API Operation: StartNotebookInstance (p. 824)

Required Permissions (API Action): sagemaker:StartNotebookInstance,
iam:PassRole, ec2:CreateNetworkInterface, ec2:AttachNetworkInterface,
ec2:ModifyNetworkInterfaceAttribute, ec2:DescribeAvailabilityZones,
ec2:DescribeInternetGateways, ec2:DescribeSecurityGroups,
ec2:DescribeSubnets, ec2:DescribeVpcs, kms:CreateGrant

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

511

Amazon SageMaker Developer Guide
Troubleshooting

API Operation: StopLabelingJob (p. 830)

Required Permissions (API Action): sagemaker:StopLabelingJob

Resources: arn:aws:sagemaker:region:account-id:labeling-job/labelingJobName
API Operation: StopNotebookInstance (p. 832)

Required Permissions (API Action): sagemaker:StopNotebookInstance

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: StopTrainingJob (p. 834)

Required Permissions (API Action): sagemaker:StopTrainingJob

Resources: arn:aws:sagemaker:region:account-id:training-job/trainingJobName
API Operation: UpdateEndpoint (p. 840)

Required Permissions (API Action): sagemaker:UpdateEndpoints

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName
API Operation: UpdateNotebookInstance (p. 844)

Required Permissions (API Action): sagemaker:UpdateNotebookInstance, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: UpdateWorkteam (p. 850)

Required Permissions (API Action): sagemaker:UpdateWorkteam

Resources: arn:aws:sagemaker:region:account-id:workteam/*

Troubleshooting Amazon SageMaker Identity and
Access
Use the following information to help you diagnose and fix common issues that you might encounter
when working with Amazon SageMaker and IAM.

Topics
• I Am Not Authorized to Perform an Action in Amazon SageMaker (p. 512)
• I Am Not Authorized to Perform iam:PassRole (p. 513)
• I Want to View My Access Keys (p. 513)
• I'm an Administrator and Want to Allow Others to Access Amazon SageMaker (p. 513)
• I Want to Allow People Outside of My AWS Account to Access My Amazon SageMaker

Resources (p. 514)

I Am Not Authorized to Perform an Action in Amazon
SageMaker
If the AWS Management Console tells you that you're not authorized to perform an action, then you
must contact your administrator for assistance. Your administrator is the person that provided you with
your user name and password.

512

Amazon SageMaker Developer Guide
Troubleshooting

The following example error occurs when the mateojackson IAM user tries to use the console to view
details about a training job but does not have sagemaker:CreateTrainingJob permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not
 authorized to perform: sagemaker:DescribeTrainingJob on resource: my-example-
widget

In this case, Mateo asks his administrator to update his policies to allow him to access the TrainingJob
resource using the sagemaker:DescribeTrainingJob action.

I Am Not Authorized to Perform iam:PassRole
If you receive an error that you're not authorized to perform the iam:PassRole action, then you must
contact your administrator for assistance. Your administrator is the person that provided you with your
user name and password. Ask that person to update your policies to allow you to pass a role to Amazon
SageMaker.

Some AWS services allow you to pass an existing role to that service, instead of creating a new service
role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to
perform an action in Amazon SageMaker. However, the action requires the service to have permissions
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

I Want to View My Access Keys
After you create your IAM user access keys, you can view your access key ID at any time. However, you
can't view your secret access key again. If you lose your secret key, you must create a new access key pair.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and a secret
access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). Like a user name and
password, you must use both the access key ID and secret access key together to authenticate your
requests. Manage your access keys as securely as you do your user name and password.

Important
Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your account.

When you create an access key pair, you are prompted to save the access key ID and secret access key in
a secure location. The secret access key is available only at the time you create it. If you lose your secret
access key, you must add new access keys to your IAM user. You can have a maximum of two access keys.
If you already have two, you must delete one key pair before creating a new one. To view instructions,
see Managing Access Keys in the IAM User Guide.

I'm an Administrator and Want to Allow Others to Access
Amazon SageMaker
To allow others to access Amazon SageMaker, you must create an IAM entity (user or role) for the person
or application that needs access. They will use the credentials for that entity to access AWS. You must
then attach a policy to the entity that grants them the correct permissions in Amazon SageMaker.

To get started right away, see Creating Your First IAM Delegated User and Group in the IAM User Guide.

513

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html

Amazon SageMaker Developer Guide
Logging and Monitoring

I Want to Allow People Outside of My AWS Account to Access
My Amazon SageMaker Resources
You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people access to
your resources.

To learn more, consult the following:

• To learn whether Amazon SageMaker supports these features, see How Amazon SageMaker Works
with IAM (p. 479).

• To learn how to provide access to your resources across AWS accounts that you own, see Providing
Access to an IAM User in Another AWS Account That You Own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing Access to
AWS Accounts Owned by Third Parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing Access to Externally
Authenticated Users (Identity Federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, see
How IAM Roles Differ from Resource-based Policies in the IAM User Guide.

Logging and Monitoring
You can monitor Amazon SageMaker using Amazon CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. These statistics are kept for 15 months, so that you can
access historical information and gain a better perspective on how your web application or service is
performing. You can also set alarms that watch for certain thresholds and send notifications or take
actions when those thresholds are met. For more information, see Monitor Amazon SageMaker with
Amazon CloudWatch (p. 461).

Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon EC2
instances, AWS CloudTrail, and other sources. You can collect and track metrics, create customized
dashboards, and set alarms that notify you or take actions when a specified metric reaches a threshold
that you specify. CloudWatch Logs can monitor information in the log files and notify you when certain
thresholds are met. You can also archive your log data in highly durable storage. For more information,
see Log Amazon SageMaker Events with Amazon CloudWatch (p. 466).

AWS CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon
SageMaker. Using the information collected by CloudTrail, you can determine the request that was made
to Amazon SageMaker, the IP address from which the request was made, who made the request, when
it was made, and additional details. For more information, Log Amazon SageMaker API Calls with AWS
CloudTrail (p. 467).

Note
CloudTrail does not monitor calls to InvokeEndpoint (p. 853).

You can create rules in Amazon CloudWatch Events to react to status changes in status in an Amazon
SageMaker training, hyperperparameter tuning, or batch transform job. For more information, see React
to Amazon SageMaker Job Status Changes with CloudWatch Events (p. 470).

Compliance Validation for Amazon SageMaker
Third-party auditors assess the security and compliance of Amazon SageMaker as part of multiple AWS
compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

514

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon SageMaker Developer Guide
Resilience

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using Amazon SageMaker is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your industry
and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon SageMaker
The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between Availability Zones without interruption.
Availability Zones are more highly available, fault tolerant, and scalable than traditional single or
multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon SageMaker offers several features to help support
your data resiliency and backup needs.

Infrastructure Security in Amazon SageMaker
As a managed service, Amazon SageMaker is protected by the AWS global network security procedures
that are described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access Amazon SageMaker through the network. Clients must
support Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or
Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support
these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

Topics
• Connect a Notebook Instance to Resources in a VPC (p. 516)
• Training and Inference Containers Run in Internet-Free Mode (p. 516)

515

http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
http://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon SageMaker Developer Guide
Connect a Notebook Instance to Resources in a VPC

• Amazon SageMaker Scans AWS Marketplace Training and Inference Containers for Security
Vulnerabilities (p. 517)

• Connect to Amazon SageMaker Through a VPC Interface Endpoint (p. 517)
• Give Amazon SageMaker Training Jobs Access to Resources in Your Amazon VPC (p. 522)
• Give Amazon SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC (p. 525)
• Give Batch Transform Jobs Access to Resources in Your Amazon VPC (p. 529)

Connect a Notebook Instance to Resources in a VPC
Amazon SageMaker notebook instances are internet-enabled by default. This allows you to download
popular packages and notebooks, customize your development environment, and work efficiently.
However, if you connect a notebook instance to your VPC, the notebook instance provides an additional
avenue for unauthorized access to your data. For example, a malicious user or code that you accidentally
install on the computer (in the form of a publicly available notebook or a publicly available source code
library) could access your data. If you do not want Amazon SageMaker to provide internet access to your
notebook instance, you can disable direct internet access when you specify a VPC for your notebook
instance. If you disable direct internet access, the notebook instance won't be able to train or host
models unless your VPC has an interface endpoint (PrivateLink) or a NAT gateway and your security
groups allow outbound connections. For information about creating a VPC interface endpoint to use
PrivateLink for your notebook instance, see Connect to a Notebook Instance Through a VPC Interface
Endpoint (p. 519). For information about setting up a NAT gateway for your VPC, see Scenario 2:
VPC with Public and Private Subnets (NAT) in the in the Amazon Virtual Private Cloud User Guide. For
information about security groups, see Security Groups for Your VPC.

Notebook Instances Provide the Best Experience for a Single
User
An Amazon SageMaker notebook instance is designed to work best for an individual user. It is designed
to give data scientists and other users the most power for managing their development environment.
A notebook instance user has root access for installing packages and other pertinent software. We
recommend that you exercise judgement when granting individuals access to notebook instances that
are attached to a VPC that contains sensitive information. For example, you might grant a user access to
a notebook instance with an IAM policy, as in the following example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sagemaker:CreatePresignedNotebookInstanceUrl",
 "Resource": "arn:aws:sagemaker:region:account-id:notebook-instance/
myNotebookInstance"
 }
]
}

Training and Inference Containers Run in Internet-
Free Mode
Amazon SageMaker training and deployed inference containers are internet-enabled by default.
This allows containers to access external services and resources on the public internet as part of
your training and inference workloads. However, this offers an avenue for unauthorized access to
your data. For example, a malicious user or code that you accidentally install on the container (in the

516

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

Amazon SageMaker Developer Guide
Amazon SageMaker Scans AWS Marketplace Training
and Inference Containers for Security Vulnerabilities

form of a publicly available source code library) could access your data and transfer it to a remote
host. If you use an Amazon VPC by specifying a value for the VpcConfig parameter when you call
CreateTrainingJob (p. 667), CreateHyperParameterTuningJob (p. 638), or CreateModel (p. 648),
you can protect your data and resources by managing security groups and restricting internet access
from your VPC. However, this comes at the cost of additional network configuration, and has the risk
of configuring your network incorrectly. If you do not want Amazon SageMaker to provide external
network access to your training or inference containers, you can enable network isolation when you
create your training job or model by setting the value of the EnableNetworkIsolation parameter
to True when you call CreateTrainingJob (p. 667), CreateHyperParameterTuningJob (p. 638),
or CreateModel (p. 648). If you enable network isolation, the containers are not able to make any
outbound network calls, even to other AWS services such as Amazon S3. Additionally, no AWS credentials
are made available to the container runtime environment. In the case of a training job with multiple
instances, network inbound and outbound traffic is limited to the peers of each training container.
Amazon SageMaker still performs download and upload operations against Amazon S3 using your
Amazon SageMaker Execution Role in isolation from the training or inference container. Network
isolation is required for training jobs and models run using resources from AWS Marketplace. Network
isolation can be used in conjunction with a VPC. In this scenario, download and upload of customer data
and model artifacts are routed via your VPC subnet. However, the training and inference containers
themselves continue to be isolated from the network, and do not have access to any resource within your
VPC or on the internet.

Network isolation is not supported by the following managed Amazon SageMaker containers as they
require access to Amazon S3:

• TensorFlow
• Chainer
• PyTorch
• Scikit-learn
• Amazon SageMaker Reinforcement Learning

Amazon SageMaker Scans AWS Marketplace Training
and Inference Containers for Security Vulnerabilities
To meet our security requirements, algorithms and model packages listed in AWS Marketplace are
scanned for Common Vulnerabilities and Exposures (CVE). CVE is a list of publicly known information
about security vulnerability and exposure. The National Vulnerability Database (NVD) provides CVE
details such as severity, impact rating, and fix information. Both CVE and NVD are available for
public consumption and free for security tools and services to use. For more information, see http://
cve.mitre.org/about/faqs.html#what_is_cve.

Connect to Amazon SageMaker Through a VPC
Interface Endpoint
You can connect directly to the Amazon SageMaker API or to the Amazon SageMaker Runtime through
an interface endpoint in your Virtual Private Cloud (VPC) instead of connecting over the internet. When
you use a VPC interface endpoint, communication between your VPC and the Amazon SageMaker API or
Runtime is conducted entirely and securely within the AWS network.

Note
PrivateLink for Amazon SageMaker is not supported in the us-gov-west-1 region.

The Amazon SageMaker API and Runtime support Amazon Virtual Private Cloud (Amazon VPC) interface
endpoints that are powered by AWS PrivateLink. Each VPC endpoint is represented by one or more
Elastic Network Interfaces (ENIs) with private IP addresses in your VPC subnets.

517

http://cve.mitre.org/about/faqs.html#what_is_cve
http://cve.mitre.org/about/faqs.html#what_is_cve
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#what-is-privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon SageMaker Developer Guide
Connect to Amazon SageMaker

Through a VPC Interface Endpoint

The VPC interface endpoint connects your VPC directly to the Amazon SageMaker API or Runtime
without an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. The
instances in your VPC don't need public IP addresses to communicate with the Amazon SageMaker API or
Runtime.

You can create an interface endpoint to connect to Amazon SageMaker or to Amazon SageMaker
Runtime with either the AWS console or AWS Command Line Interface (AWS CLI) commands. For
instructions, see Creating an Interface Endpoint.

After you have created a VPC endpoint, you can use the following example CLI commands that use the
endpoint-url parameter to specify interface endpoints to the Amazon SageMaker API or Runtime:

aws sagemaker list-notebook-instances --endpoint-
url VPC_Endpoint_ID.api.sagemaker.Region.vpce.amazonaws.com

aws sagemaker list-training-jobs --endpoint-
url VPC_Endpoint_ID.api.sagemaker.Region.vpce.amazonaws.com

aws sagemaker-runtime invoke-endpoint --endpoint-
url VPC_Endpoint_ID.runtime.sagemaker.Region.vpce.amazonaws.com \
 --endpoint-name Endpoint_Name \
 --body "Endpoint_Body" \
 --content-type "Content_Type" \
 Output_File

If you enable private DNS hostnames for your VPC endpoint, you don't need to specify the endpoint URL.
The Amazon SageMaker API DNS hostname that the CLI and Amazon SageMaker SDK use by default
(https://api.sagemaker.Region.amazonaws.com) resolves to your VPC endpoint. Similarly, the Amazon
SageMaker Runtime DNS hostname that the CLI and Amazon SageMaker Runtime SDK use by default
(https://runtime.sagemaker.Region.amazonaws.com) resolves to your VPC endpoint.

The Amazon SageMaker API and Runtime support VPC endpoints in all AWS Regions where
both Amazon VPC and Amazon SageMaker are available. Amazon SageMaker supports making
calls to all of its Actions (p. 616) inside your VPC. The result AuthorizedUrl from the
CreatePresignedNotebookInstanceUrl (p. 665) is not supported by Private Link. For information about
how to enable PrivateLink for the authorized URL that users use to connect to a notebook instance, see
Connect to a Notebook Instance Through a VPC Interface Endpoint (p. 519).

To learn more about AWS PrivateLink, see the AWS PrivateLink documentation . Refer to VPC Pricing for
the price of VPC Endpoints. To learn more about VPC and Endpoints, see Amazon VPC. For information
about how to use identity-based AWS Identity and Access Management policies to restrict access to
the Amazon SageMaker API and runtime, see Control Access to the Amazon SageMaker API by Using
Identity-based Policies (p. 491).

Create a VPC Endpoint Policy for Amazon SageMaker
You can create a policy for Amazon VPC endpoints for Amazon SageMaker to specify the following:

• The principal that can perform actions.
• The actions that can be performed.
• The resources on which actions can be performed.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC User
Guide.

Note
VPC endpoint policies aren't supported for Federal Information Processing Standard (FIPS)
Amazon SageMaker runtime endpoints for InvokeEndpoint (p. 853).

518

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/general/latest/gr/rande.html#vpc_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#sagemaker_region
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#what-is-privatelink
https://aws.amazon.com/vpc/pricing/
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon SageMaker Developer Guide
Connect to Amazon SageMaker

Through a VPC Interface Endpoint

The following example VPC endpoint policy specifies that all users who have access to the VPC interface
endpoint are allowed to invoke the Amazon SageMaker hosted endpoint named myEndpoint.

{
 "Statement": [
 {
 "Action": "sagemaker:InvokeEndpoint",
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:us-west-2:123456789012:endpoint/myEndpoint",
 "Principal": "*"
 }
]
}

In this example, the following are denied:

• Other Amazon SageMaker API actions, such as sagemaker:CreateEndpoint and
sagemaker:CreateTrainingJob.

• Invoking Amazon SageMaker hosted endpoints other than myEndpoint.

Note
In this example, users can still take other Amazon SageMaker API actions from outside the VPC.
For information about how to restrict API calls to those from within the VPC, see Control Access
to the Amazon SageMaker API by Using Identity-based Policies (p. 491).

Connect to a Notebook Instance Through a VPC Interface
Endpoint
You can connect to your notebook instance from your VPC through an interface endpoint in your Virtual
Private Cloud (VPC) instead of connecting over the internet. When you use a VPC interface endpoint,
communication between your VPC and the notebook instance is conducted entirely and securely within
the AWS network.

Amazon SageMaker notebook instances support Amazon Virtual Private Cloud (Amazon VPC) interface
endpoints that are powered by AWS PrivateLink. Each VPC endpoint is represented by one or more
Elastic Network Interfaces (ENIs) with private IP addresses in your VPC subnets.

Note
Before you create an interface VPC endpoint to connect to a notebook instance, create an
interface VPC endpoint to connect to the Amazon SageMaker API. That way, when users call
CreatePresignedNotebookInstanceUrl (p. 665) to get the URL to connect to the notebook
instance, that call also goes through the interface VPC endpoint. For information, see Connect
to Amazon SageMaker Through a VPC Interface Endpoint (p. 517).

You can create an interface endpoint to connect to your notebook instance with either the AWS console
or AWS Command Line Interface (AWS CLI) commands. For instructions, see Creating an Interface
Endpoint. Make sure that you create an interface endpoint for all of the subnets in your VPC from which
you want to connect to the notebook instance.

When you create the interface endpoint, specify aws.sagemaker.region.notebook as the service name.
After you create a VPC endpoint, enable private DNS for your VPC endpoint. Anyone using the Amazon
SageMaker API, the AWS CLI, or the console to connect to the notebook instance from within the VPC
will connect to the notebook instance through the VPC endpoint instead of the public internet.

Amazon SageMaker notebook instances support VPC endpoints in all AWS Regions where both Amazon
VPC and Amazon SageMaker are available.

Topics

519

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#what-is-privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/general/latest/gr/rande.html#vpc_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#vpc_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#sagemaker_region

Amazon SageMaker Developer Guide
Connect to Amazon SageMaker

Through a VPC Interface Endpoint

• Connect Your Private Network to Your VPC (p. 520)
• Create a VPC Endpoint Policy for Amazon SageMaker Notebook Instances (p. 520)
• Restrict Access to Connections from Within Your VPC (p. 520)

Connect Your Private Network to Your VPC

To connect to your notebook instance through your VPC, you either have to connect from an instance
that is inside the VPC, or connect your private network to your VPC by using an Amazon Virtual Private
Network (VPN) or AWS Direct Connect. For information about Amazon VPN, see VPN Connections in
the Amazon Virtual Private Cloud User Guide. For information about AWS Direct Connect, see Creating a
Connection in the AWS Direct Connect User Guide.

Create a VPC Endpoint Policy for Amazon SageMaker Notebook Instances

You can create a policy for Amazon VPC endpoints for Amazon SageMaker notebook instances to specify
the following:

• The principal that can perform actions.
• The actions that can be performed.
• The resources on which actions can be performed.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC User
Guide.

The following example of a VPC endpoint policy specifies that all users that have access to the endpoint
are allowed to access the notebook instance named myNotebookInstance.

{
 "Statement": [
 {
 "Action": "sagemaker:CreatePresignedNotebookInstanceUrl",
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:us-west-2:123456789012:notebook-instance/
myNotebookInstance",
 "Principal": "*"
 }
]
}

Access to other notebook instances is denied.

Restrict Access to Connections from Within Your VPC

Even if you set up an interface endpoint in your VPC, individuals outside the VPC can connect to the
notebook instance over the internet.

Important
If you apply an IAM policy similar to one of the following, users can't access the specified
Amazon SageMaker APIs or the notebook instance through the console.

To restrict access to only connections made from within your VPC, create an AWS Identity and Access
Management policy that restricts access to only calls that come from within your VPC. Then add that
policy to every AWS Identity and Access Management user, group, or role used to access the notebook
instance.

Note
This policy allows connections only to callers within a subnet where you created an interface
endpoint.

520

https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/create-connection.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/create-connection.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon SageMaker Developer Guide
Connect to Amazon SageMaker

Through a VPC Interface Endpoint

{
 "Id": "notebook-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable Notebook Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:DescribeNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": "vpc-111bbaaa"
 }
 }
 }
]
}

If you want to restrict access to the notebook instance to only connections made using the interface
endpoint, use the aws:SourceVpce condition key instead of aws:SourceVpc:

{
 "Id": "notebook-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable Notebook Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:DescribeNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:sourceVpce": [
 "vpce-111bbccc",
 "vpce-111bbddd"
]
 }
 }
 }
]
}

Both of these policy examples assume that you have also created an interface endpoint for the Amazon
SageMaker API. For more information, see Connect to Amazon SageMaker Through a VPC Interface
Endpoint (p. 517). In the second example, one of the values for aws:SourceVpce is the ID of the
interface endpoint for the notebook instance. The other is the ID of the interface endpoint for the
Amazon SageMaker API.

The policy examples here include DescribeNotebookInstance (p. 734) because typically you would
call DescribeNotebookInstance to make sure that the NotebookInstanceStatus is InService
before you try to connect to it. For example:

aws sagemaker describe-notebook-instance \
 --notebook-instance-name myNotebookInstance

521

Amazon SageMaker Developer Guide
Give Amazon SageMaker Training Jobs

Access to Resources in Your Amazon VPC

{
 "NotebookInstanceArn":
 "arn:aws:sagemaker:us-west-2:1234567890ab:notebook-instance/mynotebookinstance",
 "NotebookInstanceName": "myNotebookInstance",
 "NotebookInstanceStatus": "InService",
 "Url": "mynotebookinstance.notebook.us-west-2.sagemaker.aws",
 "InstanceType": "ml.m4.xlarge",
 "RoleArn":
 "arn:aws:iam::1234567890ab:role/service-role/AmazonSageMaker-
ExecutionRole-12345678T123456",
 "LastModifiedTime": 1540334777.501,
 "CreationTime": 1523050674.078,
 "DirectInternetAccess": "Disabled"
}
aws sagemaker create-presigned-notebook-instance-url --notebook-instance-name
 myNotebookInstance

{
 "AuthorizedUrl": "https://mynotebookinstance.notebook.us-west-2.sagemaker.aws?
authToken=AuthToken
}

For both of these calls, if you did not enable private DNS hostnames for your VPC endpoint, or if you
are using a version of the AWS SDK that was released before August 13, 2018, you must specify the
endpoint URL in the call. For example, the call to create-presigned-notebook-instance-url
would be:

aws sagemaker create-presigned-notebook-instance-url
 --notebook-instance-name myNotebookInstance --endpoint-url
 VPC_Endpoint_ID.api.sagemaker.Region.vpce.amazonaws.com

Connect Your Private Network to Your VPC
To call the Amazon SageMaker API and runtime through your VPC, you have to connect from an instance
that is inside the VPC or connect your private network to your VPC by using an Amazon Virtual Private
Network (VPN) or AWS Direct Connect. For information about Amazon VPN, see VPN Connections in
the Amazon Virtual Private Cloud User Guide. For information about AWS Direct Connect, see Creating a
Connection in the AWS Direct Connect User Guide.

Give Amazon SageMaker Training Jobs Access to
Resources in Your Amazon VPC
Amazon SageMaker runs training jobs in an Amazon Virtual Private Cloud by default. However, training
containers access AWS resources—such as the Amazon S3 buckets where you store training data and
model artifacts—over the internet.

To control access to your data and training containers, we recommend that you create a private VPC
and configure it so that they aren't accessible over the internet. For information about creating and
configuring a VPC, see Getting Started With Amazon VPC in the Amazon VPC User Guide. Using a VPC
helps to protect your training containers and data because you can configure your VPC so that it is not
connected to the internet. Using a VPC also allows you to monitor all network traffic in and out of your
training containers by using VPC flow logs. For more information, see VPC Flow Logs in the Amazon VPC
User Guide.

You specify your private VPC configuration when you create training jobs by specifying subnets and
security groups. When you specify the subnets and security groups, Amazon SageMaker creates elastic

522

https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/create-connection.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/create-connection.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/getting-started-ipv4.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html

Amazon SageMaker Developer Guide
Give Amazon SageMaker Training Jobs

Access to Resources in Your Amazon VPC

network interfaces (ENIs) that are associated with your security groups in one of the subnets. ENIs allow
your training containers to connect to resources in your VPC. For information about ENIs, see Elastic
Network Interfaces in the Amazon VPC User Guide.

Note
For training jobs, you can configure only subnets with a default tenancy VPC in which your
instance runs on shared hardware. For more information on the tenancy attribute for VPCs, see
Dedicated Instances.

Configure a Training Job for Amazon VPC Access
To specify subnets and security groups in your private VPC, use the VpcConfig request parameter of
the CreateTrainingJob (p. 667) API, or provide this information when you create a training job in the
Amazon SageMaker console. Amazon SageMaker uses this information to create ENIs and attach them
to your training containers. The ENIs provide your training containers with a network connection within
your VPC that is not connected to the internet. They also enable your training job to connect to resources
in your private VPC.

The following is an example of the VpcConfig parameter that you include in your call to
CreateTrainingJob:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

Configure Your Private VPC for Amazon SageMaker Training
When configuring the private VPC for your Amazon SageMaker training jobs, use the following
guidelines. For information about setting up a VPC, see Working with VPCs and Subnets in the Amazon
VPC User Guide.

Topics
• Ensure That Subnets Have Enough IP Addresses (p. 523)
• Create an Amazon S3 VPC Endpoint (p. 523)
• Use a Custom Endpoint Policy to Restrict Access to S3 (p. 524)
• Configure Route Tables (p. 525)
• Configure the VPC Security Group (p. 525)
• Connect to Resources Outside Your VPC (p. 525)

Ensure That Subnets Have Enough IP Addresses

Your VPC subnets should have at least two private IP addresses for each instance in a training job. For
more information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that training containers don't have access to the internet, they can't connect
to the Amazon S3 buckets that contain your training data unless you create a VPC endpoint that allows

523

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4

Amazon SageMaker Developer Guide
Give Amazon SageMaker Training Jobs

Access to Resources in Your Amazon VPC

access. By creating a VPC endpoint, you allow your training containers to access the buckets where you
store your data and model artifacts . We recommend that you also create a custom policy that allows
only requests from your private VPC to access to your S3 buckets. For more information, see Endpoints
for Amazon S3.

To create an S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints, then choose Create Endpoint
3. For Service Name, choose com.amazonaws.region.s3, where region is the name of the region

where your VPC resides.

4. For VPC, choose the VPC you want to use for this endpoint.

5. For Configure route tables, select the route tables to be used by the endpoint. The VPC service
automatically adds a route to each route table you select that points any S3 traffic to the new
endpoint.

6. For Policy, choose Full Access to allow full access to the S3 service by any user or service within the
VPC. Choose Custom to restrict access further. For information, see Use a Custom Endpoint Policy to
Restrict Access to S3 (p. 524).

Use a Custom Endpoint Policy to Restrict Access to S3

The default endpoint policy allows full access to S3 for any user or service in your VPC. To further restrict
access to S3, create a custom endpoint policy. For more information, see Using Endpoint Policies for
Amazon S3. You can also use a bucket policy to restrict access to your S3 buckets to only traffic that
comes from your Amazon VPC. For information, see Using Amazon S3 Bucket Policies.

Restrict Package Installation on the Training Container

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon Linux
2 repositories on the training container. If you don't want users to install packages from that repository,
create a custom endpoint policy that explicitly denies access to the Amazon Linux and Amazon Linux 2
repositories. The following is an example of a policy that denies access to these repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",
 "arn:aws:s3:::repo.*.amazonaws.com/*"
]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",

524

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide
Give Amazon SageMaker Hosted Endpoints

Access to Resources in Your Amazon VPC

 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }
]
}

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for example,
http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use default DNS settings,
ensure that the URLs that you use to specify the locations of the data in your training jobs resolve by
configuring the endpoint route tables. For information about VPC endpoint route tables, see Routing for
Gateway Endpoints in the Amazon VPC User Guide.

Configure the VPC Security Group

In distributed training, you must allow communication between the different containers in the same
training job. To do that, configure a rule for your security group that allows inbound connections
between members of the same security group For information, see Security Group Rules.

Connect to Resources Outside Your VPC

If you configure your VPC so that it doesn't have internet access, training jobs that use that VPC do not
have access to resources outside your VPC. If your training job needs access to resources outside your
VPC, provide access with one of the following options:

• If your training job needs access to an AWS service that supports interface VPC endpoints, create an
endpoint to connect to that service. For a list of services that support interface endpoints, see VPC
Endpoints in the Amazon VPC User Guide. For information about creating an interface VPC endpoint,
see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

• If your training job needs access to an AWS service that doesn't support interface VPC endpoints
or to a resource outside of AWS, create a NAT gateway and configure your security groups to allow
outbound connections. For information about setting up a NAT gateway for your VPC, see Scenario 2:
VPC with Public and Private Subnets (NAT) in the Amazon Virtual Private Cloud User Guide.

Give Amazon SageMaker Hosted Endpoints Access to
Resources in Your Amazon VPC
Amazon SageMaker hosts models in an Amazon Virtual Private Cloud by default. However, models access
AWS resources—such as the Amazon S3 buckets where you store training data and model artifacts—over
the internet.

To avoid making your data and model containers accessible over the internet, we recommend that you
create a private VPC and configure it to control access to them. For information about creating and
configuring a VPC, see Getting Started With Amazon VPC in the Amazon VPC User Guide. Using a VPC
helps to protect your training containers and data because you can configure your VPC so that it is not
connected to the internet. Using a VPC also allows you to monitor all network traffic in and out of your
training containers by using VPC flow logs. For more information, see VPC Flow Logs in the Amazon VPC
User Guide.

You specify your private VPC configuration when you create a model by specifying subnets and security
groups. When you specify the subnets and security groups, Amazon SageMaker creates elastic network
interfaces (ENIs) that are associated with your security groups in one of the subnets. ENIs allow your

525

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/getting-started-ipv4.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html

Amazon SageMaker Developer Guide
Give Amazon SageMaker Hosted Endpoints

Access to Resources in Your Amazon VPC

model containers to connect to resources in your VPC. For information about ENIs, see Elastic Network
Interfaces in the Amazon VPC User Guide.

Configure a Model for Amazon VPC Access
To specify subnets and security groups in your private VPC, use the VpcConfig request parameter of
the CreateModel (p. 648) API, or provide this information when you create a model in the Amazon
SageMaker console. Amazon SageMaker uses this information to create ENIs and attach them to your
model containers. The ENIs provide your model containers with a network connection within your VPC
that is not connected to the internet. They also enable your model to connect to resources in your
private VPC.

Note
You must create at least two subnets in different availability zones in your private VPC, even if
you have only one hosting instance.

The following is an example of the VpcConfig parameter that you include in your call to CreateModel:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

Configure Your Private VPC for Amazon SageMaker Hosting
When configuring the private VPC for your Amazon SageMaker models, use the following guidelines. For
information about setting up a VPC, see Working with VPCs and Subnets in the Amazon VPC User Guide.

Topics
• Ensure That Subnets Have Enough IP Addresses (p. 526)
• Create an Amazon S3 VPC Endpoint (p. 526)
• Use a Custom Endpoint Policy to Restrict Access to Amazon S3 (p. 527)
• Add Permissions for Endpoint Access for Containers Running in a VPC to Custom IAM Policies

 (p. 528)
• Configure Route Tables (p. 528)
• Connect to Resources Outside Your VPC (p. 528)

Ensure That Subnets Have Enough IP Addresses

Your VPC subnets should have at least two private IP addresses for each model instance. For more
information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that model containers don't have access to the internet, they can't connect
to the Amazon S3 buckets that contain your data unless you create a VPC endpoint that allows access.
By creating a VPC endpoint, you allow your model containers to access the buckets where you store your
data and model artifacts . We recommend that you also create a custom policy that allows only requests
from your private VPC to access to your S3 buckets. For more information, see Endpoints for Amazon S3.

526

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html

Amazon SageMaker Developer Guide
Give Amazon SageMaker Hosted Endpoints

Access to Resources in Your Amazon VPC

To create an Amazon S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Endpoints, then choose Create Endpoint
3. For Service Name, choose com.amazonaws.region.s3, where region is the name of the AWS

Region where your VPC resides.
4. For VPC, choose the VPC that you want to use for this endpoint.
5. For Configure route tables, choose the route tables that the endpoint will use. The VPC service

automatically adds a route to each route table that you choose that points Amazon S3 traffic to the
new endpoint.

6. For Policy, choose Full Access to allow full access to the Amazon S3 service by any user or service
within the VPC. To restrict access further, choose Custom. For more information, see Use a Custom
Endpoint Policy to Restrict Access to Amazon S3 (p. 527).

Use a Custom Endpoint Policy to Restrict Access to Amazon S3

The default endpoint policy allows full access to Amazon Simple Storage Service (Amazon S3) for any
user or service in your VPC. To further restrict access to Amazon S3, create a custom endpoint policy. For
more information, see Using Endpoint Policies for Amazon S3.

You can also use a bucket policy to restrict access to your S3 buckets to only traffic that comes from your
Amazon VPC. For information, see Using Amazon S3 Bucket Policies.

Restrict Package Installation on the Model Container with a Custom Endpoint Policy

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon Linux 2
repositories on the model container. If you don't want users to install packages from those repositories,
create a custom endpoint policy that explicitly denies access to the Amazon Linux and Amazon Linux 2
repositories. The following is an example of a policy that denies access to these repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",
 "arn:aws:s3:::repo.*.amazonaws.com/*"
]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }

527

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide
Give Amazon SageMaker Hosted Endpoints

Access to Resources in Your Amazon VPC

]
}

Add Permissions for Endpoint Access for Containers Running in a VPC to Custom
IAM Policies

The SageMakerFullAccess managed policy includes the permissions that you need to use models
configured for Amazon VPC access with an endpoint. These permissions allow Amazon SageMaker to
create an elastic network interface and attach it to model containers running in a VPC. If you use your
own IAM policy, you must add the following permissions to that policy to use models configured for VPC
access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:CreateNetworkInterface"
],
 "Resource": "*"
 }
}

For more information about the SageMakerFullAccess managed policy, see
AmazonSageMakerFullAccess Policy (p. 506).

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for example,
http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use default DNS settings,
ensure that the URLs that you use to specify the locations of the data in your models resolve by
configuring the endpoint route tables. For information about VPC endpoint route tables, see Routing for
Gateway Endpoints in the Amazon VPC User Guide.

Connect to Resources Outside Your VPC

If you configure your VPC so that it doesn't have internet access, models that use that VPC do not have
access to resources outside your VPC. If your model needs access to resources outside your VPC, provide
access with one of the following options:

• If your model needs access to an AWS service that supports interface VPC endpoints, create an
endpoint to connect to that service. For a list of services that support interface endpoints, see VPC
Endpoints in the Amazon VPC User Guide. For information about creating an interface VPC endpoint,
see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

• If your model needs access to an AWS service that doesn't support interface VPC endpoints or to a
resource outside of AWS, create a NAT gateway and configure your security groups to allow outbound
connections. For information about setting up a NAT gateway for your VPC, see Scenario 2: VPC with
Public and Private Subnets (NAT) in the Amazon Virtual Private Cloud User Guide.

528

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

Amazon SageMaker Developer Guide
Give Batch Transform Jobs Access
to Resources in Your Amazon VPC

Give Batch Transform Jobs Access to Resources in
Your Amazon VPC
Amazon SageMaker runs batch transform jobs in an Amazon Virtual Private Cloud by default. However,
model containers access AWS resources—such as the Amazon S3 buckets where you store your data and
model artifacts—over the internet.

To control access to your model containers and data, we recommend that you create a private VPC
and configure it so that they aren't accessible over the internet. For information about creating and
configuring a VPC, see Getting Started With Amazon VPC in the Amazon VPC User Guide. Using a VPC
helps to protect your model containers and data because you can configure your VPC so that it is not
connected to the internet. Using a VPC also allows you to monitor all network traffic in and out of your
model containers by using VPC flow logs. For more information, see VPC Flow Logs in the Amazon VPC
User Guide.

You specify your private VPC configuration when you create a model by specifying subnets and security
groups. You then specify the same model when you create a batch transform job. When you specify
the subnets and security groups, Amazon SageMaker creates elastic network interfaces (ENIs) that are
associated with your security groups in one of the subnets. ENIs allow your model containers to connect
to resources in your VPC. For information about ENIs, see Elastic Network Interfaces in the Amazon VPC
User Guide.

Configure a Batch Transform Job for Amazon VPC Access
To specify subnets and security groups in your private VPC, use the VpcConfig request parameter
of the CreateModel (p. 648) API, or provide this information when you create a transform job in the
Amazon SageMaker console. Then specify the same model in the ModelName request parameter of
the CreateTransformJob (p. 673) API, or when you create a transform job in the Amazon SageMaker
console. Amazon SageMaker uses this information to create ENIs and attach them to your model
containers. The ENIs provide your model containers with a network connection within your VPC that
is not connected to the internet. They also enable your transform job to connect to resources in your
private VPC.

The following is an example of the VpcConfig parameter that you include in your call to CreateModel:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

Configure Your Private VPC for Amazon SageMaker Batch
Transform
When configuring the private VPC for your Amazon SageMaker batch transform jobs, use the following
guidelines. For information about setting up a VPC, see Working with VPCs and Subnets in the Amazon
VPC User Guide.

Topics
• Ensure That Subnets Have Enough IP Addresses (p. 530)

529

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/getting-started-ipv4.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html

Amazon SageMaker Developer Guide
Give Batch Transform Jobs Access
to Resources in Your Amazon VPC

• Create an Amazon S3 VPC Endpoint (p. 530)
• Use a Custom Endpoint Policy to Restrict Access to S3 (p. 530)
• Configure Route Tables (p. 531)
• Configure the VPC Security Group (p. 531)
• Connect to Resources Outside Your VPC (p. 531)

Ensure That Subnets Have Enough IP Addresses

Your VPC subnets should have at least two private IP addresses for each instance in a transform job. For
more information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that model containers don't have access to the internet, they can't connect
to the Amazon S3 buckets that contain your data unless you create a VPC endpoint that allows access.
By creating a VPC endpoint, you allow your model containers to access the buckets where you store your
data and model artifacts . We recommend that you also create a custom policy that allows only requests
from your private VPC to access to your S3 buckets. For more information, see Endpoints for Amazon S3.

To create an S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Endpoints, then choose Create Endpoint
3. For Service Name, choose com.amazonaws.region.s3, where region is the name of the region

where your VPC resides.
4. For VPC, choose the VPC you want to use for this endpoint.
5. For Configure route tables, select the route tables to be used by the endpoint. The VPC service

automatically adds a route to each route table you select that points any S3 traffic to the new
endpoint.

6. For Policy, choose Full Access to allow full access to the S3 service by any user or service within the
VPC. Choose Custom to restrict access further. For information, see Use a Custom Endpoint Policy to
Restrict Access to S3 (p. 530).

Use a Custom Endpoint Policy to Restrict Access to S3

The default endpoint policy allows full access to S3 for any user or service in your VPC. To further restrict
access to S3, create a custom endpoint policy. For more information, see Using Endpoint Policies for
Amazon S3. You can also use a bucket policy to restrict access to your S3 buckets to only traffic that
comes from your Amazon VPC. For information, see Using Amazon S3 Bucket Policies.

Restrict Package Installation on the Model Container

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon Linux
2 repositories on the training container. If you don't want users to install packages from that repository,
create a custom endpoint policy that explicitly denies access to the Amazon Linux and Amazon Linux 2
repositories. The following is an example of a policy that denies access to these repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"

530

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide
Give Batch Transform Jobs Access
to Resources in Your Amazon VPC

],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",
 "arn:aws:s3:::repo.*.amazonaws.com/*"
]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }
]
}

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for example,
http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use default DNS settings,
ensure that the URLs that you use to specify the locations of the data in your batch transform jobs
resolve by configuring the endpoint route tables. For information about VPC endpoint route tables, see
Routing for Gateway Endpoints in the Amazon VPC User Guide.

Configure the VPC Security Group

In distributed batch transform, you must allow communication between the different containers in
the same batch transform job. To do that, configure a rule for your security group that allows inbound
connections between members of the same security group For information, see Security Group Rules.

Connect to Resources Outside Your VPC

If you configure your VPC so that it doesn't have internet access, batch transform jobs that use that VPC
do not have access to resources outside your VPC. If your batch transform job needs access to resources
outside your VPC, provide access with one of the following options:

• If your batch transform job needs access to an AWS service that supports interface VPC endpoints,
create an endpoint to connect to that service. For a list of services that support interface endpoints,
see VPC Endpoints in the Amazon VPC User Guide. For information about creating an interface VPC
endpoint, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

• If your batch transform job needs access to an AWS service that doesn't support interface VPC
endpoints or to a resource outside of AWS, create a NAT gateway and configure your security groups
to allow outbound connections. For information about setting up a NAT gateway for your VPC, see
Scenario 2: VPC with Public and Private Subnets (NAT) in the Amazon Virtual Private Cloud User Guide.

531

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

Amazon SageMaker Developer Guide
Are You a First-time User of Ground Truth?

Amazon SageMaker Ground Truth

To train a machine learning model, you need a large, high-quality, labeled dataset. Ground Truth helps
you build high-quality training datasets for your machine learning models. With Ground Truth, you can
use workers from either Amazon Mechanical Turk, a vendor company that you choose, or an internal,
private workforce along with machine learning to enable you to create a labeled dataset. You can use the
labeled dataset output from Ground Truth to train your own models. You can also use the output as a
training dataset for an Amazon SageMaker model.

In order to automate labeling your training dataset, you can optionally use automated data labeling,
a Ground Truth process that uses machine learning to decide which data needs to be labeled by
humans. Automated data labeling may reduce the labeling time and manual effort required. For more
information, see Using Automated Data Labeling (p. 539).

Use either pre-built or custom tools to assign the labeling tasks for your training dataset. A labeling UI
template is a webpage that Ground Truth uses to present tasks and instructions to your workers. The
Amazon SageMaker console provides built-in templates for labeling data. You can use these templates
to get started , or you can build your own tasks and instructions by using our HTML 2.0 components. For
more information, see Creating Custom Labeling Workflows (p. 557).

Use the workforce of your choice to label your dataset. You can choose your workforce from:

• The Amazon Mechanical Turk workforce of over 500,000 independent contractors worldwide.

• A private workforce that you create from your employees or contractors for handling data within your
organization.

• A vendor company that you can find in the AWS Marketplace that specializes in data labeling services.

For more information, see Managing Your Workforce (p. 551).

You store your datasets in Amazon S3 buckets. The buckets contain three things: The data to be labeled,
an input manifest file that Ground Truth uses to read the data files, and an output manifest file. The
output file contains the results of the labeling job. For more information, see Using Input and Output
Data (p. 543).

Events from your labeling jobs appear in Amazon CloudWatch under the /aws/sagemaker/
LabelingJobs group. CloudWatch uses the labeling job name as the name for the log stream.

Are You a First-time User of Ground Truth?
If you are a first-time user of Ground Truth, we recommend that you do the following:

1. Read Getting started (p. 533)—This section walks you through setting up your first Ground Truth
labeling job.

2. Explore other topics—Depending on your needs, do the following:

• Create instruction pages for your labeling jobs—Create a custom instruction page that makes
it easier for your workers to understand the requirements of the job. For more information, see
Creating Instruction Pages (p. 549).

532

Amazon SageMaker Developer Guide
Getting started

• Manage your labeling workforce—Create new work teams and manage your existing workforce.
For more information, see Managing Your Workforce (p. 551).

• Create a custom UI—Make it easier for your workers to quickly and correctly label your data
by creating a custom UI for them to use. For more information, see Creating Custom Labeling
Workflows (p. 557).

3. See the API Reference (p. 616)—This section describes operations to automate Ground Truth
operations.

Getting started
To get started using Amazon SageMaker Ground Truth, follow the instructions in the following sections.
The sections here explain how to use the console to create a labeling job, assign a public or private
workforce, and send the labeling job to your workforce. You can also learn how to monitor the progress
of a labeling job.

If you want to create a custom labeling job, see Creating Custom Labeling Workflows (p. 557) for
instructions.

Before you create a labeling job, you must upload your dataset to an Amazon S3 bucket. For more
information, see Using Input and Output Data (p. 543).

Topics
• Step 1: Before You Begin (p. 533)

• Step 2: Create a Labeling Job (p. 534)

• Step 3: Select Workers (p. 535)

• Step 4: Configure the Bounding Box Tool. (p. 535)

• Step 5: Monitoring Your Labeling Job (p. 536)

Step 1: Before You Begin
Before you begin using the Amazon SageMaker console to create a labeling job, you must set up the
dataset for use. Do this:

1. Save two images at publicly available HTTP URLs. The images are used when creating instructions
for completing a labeling task. The images should have an aspect ratio of around 2:1. For this
exercise, the content of the images is not important.

2. Create an Amazon S3 bucket to hold the input and output files. The bucket must be in the same
Region where you are running Ground Truth. Make a note of the bucket name because you use it
during step 2.

3. Place 5–10 PNG images in the bucket.

4. Create a manifest file for the dataset and store it in the S3 bucket. Use these steps:

a. Using a text editor, create a new text file.

b. Add a line similar to the following for each image file in your dataset:

{"source-ref": "s3://bucket/path/imageFile.png"}

Add one line for each PNG file in your S3 bucket.

c. Save the file in the S3 bucket containing your source files. Record the name because you use it
in step 2.

533

Amazon SageMaker Developer Guide
Step 2: Create a Labeling Job

Note
It is not necessary to store the manifest file in the same bucket as the source file. You
use the same bucket in this exercise because it is easier.

For more information, see Input Data (p. 543).

Assign the following permissions policy to the user that is creating the labeling job:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "sagemakergroundtruth",
 "Effect": "Allow",
 "Action": [
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:UpdateUserPool"
],
 "Resource": "*"
 }
]
}

Next
Step 2: Create a Labeling Job (p. 534)

Step 2: Create a Labeling Job
In this step you use the console to create a labeling job. You tell Amazon SageMaker Ground Truth the
Amazon S3 bucket where the manifest file is stored and configure the parameters for the job. For more
information about storing data in an Amazon S3 bucket, see Using Input and Output Data (p. 543).

To create a labeling job

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. From the left navigation, choose Labeling jobs.
3. Choose Create labeling job to start the job creation process.
4. In the Job overview section, provide the following information:

• Job name — Give the labeling job a name that describes the job. This name is shown in your job
list. The name must be unique in your account in an AWS Region.

• Label attribute name — Leave this unchecked as the default value is the best option for this
introductory job.

• Input dataset location — Enter the S3 location of the manifest file that you created in step 1.
• Output dataset location — the location where your output data is written.
• IAM role — Create or choose an IAM role with the SageMakerFullAccess IAM policy attached.

5. In the Task type section, for the Dataset type field, choose Bounding box as the task type.

534

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Step 3: Select Workers

6. Choose Next to move on to configuring your labeling job.

Next
Step 3: Select Workers (p. 535)

Step 3: Select Workers
In this step you choose a workforce for labeling your dataset. You can create your own private workforce
or you can use the Amazon Mechanical Turk workforce. If you create a private workforce in this step you
won't be able to import your Amazon Cognito user pool later. For more information, see Managing a
Private Workforce (p. 553). Use the Amazon Mechanical Turk workforce for this exercise instead.

You can create a private workforce to test Amazon SageMaker Ground Truth. Use email addresses to
invite the members of your workforce.

To create a private workforce

1. In the Workers section, choose Private.

2. If this is your first time using a private workforce, in the Email addresses field, enter up to 100
email addresses. The addresses must be separated by a comma. You should include your own email
address so that you are part of the workforce and can see data object labeling tasks.

3. In the Organization name field, enter the name of your organization. This information is used to
customize the email sent to invite a person to your private workforce.

4. In the Contact email field enter an email address that members of the workforce use to report
problems with the task.

If you choose to use the Amazon Mechanical Turk workforce to label the dataset, you are charged for
labeling tasks completed on the dataset.

To use the Amazon Mechanical Turk workforce

1. In the Workers section, choose Public.

2. Choose The dataset does not contain PII to acknowledge that the dataset does not contain any
personally identifiable information.

3. Choose The dataset does not contain adult content. to acknowledge that the sample dataset has
no adult content.

4. Review and accept the statement that the dataset will be viewed by the public workforce.

Next
Step 4: Configure the Bounding Box Tool. (p. 535)

Step 4: Configure the Bounding Box Tool.
Finally you configure the bounding box tool to give instructions to your workers. You can configure a
task title that describes the task and provides high-level instructions for the workers. You can provide
both quick instructions and full instructions. Quick instructions are displayed next to the image to be
labeled. Full instructions contain detailed instructions for completing the task. In this example, you only
provide quick instructions. You can see an example of full instructions by choosing Full instructions at
the bottom of the section.

535

Amazon SageMaker Developer Guide
Step 5: Monitoring Your Labeling Job

To configure the bounding box tool

1. In the Task description field type in brief instructions for the task. For example:

Draw a box around any objects in the image.

Replace objects with the name of an object that appears in your images.

2. In the Labels field, type a category name for the objects that the worker should draw a bounding
box around. For example, if you are asking the worker to draw boxes around football players, you
could use "FootballPlayer" in this field.

3. The Short instructions section enables you to create instructions that are displayed on the page
with the image that your workers are labeling. We suggest that you include an example of a
correctly drawn bounding box and an example of an incorrectly drawn box. To create your own
instructions, use these steps:

a. Select the text between GOOD EXAMPLE and the image placeholder. Replace it with the
following text:

Draw the box around the object with a small border.

b. Select the first image placeholder and delete it.

c. Choose the image button and then enter the HTTPS URL of one of the images that you created
in step 1.

d. Select the text between BAD EXAMPLE and the image placeholder. Replace it with the following
text:

Don't make the bounding box too large or cut into the object.

e. Select the second image placeholder and delete it.

f. Choose the image button and then enter the HTTPS URL of the other image that you created in
step 1.

Configuration of your labeling job is complete. To start your job, choose Submit.

Next
Step 5: Monitoring Your Labeling Job (p. 536)

Step 5: Monitoring Your Labeling Job
After you create your labeling job, you see a list of all the jobs that you have created. You can use this list
to monitor that status of your labeling jobs. The list has the following fields:

• Name—The name that you assigned the job when you created it.

• Status—The completion status of the job. The status can be one of Complete, Failed, In progress, or
Stopped.

• Labeled objects/total—Shows the total number of objects in the labeling job and how many of them
have been labeled.

• Creation time—The date and time that you created the job.

You can also clone, chain, or stop a job. Select a job and then select one of the following from the
Actions menu:

• Clone—Creates a new labeling job with the configuration copied from the selected job. You can clone
a job when you want to change to the job and run it again. For example, you can clone a job that was

536

Amazon SageMaker Developer Guide
Data Labeling

sent to a private workforce so that you can send it to the Amazon Mechanical Turk workforce. Or you
can clone a job to rerun it against a new dataset stored in the same location as the original job.

• Chain—Creates a new labeling job that can build upon the data and models (if any) of a stopped,
failed, or completed job. For more information about the use cases and how to use it, see Chaining
labeling jobs (p. 540).

• Stop—Stops a running job. You cannot restart a stopped job. You can clone a job to start over or chain
the job to continue from where it left off. Labels for any already labeled objects are written to the
output file location. For more information, see Output Data (p. 545).

Data Labeling
Amazon SageMaker Ground Truth manages sending your data objects to workers to be labeled. Labeling
each data object is a task. Workers complete each task until the entire labeling job is complete. Ground
Truth divides the total number of tasks into smaller batches that are sent to workers. A new batch is sent
to workers when the previous one is finished.

Ground Truth provides two features that help improve the accuracy of your data labels and reduce the
total cost of labeling your data.

The first feature is annotation consolidation. This helps to improve the accuracy of your data object's
labels. It combines the results of multiple worker's annotation tasks into one high-fidelity label.

The second feature is automated data labeling. This uses machine learning to label portions of your data
automatically without having to send them to human workers.

Topics
• Batches for Labeling Tasks (p. 537)
• Annotation Consolidation (p. 537)
• Using Automated Data Labeling (p. 539)
• Chaining labeling jobs (p. 540)

Batches for Labeling Tasks
Amazon SageMaker Ground Truth sends data objects to your workers in batches. There are one or more
tasks for each data object. For each task, a worker annotates one of your data objects. A batch provides
the following:

• It sets the number of data objects that are available to workers. After the objects are annotated
another batch is sent.

• It breaks the work into smaller chunks to avoid overloading your workforce.
• It provides chunks of data for the iterative training of automated labeling models.

Ground Truth first sends a batch of 10 tasks to your workers. It uses this small batch to set up the
labeling job and to make sure that the job is correctly configured.

After the small batch, Ground Truth sends larger batches to your workers. You can configure the
batch size when you create the job using the CreateLabelingJob (p. 643). When you use the Amazon
SageMaker console, your job uses 1,000 tasks in each batch.

Annotation Consolidation
Annotation consolidation combines the annotations of two or more workers into a single label for your
data objects. An annotation is the result of a single worker. Annotation consolidation combines multiple

537

Amazon SageMaker Developer Guide
Annotation Consolidation

annotations from different workers to come up with a probabilistic estimate of what the true label
should be. The label is assigned to each object in the dataset. Each object in the dataset typically has
multiple annotations but only one label or set of labels.

You can decide how many workers should annotate each object in your dataset. More workers can
increase the accuracy of your labels but also increases the cost of labeling. Amazon SageMaker
Ground Truth uses the following defaults in the Amazon SageMaker console. When you use the
CreateLabelingJob (p. 643) operation, you set the number of workers that should annotate each data
object using the NumberOfHumanWorkersPerDataObject parameter.

• Text classification—3 workers
• Image classification—3 workers
• Bounding boxes—5 workers
• Semantic segmentation—3 workers
• Named entity recognition—3 workers

You can override the default number of workers that label a data object using the console or the
CreateLabelingJob (p. 643) operation.

Ground Truth provides an annotation consolidation function for each of its predefined labeling tasks:
Bounding box, image classification, semantic segmentation, and text classification. These are the
functions:

• Multi-class annotation consolidation for image and text classification uses a variant of the Expectation
Maximization approach to annotations. It estimates parameters for each worker and uses Bayesian
inference to estimate the true class based on the class annotations from individual workers.

• Bounding box annotation consolidates bounding boxes from multiple workers. This function finds the
most similar boxes from different workers based on the Jaccard index, or intersection over union, of
the boxes and averages them.

• Semantic segmentation annotation consolidation treats each pixel in a single image as a multi-
class classification. This function treats the pixel annotations from workers as "votes," with more
information from surrounding pixels incorporated by applying a smoothing function to the image.

• Named entity recognition clusters text selections by Jaccard similarity and calculates selection
boundaries based on the mode, or median if the mode isn't clear. The label resolves to the most
assigned entity label in the cluster, breaking ties by random selection.

Note
If you want to run worker responses through different algorithms on your own, that data is
stored in the [project-name]/annotations/worker-response folder of the Amazon S3
bucket where you direct the job output.

Creating Your Own Annotation Consolidation Function
There are many possible approaches for writing an annotation consolidation function. The approach
that you take depends on the nature of the annotations to consolidate. Broadly, consolidation functions
look at the annotations from workers, measure the similarity between them, and then use some form of
probabilistic judgment to determine what the most probable label should be.

Assessing Similarity

To assess the similarity between labels, you can use one of the following strategies or you can use one
that meets your data labeling needs:

• For label spaces that consist of discrete, mutually exclusive categories, such as multi-class
classification, assessing similarity can be straightforward. Discrete labels either match or not.

538

Amazon SageMaker Developer Guide
Using Automated Data Labeling

• For label spaces that don't have discrete values, such as bounding box annotations, find a broad
measure of similarity. For bounding boxes, one such measure is the Jaccard index. This measures
the ratio of the intersection of two boxes with the union of the boxes to assess how similar they
are. For example, if there are three annotations, then there can be a function that determines
whichannotations represent the same object and should be consolidated.

Assessing the Most Probable Label

With one of the above strategies in mind, make some sort of probabilistic judgment on what the
consolidated label should be. In the case of discrete, mutually exclusive categories this can be
straightforward. One of the most common ways to do this is to take the results of a majority vote
between the annotations. This weights the annotations equally.

Some approaches attempt to estimate the accuracy of different annotators and weight their annotations
in proportion to the probability of correctness. An example of this is the Expectation Maximization
method, which is used in the default Ground Truth consolidation function for multi-class annotations.

For more information about creating an annotation consolidation function, see Step 3: Processing with
AWS Lambda (p. 574).

Using Automated Data Labeling
Ground Truth can use active learning to automate the labeling of your input data. Active learning is a
machine learning technique that identifies data that should be labeled by your workers.

Automated data labeling is optional. Turn it on when you create a labeling job. Automated data labeling
incurs Amazon SageMaker training and inference costs, but it helps to reduce the cost and time that it
takes to label your dataset compared to humans alone.

Use automated data labeling on large datasets. The neural networks used with active learning require
a significant amount of data for every new dataset. With larger datasets, there is more potential to
automatically label the data and therefore reduce the total cost of labeling. We recommend that you use
thousands of data objects when using automated data labeling. The system minimum for automated
labeling is 1,250 objects, but to get a meaningful amount of your data automatically labeled, we
strongly suggest a minimum with 5,000 or more objects.

The potential benefit of automated data labeling also depends on the accuracy that you require. Higher
accuracy levels generally reduce the number of data objects that are automatically labeled.

When Amazon SageMaker Ground Truth starts an automated data labeling job, it first selects a random
sample of the input data. Then it sends the sample to human workers. When the labeled data are
returned, Ground Truth uses this set of data as validation data. It is used to validate the machine learning
models that Ground Truth trains for automated data labeling.

Next, Ground Truth runs an Amazon SageMaker batch transform using the validation set. This generates
a quality metric that Ground Truth uses to estimate the potential quality of auto-labeling the rest of the
unlabeled data.

Ground Truth next runs an Amazon SageMaker batch transform on the unlabeled data in the dataset.
Any data where the expected quality of automatically labeling the data is above the requested level of
accuracy is considered labeled.

After performing the auto-labeling step, Ground Truth selects a new sample of the most ambiguous
unlabeled data points in the dataset. It sends those to human workers. Ground Truth uses the existing
labeled data and this additional labeled data from human workers to train a new model. The process is
repeated until the dataset is fully labeled.

539

Amazon SageMaker Developer Guide
Chaining labeling jobs

For automated semantic segmentation, please note these job limits

• Label Categories (max): 20

• Dataset Size (max): 20k items

• Image Resolution (max): 720p (1280 x 720 pixels)

Ensure the automated-labeling model is ready for production use
The model generatphoneed by your labeling job needs fine-tuning and/or testing before
you use it in production. Fine-tune the model generated by Ground Truth (or create and
tune another supervised model of your choice) on the dataset produced by your labeling job.
Optimize the model’s architecture and hyperparameters. If you decide to use the model for
inference without fine-tuning, we strongly recommend making sure its accuracy is evaluated on
a representative (e.g. randomly selected) subset of the dataset labeled with Ground Truth and
matches your expectations.

Amazon EC2 Instances Required for Automated Data Labeling

To run automated data labeling, Ground Truth requires the following Amazon EC2 resources for training
and batch inference jobs:

Automated labeling action Training instance type Inference instance type

Image classification ml.p3.2xlarge* ml.c5.xlarge

Object detection ml.p3.2xlarge* ml.c5.4large

Text classification ml.c5.2xlarge ml.m4.xlarge

Semantic Segmentation ml.p3.2xlarge* ml.p3.2xlarge*

* ml.p2.8xlarge is substituted in the following regions: Mumbai (ap-south-1)

A note about pricing
Automated labeling incurs two separate charges: the per item charge (Ground Truth pricing),
and the charge for the Amazon EC2 instance required to run the model (Amazon EC2 pricing).

These instances are managed by Ground Truth. They are created, configured, and destroyed as needed to
perform your job. They do not appear in your Amazon EC2 instance dashboard.

Chaining labeling jobs
Amazon SageMaker Ground Truth can reuse datasets from prior jobs in two ways: cloning and chaining.

Cloning is a relatively straightforward operation. Cloning copies the set-up of a prior labeling job and
allows you to make additional changes, before setting it to run.

Chaining is a more complex operation. Chaining uses not only the setup of the prior job, but the results.
This allows you to continue an incomplete job,and add labels or data objects to a completed job.

When it comes to the data being processed:

• Cloning — uses the prior job's input manifest as the new job's input manifest.

• Chaining — uses the prior job's output manifest as the new job's input manifest.

540

https://aws.amazon.com/sagemaker/groundtruth/pricing/
https://aws.amazon.com/ec2/pricing/on-demand/

Amazon SageMaker Developer Guide
Chaining labeling jobs

Chaining labeling jobs
Some situations where chaining is useful include:

• Continue a labeling job that was manually stopped.
• Continue a labeling job that failed mid-job, with issues fixed..
• Switch to automated labeling after manually labeling part of a job (or vice-versa).
• Add more data objects to a completed job and start the job from there.
• Add another annotation to a completed job. For example, you have a collection of phrases labeled for

topic, then want to run the set again, categorizing them by the topic's implied audience.

In Amazon SageMaker Ground Truth you can configure a chained labeling job via either the console or
API.

Key Term: Label attribute name
The label attribute name (LabelAttributeName in the API) is a string used as the key for the key-value
pair formed with the label that a worker assigns to the data object.

There are a few rules for the label attribute name.

• It cannot end with -metadata.
• The names source and source-ref are reserved and cannot be used.
• Semantic-segmentation labeling jobs require it to end with -ref. All other labeling jobs require it to

not end with -ref. The adding of -ref is managed automatically for you in jobs configured via the
console.

• If you're using the same label attribute name from the originating job and you configure the chained
job to use auto-labeling, then if it had been in auto-labeling mode at any point, the model from the
originating job is used.

In an output manifest, it can appear something like this:

 "source-ref": "<S3 URI>",
 "<label attribute name>": {
 "annotations": [{
 "class_id": 0,
 "width": 99,
 "top": 87,
 "height": 62,
 "left": 175
 }],
 "image_size": [{
 "width": 344,
 "depth": 3,
 "height": 234
 }]
 },
 "<label attribute name>-metadata": {
 "job-name": "<job name>",
 "class-map": {
 "0": "<label attribute name>"
 },
 "human-annotated": "yes",
 "objects": [{
 "confidence": 0.09
 }],
 "creation-date": "<timestamp>",

541

Amazon SageMaker Developer Guide
Chaining labeling jobs

 "type": "groundtruth/object-detection"
 }

If you're creating a job in the console, the job name is used as the label attribute name for the job if you
don't explicitly set the label attribute name value.

Starting a chained job in the console
Select a stopped, failed, or completed labeling job from the list of your existing jobs. This enables the
Actions menu.

From the Actions menu, select Chain.

Job overview panel

In the Job overview panel, a new Job name is set based on the title of the job from which you are
chaining this one. You can change it.

You may also specify a label attribute name different from the labeling job name.

If you're chaining from a completed job, the label attribute name uses the name of the new job you're
configuring. To change the name, select the check box.

If you're chaining from a stopped or failed job, the label attribute name uses to the name of the job from
which you're chaining. Its easy to see and edit the value because the name check box is checked.

Attribute label naming considerations

• The default uses the label attribute name Ground Truth has selected. All data objects without
data connected to that label attribute name are labeled.

• Using a label attribute name not present in the manifest causes the job to process all the
objects in the dataset.

The input dataset location in this case is automatically selected as the output manifest of the chained
job. The input field is not available, so you cannot change it.

Adding data objects to a labeling job
You cannot specify an alternate manifest file. Manually edit the output manifest from the
previous job to add new items before starting a chained job. The S3 URI helps you locate where
you are storing the manifest in your S3 bucket. Download the manifest file from there, edit
it locally on your computer, then upload the new version to replace it. Make sure you are not
introducing errors during editing. We recommend you use JSON linter to check your JSON. Many
popular text editors and IDEs have linter plugins available.

Starting a chained job with the API
The procedure is almost the same as setting up a new labeling job with CreateLabelingJob, except for
two primary differences.

• Manifest location: Rather than use your original manifest from the prior job, the value for the
ManifestS3Uri in the DataSource should point to the S3 URI of the output manifest from the prior
labeling job.

• Label attribute name: Setting the correct LabelAttributeName value is important here. As pointed
out, this is the key portion of a key-value pair where labeling data is the value. Sample use cases
include:
• Adding new or more-specific labels to a completed job — set a new label attribute name.
• Labeling the unlabeled items from a prior job — use the label attribute name from the prior job.

542

Amazon SageMaker Developer Guide
Using Input and Output Data

Using a partially labeled dataset
You can get some chaining benefits if you use an augmented manifest that has already been partially
labeled. Check the Label attribute name check box and set the name so that it matches the name in
your manifest.

If you're using the API, the instructions are the same as starting a chained job. However, be sure to
upload your manifest to an S3 bucket and use it instead of using the output manifest from a prior job.

The Label attribute name value in the manifest has to conform to the naming considerations discussed
above.

Using Input and Output Data
The input data that your provide Amazon SageMaker Ground Truth is sent to your workers for labeling.
You can choose the data to send to your workers by creating a manifest file that defines the data to
label.

The output data is the result of your labeling job. The output data file contains one entry that specifies
the label for each object in the input dataset.

Topics
• Input Data (p. 543)
• Output Data (p. 545)

Input Data
The input data are the data objects that you send to your workforce to be labeled. Each object in the
input data is described in a manifest file. Each line in the manifest is an entry containing an object to
label and may contain labels from previous jobs.

• The input data is stored in an Amazon S3 bucket. The bucket must be in the same region as you are
running Amazon SageMaker Ground Truth. You must give access to Amazon SageMaker for the data
to be read. In order to read the data, give access to Amazon SageMaker. For more information about
Amazon S3 buckets, see Working with Amazon S3 buckets.

• The manifest file must be in the same region the data files but does not need to be in the same
location as the data files. It can be in any Amazon S3 bucket accessible to the role that you
assigned to Ground Truth when you created the labeling job with either the console or the
CreateLabelingJob (p. 643) operation.

The manifest is a UTF-8 encoded file where each line is a complete and valid JSON object. Each line is
delimited by a standard line break, \n or \r\n. Since each line must be a valid JSON object, you can't have
unescaped line break characters. For more information about the data format, see JSON Lines.

Limits: Each JSON object in the manifest file can be no larger than 100k characters and no single
attribute within the object can be larger than 20,000 characters. Attribute names cannot begin with $
(dollar sign).

Each JSON object in the manifest file must contain a key, either source-ref or source. The value of
the keys are interpreted as follows:

• source-ref—The source of the object is the S3 object specified in the value. This can be used when the
object is a binary object, such as an image, or when you have text in individual files.

• source—The source of the object is the value. This can be used when the object is a text value.

543

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
http://jsonlines.org/

Amazon SageMaker Developer Guide
Input Data

You use the source-ref key for image files for a bounding box or semantic segmentation labeling job.
Each image file must be:

• 6 Mb or smaller
• 1920 x 1080 pixels or smaller for semantic segmentation

The following is an example of a manifest file for files stored in an S3 bucket:

{"source-ref": "S3 bucket location 1"}
{"source-ref": "S3 bucket location 2"}
 ...
{"source-ref": "S3 bucket location n"}

The following is an example of a manifest file with the input data stored in the manifest:

{"source": "Lorem ipsum dolor sit amet"}
{"source": "consectetur adipiscing elit"}
 ...
{"source": "mollit anim id est laborum"}

You can include other key-value pairs in the manifest file. These pairs are passed to the output file
unchanged. This is useful when you want to pass information between your applications. For more
information, see Output Data (p. 545).

Filtering and Selecting Data (Console)
You can use the Amazon SageMaker console to select a portion of your dataset for labeling. The data
must be stored in an Amazon S3 bucket. You have three options:

• Use the full dataset.
• Choose a randomly selected sample of the dataset.
• Specify a subset of the dataset using a query.

Using the Full Dataset

When you choose to use the full dataset you must provide a manifest file for your data objects. You
can provide the S3 bucket location of the manifest file or you can have the Amazon SageMaker console
create the file for you. Choose Create a manifest file to create the file. The file is stored in the S3 bucket
specified in the Input data location field.

Choosing a Random Sample

Use a random sample of your dataset when you want to label a random subset of your data. The dataset
is stored in the S3 bucket specified in the Input dataset location field.

Once you have specified the percentage of data objects that you want to include in the sample, choose
Create subset. The Amazon SageMaker console randomly picks the data objects for your labeling job.
Once the objects are selected, choose Use this subset.

The Amazon SageMaker console create a manifest file for the selected data objects. The Input dataset
location field is modified to point to the new manifest file.

Specifying a Subset

You can specify a subset of your data objects using an Amazon S3 SELECT query on the object file
names.

544

Amazon SageMaker Developer Guide
Output Data

The SELECT statement of the SQL query is defined for you. You provide the WHERE clause to specify
which data objects should be returned.

For more information about the Amazon S3 SELECT statement, see Selecting Content from Objects

Choose Create subset to start the selection, and then choose Use this subset to use the selected data.

The Amazon SageMaker console create a manifest file for the selected data objects. The Input dataset
location field is modified to point to the new manifest file.

Output Data
The output from a labeling job is placed in the location that you specified in the console or in the call to
the CreateLabelingJob (p. 643) operation.

Each line in the output data file is identical to the manifest file with the addition of an attribute and
value for the label assigned to the input object. The attribute name for the value is defined in the
console or in the call to the CreateLabelingJob operation. You can't use -metadata in the label
attribute name. If you are running a semantic segmentation job, the label attribute must end with -ref.
For any other type of job, the attribute name can't end with -ref.

The output of the labeling job is the value of the key/value pair with the label. The label and the value
overwrites any existing JSON data in the input file with the new value.

For example, the following is the output from an image classification labeling job where the input data
files were stored in an Amazon S3 bucket and the label attribute name was defined as "sport". In this
example the JSON object is formatted for readability, in the actual output file the JSON object is on a
single line. For more information about the data format, see JSON Lines.

{
 "source-ref": "S3 bucket location",
 "sport":0,
 "sport-metadata":
 {
 "class-name": "football",
 "confidence": 0.8,
 "type":"groundtruth/image-classification",
 "job-name": "identify-sport",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256"
 }
}

The value of the label can be any valid JSON. In this case the label's value is the index of the class in the
classification list. Other job types, such as bounding box, have more complex values.

Any key-value pair in the input manifest file other than the label attribute is unchanged in the output
file. You can use this to pass data to your application.

The output from a labeling job can be used as the input to another labeling job. You can use this when
you are chaining together labeling jobs. For example, you can send one labeling job to determine the
sport that is being played. Then you send another using the same data to determine if the sport is being
played indoors or outdoors. By using the output data from the first job as the manifest for the second
job, you can consolidate the results of the two jobs into one output file for easier processing by your
applications.

The output data file is written to the output location periodically while the job is in progress. These
intermediate files contain one line for each line in the manifest file. If an object is labeled, the label is

545

https://docs.aws.amazon.com/AmazonS3/latest/dev/selecting-content-from-objects.html
http://jsonlines.org/

Amazon SageMaker Developer Guide
Output Data

included, if the object has not been labeled it is written to the intermediate output file identically to the
manifest file.

Output Directories
Ground Truth creates several directories in your Amazon S3 output path. These directories contain the
results of your labeling job and other artifacts of the job. The top-level directory for a labeling job is
given the same name as your labeling job, the output directories are placed beneath it. For example, if
you named your labeling job find-people you output would be in the following directories:

s3://bucket/find-people/activelearning
s3://bucket/find-people/annotations
s3://bucket/find-people/inference
s3://bucket/find-people/manifests
s3://bucket/find-people/training

Each directories contain the following output:

activelearning Directory

The activelearning directory is only present when you are using automated data labeling. It contains
the input and output validation set for automated data labeling, and the input and output folder for
automatically labeled data.

annotations Directory

The annotations directory contains all of the annotations made by the workforce. These are the
responses from individual workers that have not been consolidated into a single label for the data object.

There are three subdirectories in the annotations directory. The first, worker-response contains the
responses from individual workers. There may be more than one annotation for each data object in this
directory, depending on how many workers you want to annotate each object.

The second, consolidated-annotation contains information required to consolidate the annotations
in the current batch into labels for your data objects.

The third, intermediate, contains the output manifest for the current batch with any completed labels.
This file is updated as the label for each data object is completed.

inference Directory

The inference directory contains the input and output files for the Amazon SageMaker batch
transform used while labeling data objects.

manifest Directory

The manifest directory contains the output manifest from your labeling job. There are two
subdirectories in the manifest directory, output and intermediate. The output directory contains the
output manifest file for your labeling job. The file is named output.manifest.

The other directory, intermediate, contains the results of labeling each batch of data objects. The
intermediate data is in a directory numbered for each iteration. An iteration directory contains an
output.manifest file that contains the results of that iteration and all previous iterations.

intermediate Directory

The training directory contains the input and output files used to train the automated data labeling
model.

546

Amazon SageMaker Developer Guide
Output Data

Confidence Score
Ground Truth calculates a confidence score for each label. A confidence score is a number between 0 and
1 that indicates how confident Ground Truth is in the label. You can use the confidence score to compare
labeled data objects to each other, and to identify the least or most confident labels.

You should not interpret the value of the confidence scores as an absolute value, or compare them across
labeling jobs. For example, if all of the confidence scores are between 0.98 and 0.998, you should only
compare the data objects with each other and not rely on the high confidence scores.

You should not compare the confidence scores of human-labeled data objects and auto-labeled data
objects. The confidence scores for humans are calculated using the annotation consolidation function for
the task, the confidence scores for automated labeling are calculated using a model that incorporates
object features. The two models generally have different scales and average confidence.

For a bounding box labeling job, Ground Truth calculates a confidence score per box. You can compare
confidence scores within one image or across images for the same labeling type (human or auto). You
can't compare confidence scores across labeling jobs.

Output Metadata
The output from each job contains metadata about the label assigned to data objects. These elements
are the same for all jobs with minor variations. The following are the metadata elements:

 "confidence": 0.93,
 "type": "groundtruth/image-classification",
 "job-name": "identify-animal-species",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256"

The elements have the following meaning:

• confidence — The confidence that Ground Truth has that the label is correct. For more information,
see Confidence Score (p. 547).

• type — The type of classification job. For job types, see the descriptions of the individual job types.
• job-name — The name assigned to the job when it was created.
• human-annotated — Indicates whether the data object was labeled by a human or by automated

data labeling. For more information, see Using Automated Data Labeling (p. 539).
• creation-date — The date and time that the label was created.

Classification Job Output
The following are sample output from an image classification job and a text classification job. It includes
the label that Ground Truth assigned to the data object, the value for the label, and metadata that
describes the labeling task.

In addition to the standard metadata elements, the metadata for a classification job includes the text
value of the label's class. For more information, see Image Classification Algorithm (p. 108).

{
 "source-ref":"S3 bucket location",
 "species":"0",
 "species-metadata":
 {
 "class-name": "dog",
 "confidence": 0.93,
 "type": "groundtruth/image-classification",

547

Amazon SageMaker Developer Guide
Output Data

 "job-name": "identify-animal-species",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256"
 }
}

{
 "source":"a bad day",
 "mood":"1",
 "mood-metadata":
 {
 "class-name": "sad",
 "confidence": 0.8,
 "type": "groundtruth/text-classification",
 "job-name": "label-mood",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256"
 }
}

Bounding Box Job Output
The following is sample output from a bounding box job. For this task, there are three bounding boxes
returned. The value of the label contains information about the size of the image, and the location of the
bounding boxes.

The class_id element is the index of the box's class in the list of available classes for the task. You can
see the text of the class in the class-map metadata element.

In the metadata there is a separate confidence score for each bounding box. The metadata also includes
the class-map element that maps the class_id to the text value of the class. For more information,
see Object Detection Algorithm (p. 199).

{
 "source-ref": "S3 bucket location",
 "bounding-box":
 {
 "image_size": [{ "width": 500, "height": 400, "depth":3}],
 "annotations":
 [
 {"class_id": 0, "left": 111, "top": 134,
 "width": 61, "height": 128},
 {"class_id": 5, "left": 161, "top": 250,
 "width": 30, "height": 30},
 {"class_id": 5, "left": 20, "top": 20,
 "width": 30, "height": 30}
]
 },
 "bounding-box-metadata":
 {
 "objects":
 [
 {"confidence": 0.8},
 {"confidence": 0.9},
 {"confidence": 0.9}
],
 "class-map":
 {
 "0": "dog",
 "5": "bone"
 },
 "type": "groundtruth/object_detection",

548

Amazon SageMaker Developer Guide
Creating Instruction Pages

 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "identify-dogs-and-toys"
 }
 }

For an example notebook, see object_detection_augmented_manifest_training.ipynb

Semantic Segmentation Job Output
The following is the output from a semantic segmentation labeling job. The value of the label for this job
is a reference to a PNG file in an S3 bucket.

In addition to the standard elements, the metadata for the label includes a color map that defines which
color was used to label the image, the class name associated with the color, and the confidence score for
each color. For more information, see Semantic Segmentation Algorithm (p. 234).

{
 "source-ref": "S3 bucket location",
 "city-streets-ref": "S3 bucket location",
 "city-streets-metadata": {
 "internal-color-map": {
 "5": {
 "class-name": "buildings",
 "confidence": 0.9
 },
 "2": {
 "class-name": "road",
 "confidence": 0.9
 }
 },
 "type": "groundtruth/semantic-segmentation",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "label-city-streets",
 }
}

Confidence scores will be the same across all classes within an image. Confidence is scored on a per-
image basis.

After you create an augmented manifest file, you can use it in a training job. For more information, see
Provide Dataset Metadata to Training Jobs with an Augmented Manifest File (p. 308).

Creating Instruction Pages
Create custom instructions for labeling jobs to improve your worker's accuracy in completing their task.
You can modify the default instructions that are provided in the console or you can create your own. The
instructions are shown to the worker on the page where they complete their labeling task.

There are two kinds of instructions:

• Short instructions—instructions that are shown on the same webpage where the worker completes
their task. These instructions should provide an easy reference to show the worker the correct way to
label an object.

• Full instructions—instructions that are shown on a dialog box that overlays the page where the worker
completes their task. We recommend that you provide detailed instructions for completing the task
with multiple examples showing edge cases and other difficult situations for labeling objects.

549

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/ground_truth_labeling_jobs/object_detection_augmented_manifest_training/object_detection_augmented_manifest_training.ipynb

Amazon SageMaker Developer Guide
Short Instructions

Create instructions in the console when you are creating your labeling job. Start with the existing
instructions for the task and use the editor to modify them to suit your labeling job.

Short Instructions
Short instructions appear on the same webpage that workers use to label your data object. For example,
the following is the editing page for a bounding box task. The short instructions panel is on the left.

Keep in mind that a worker will only spend seconds looking at the short instructions. Workers must be
able to scan and understand your information quickly. In all cases it should take less time to understand
the instructions than it takes to complete the task. Keep these points in mind:

• Your instructions should be clear and simple.
• Pictures are better than words. Create a simple illustration of your task that your workers can

immediately understand.
• If you must use words, use short, concise examples.
• Your short instructions are more important than your full instructions.

The Amazon SageMaker Ground Truth console provides an editor so that you can create your short
instructions. Replace the placeholder text and images with instructions for your task. Preview the
worker's task page by choosing Preview. The preview will open in a new window, be sure to turn off pop-
up blocking so that the window will show.

550

Amazon SageMaker Developer Guide
Full Instructions

Full Instructions
You can provide additional instructions for your workers in a dialog box that overlays the page where
workers label your data objects. Use full instructions to explain more complex tasks and to show workers
the proper way to label edge cases or other difficult objects.

You can create full instructions using an editor in the Ground Truth console. As with quick instructions,
keep the following in mind:

• Workers will want detailed instruction the first few times that the complete your task. Any information
that they must have should be in the quick instructions.

• Pictures are more important than words.
• Text should be concise.
• Full instructions should supplement the short instructions. Don't repeat information that appears in

the short instructions.

The Ground Truth console provides an editor so that you can create your full instructions. Replace the
placeholder text and images with instructions for your task. Preview the full instruction page by choosing
Preview. The preview will open in a new window, be sure to turn off pop-up blocking so that the window
will show.

Add example images to your instructions
Images provide useful examples for your workers. To add a publicly accessible image to your instructions:

• Place the cursor where the image should go in the instructions editor.
• Click the image icon in the editor toolbar.
• Enter the URL of your image.

If your instruction image in Amazon S3 is not publicly accessible:

• As the image URL, enter: {{ 'https://s3.amazonaws.com/your-bucket-name/image-file-
name' | grant_read_access }}.

• This renders the image URL with a short-lived, one-time access code appended so the worker's browser
can display it. A broken image icon is displayed in the instructions editor, but previewing the tool
displays the image in the rendered preview.

Managing Your Workforce
A workforce is the group of workers that you have selected to label your dataset. You can choose either
the Amazon Mechanical Turk workforce, a vendor-managed workforce, or you can create your own
private workforce to label your dataset. Whichever you choose, Amazon SageMaker Ground Truth takes
care of sending tasks to workers.

When you use a private workforce, you also create work teams, a group of workers from your workforce
that are assigned to specific labeling jobs. You can have multiple work teams and can assign one or more
work teams to each labeling job.

Ground Truth uses Amazon Cognito to manage your workforce and work teams. For more information
about the permissions required to manage this way, see Permissions Required to Use the Amazon
SageMaker Ground Truth Console (p. 484).

Topics

551

Amazon SageMaker Developer Guide
Using the Amazon Mechanical Turk Workforce

• Using the Amazon Mechanical Turk Workforce (p. 552)
• Managing Vendor Workforces (p. 553)
• Managing a Private Workforce (p. 553)
• Create and manage Amazon SNS topics for your work teams (p. 556)

Using the Amazon Mechanical Turk Workforce
The Amazon Mechanical Turk workforce provides the most workers for your labeling job.

You can use the console to choose the Amazon Mechanical Turk workforce for your labeling job, or you
can provide the Amazon Resource Name (ARN) for the Amazon Mechanical Turk workforce when you use
the CreateLabelingJob (p. 643) operation.

Any Amazon Mechanical Turk workforce billing is handled as part of your Amazon SageMaker Ground
Truth billing. You do not need to create a separate Mechanical Turk account to use the Amazon
Mechanical Turk workforce.

The ARN for the Amazon Mechanical Turk workforce is:

• arn:aws:sagemaker:region:394669845002:workteam/public-crowd/default

The Amazon Mechanical Turk workforce is a world-wide resource. Workers are available 24 hours a day,
7 days a week. You typically get the fastest turn-around for your labeling jobs when you use the Amazon
Mechanical Turk workforce.

Adjust the number of workers that annotate each data object based on the complexity of the job
and the quality that you need. Ground Truth uses annotation consolidation to improve the quality
of the labels. More workers can make a difference in the quality of the labels for more complex
labeling jobs, but might not make a difference for simpler jobs. For more information, see Annotation
Consolidation (p. 537).

Note
Only use the Amazon Mechanical Turk workforce to label data that is public or has been stripped
of any sensitive information. You should not use the Amazon Mechanical Turk workforce for a
dataset that contains personally identifiable information, such as names or email addresses.

To choose the Amazon Mechanical Turk workforce when you are creating a labeling job using the
console, do the following during the Select workers and configure tool step:

To use the Amazon Mechanical Turk workforce

1. Choose Public from Worker types.
2. Choose The dataset does not contain adult content if your dataset doesn't contain potentially

offensive content. This enables workers to opt out if they don't want to work with it.
3. Acknowledge that your data will be viewed by the Amazon Mechanical Turk workforce and that all

personally identifiable information (PII) has been removed.
4. Choose Additional configuration to set optional parameters.
5. Optional. Enable automated data labeling to have Ground Truth automatically label some of your

dataset. For more information, see Using Automated Data Labeling (p. 539).
6. Optional. Set the number of workers that should see each object in your dataset. Using more

workers can increase the quality of your labels but also increases the cost.

Your labeling job will now be sent to the Amazon Mechanical Turk workforce. You can use the console to
continue configuring your labeling job.

552

Amazon SageMaker Developer Guide
Managing Vendor Workforces

Managing Vendor Workforces
You can use a vendor-managed workforce to label your data using Amazon SageMaker Ground Truth.
Vendors have extensive experience in providing data labeling services for the purpose of machine
learning.

Vendors make their services available via the AWS Marketplace. You can find details of the vendor's
services on their detail page, such as the number of workers and the hours that they work. You can use
these details to make estimates of how much the labeling job will cost and the amount of time that you
can expect the job to take. Once you have chosen a vendor you subscribe to their services using the AWS
Marketplace.

A subscription is an agreement between you and the vendor. The agreement spells out the details of the
agreement, such as price, schedule, or refund policy. You work directly with the vendor if there are any
issues with your labeling job.

You can subscribe to any number of vendors to meet your data annotation needs. When you create a
labeling job you can specify that the job be routed to a specific vendor.

Before you send sensitive data to a vendor, check the vendor's security practices on their detail page and
review the end user license agreement (EULA) that is part of your subscription agreement.

You must use the console to subscribe to a vendor workforce. Once you have a subscription, you can use
the ListSubscribedWorkteams (p. 801) operation to list your subscribed vendors.

To subscribe to a vendor workforce

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Labeling workforces, choose Vendor, and then choose Find data labeling services.
3. The console opens the AWS Marketplace with the data labeling services category selected. You see a

list of the data labeling services available.
4. Choose a vendor. The AWS Marketplace shows detailed information about the data labeling service.

Use this information to determine if the vendor meets your data labeling requirements.
5. If the vendor meets your requirements, choose Continue to subscribe.
6. Review the details of the subscription. If you agree to the terms, choose Subscribe to complete your

subscription to the service.

Managing a Private Workforce
A private workforce is a group of workers that you choose. These can be employees of your company or
a group of subject matter experts from your industry. For example, if the task is to label medical images,
you could create a private workforce of people knowledgeable about the images in question.

You create work teams from your private workforce. If desired, you can assign each work team to a
separate labeling job. A single worker can be in more than one work team.

Amazon SageMaker Ground Truth uses Amazon Cognito to define your private workforce and your
work teams. Amazon Cognito is a service that you can use to create identities for your workers and
authenticate these identities with identity providers. You can use providers such as the following:

• Amazon Cognito identity provider
• Social sign-in providers such as Facebook and Google
• OpenID Connect (OIDC) providers
• Security Assertion Markup Language (SAML) providers such as Active Directory

553

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Managing a Private Workforce

After your workers are set up, you use Amazon Cognito to manage them. For more information about
Amazon Cognito, see What Is Amazon Cognito?

Your workers are organized into two groups. The workforce is the entire set of workers that are available
to work on your labeling jobs. The workforce corresponds to an Amazon Cognito user pool. A work team
is a group of workers within your workforce that you can assign jobs to. The work team corresponds to
an Amazon Cognito user group. A worker can be in more than one work team.

Note
You can only use one Amazon Cognito user pool as your Ground Truth labeling workforce. If you
plan on using an existing Amazon Cognito user pool for your Ground Truth workforce, be sure to
import the user pool and create a work team before you create your first labeling job.

For more information, see Amazon Cognito User Pools.

Creating a private workforce
There are three ways that you can create a private workforce:

1. Import an existing Amazon Cognito user pool before you create your first labeling job.
2. Use the Amazon SageMaker console to create a new Amazon Cognito user pool before you create your

first labeling job.
3. Create a new Amazon Cognito user pool while you are creating your first labeling job.

If you are using a pre-existing Amazon Cognito user pool for your private workforce, you must import the
user pool into Ground Truth and create at least one work team, either by adding work team members in
the Amazon SageMaker console or by importing an Amazon Cognito work group before you create your
first labeling job for your private workforce.

After you create or import your private workforce you will see the Private workforce summary screen.
On this screen you can see information about the Amazon Cognito user pool for your workforce, a list of
work teams for your workforce, and a list of all of the members of your private workforce.

If you created your workforce using the Amazon SageMaker console, you can manage the members of
your workforce in the Amazon SageMaker console or in the Amazon Cognito console. For example, you
can use the Amazon SageMaker console to add, delete, and disable workers in the pool. If you imported
the workforce from an existing Amazon Cognito user pool, you must use the Amazon Cognito console to
manage the workforce.

Creating a workforce when creating a labeling job

If you have not created a private workforce when you create your labeling job, you are prompted to
create one. Creating the workforce also creates a default work team containing all of the members of the
workforce. If you have already created a private workforce, you instead enter the work team that should
handle the labeling job.

You provide the following information to create the workforce and work team.

• Up to 100 email addresses of the workforce members. Email addresses are case-sensitive. Your workers
must log in using the same case as the address was initially entered. You can add additional workforce
members after the job is created.

• The name of your organization. This is used to customize the email sent to the workers.
• A contact email address for workers to report issues related to the task.

When you create the labeling job an email is sent to each worker inviting them to join the workforce.
Once the workforce is created, you can add, delete, and disable workers using the Amazon SageMaker
console or the Amazon Cognito console.

554

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

Amazon SageMaker Developer Guide
Managing a Private Workforce

Creating a private workforce using the console

To create a private workforce using the console

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Labeling workforces from the left menu.
3. Select the Private tab.
4. Click the Create private team button. This process will create a private workforce and a work team.
5. Choose to Invite new workers by email or Import workers from existing Amazon Cognito user

groups.
6. To invite new workers by email.

• Paste or type a list of email addresses, separated by commas, into the email addresses box. You
may have up to 50 email addresses in this list.

• Enter an organization name and contact email.
• Optionally select an SNS topic to which to subscribe the team so workers are notified by email

when new labeling jobs become available.
• Click the Create private team button.

7. To Import workers from existing Amazon Cognito user groups.

• Choose a user pool you have created. User pools require a domain and an existing user group. If
you get an error that the domain is missing, set it in the Domain name options within the App
integration section of the Amazon Cognito control console for your group.

• Select an app client. We recommend using a SageMaker generated client.
• Select a user group from your pool to import its members.
• Optionally select an SNS topic to which to subscribe the team so workers are notified by email

when new labeling jobs become available.
• Click the Create private team button.

After you have created the workforce, Ground Truth automatically creates a work team called Everyone-
in-private-workforce. You can use this work team to assign a labeling job to your entire workforce.

Creating a Work Team
Use a work team to assign members of your private workforce to a labeling job. When you create your
workforce using the Amazon SageMaker Ground Truth console, there is a work team called Everyone-
in-private-workforce that you can use if you want to assign your entire workforce to a labeling job.
Because an imported Amazon Cognito user pool may contain members that you don't want to include in
your work teams, a similar work team is not created for Amazon Cognito user pools.

You have two choices to create a new work team. You can create a user group by using the Amazon
Cognito console and then create a work team by importing the user group. You can import more than
one user group into each work team. You manage the members of the work team by updating the user
group in the Amazon Cognito console.

You can also create a work team in the Ground Truth console and add members from your workforce to
the team.

To create a work team using the Ground Truth console

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Labeling workforces from the left menu.
3. Under Private teams, choose Create private team.

555

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide
Create and manage Amazon

SNS topics for your work teams

4. Under Team details, give the team a name. The name must be unique in your account in an AWS
Region.

5. Under Create a team using Amazon Cognito user groups, choose the method to use to create the
group.

6. If you chose Create a team by adding workers to a new Amazon Cognito user group, select the
workers to add to the team.

If you chose Create a team by importing existing Amazon Cognito user groups, choose the user
groups that are part of the new team.

7. If you select an SNS topic, all workers added to the team are subscribed to the Amazon SNS topic
and notified when new work items are available to the team. Select from a list of your existing
Ground Truth related Amazon SNS topics or select Create new topic to open a topic-creation dialog.

Workers in a workteam subscribed to a topic receive notifications when a new job for that team
becomes available and when one is about to expire.

Read Create and manage Amazon SNS topics for your work teams (p. 556) for more information on
creating and managing the Amazon SNS topic.

After you have created a work team, you can choose its name in the list of work teams to see more
information about the team and change or set the Amazon SNS topic to which its members are
subscribed. Any members of the team who were added to the team prior to the team being subscribed
to a topic will need to be subscribed to that topic manually. Teams made from more than one imported
user group must be edited in the Amazon Cognito console; otherwise you can add and remove workers
using the team detail page.

Create and manage Amazon SNS topics for your work
teams
Create the Amazon SNS topic
These instructions are needed when you:

• Create a topic to which you will subscribe an existing work team.
• Create a topic prior to creating a work team.
• Create or modify the work team with an API call and need to specify a topic ARN.

If you create a work team using the console, that process provides an option to create a new topic for the
team, and if used, handles these steps for you.

The creation of Amazon SNS topics for work team notification is similar to the steps in the Amazon SNS
Getting Started document, with one significant addition: adding an access policy so the Sagemaker
service can publish messages to the topic on your behalf.

Add the policy while creating the topic

1. In the Access policy panel, select the advanced method.
2. In the JSON editor, find the Resource property, which displays what the ARN of the topic will be

when it is created. If the value ends in "undefined," change "undefined" to the name of the topic.
3. Copy the Resource value.
4. Before the final closing bracket (]), add the following policy.

 {

556

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

Amazon SageMaker Developer Guide
Creating Custom Labeling Workflows

 "Sid": "AWSSagemaker_AccessPolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sns:Publish",
 "Resource": "resource ARN you copied in the previous step"
 }

5. Create the topic.

For more details on creating topics, see the Amazon SNS "Creating a Topic" tutorial.

Manage worker subscriptions
Workers are auto-subscribed to your topic only when a Amazon Cognito user group is created or
imported during the creation of a work team that is subscribed to the topic at creation.

If a work team is subscribed to a topic after creation, the individual members at the time of creation are
not automatically subscribed. See "Subscribing an Endpoint to an Amazon SNS Topic" for information on
subscribing the workers' email addresses to the topic.

Creating Custom Labeling Workflows
This document guides you through the process of setting up a workflow with a custom labeling
template. For more information about starting a labeling job, see Getting started (p. 533). In that
section, when you choose the Task type, select Custom labeling task, and then follow this section's
instructions to configure it.

Next
Step 1: Setting up your workforce (p. 557)

Step 1: Setting up your workforce
In this step you use the console to establish which worker type to use and make the necessary sub-
selections for the worker type. It assumes you have already completed the steps up to this point in the
Getting started (p. 533) section and have chosen the Custom labeling task as the Task type.

To configure your workforce.

1. First choose an option from the Worker types. There are three types currently available:

• Public uses an on-demand workforce of independent contractors, powered by Amazon Mechanical
Turk. They are paid on a per-task basis.

• Private uses your employees or contractors for handling data that needs to stay within your
organization.

• Vendor uses third party vendors that specialize in providing data labeling services, available via
the AWS Marketplace.

2. If you choose the Public option, you are asked to set the number of workers per dataset object.
Having more than one worker perform the same task on the same object can help increase the
accuracy of your results. The default is three. You can raise or lower that depending on the accuracy
you need.

You are also asked to set a price per taskby using a drop-down menu. The menu recommends price
points based on how long it will take to complete the task.

557

https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-subscribe-endpoint-to-topic.html

Amazon SageMaker Developer Guide
Step 2: Creating your custom labeling task template

The recommended method to determine this is to first run a short test of your task with a private
workforce. The test provides a realistic estimate of how long the task takes to complete. You can
then select the range your estimate falls within on the Price per task menu. If your average time is
more than 5 minutes, consider breaking your task into smaller units.

Next
Step 2: Creating your custom labeling task template (p. 558)

Step 2: Creating your custom labeling task template
Topics

• Starting with a base template (p. 558)
• Developing templates locally (p. 558)
• Using External Assets (p. 558)
• Track your variables (p. 559)
• A simple sample (p. 559)
• Adding automation with Liquid (p. 560)
• End-to-end demos (p. 563)
• Next (p. 563)

Starting with a base template
To get you started, the Task type starts with a drop-down menu listing a number of our more common
task types, plus a custom type. Choose one and the code editor area will be filled with a sample template
for that task type. If you prefer not to start with a sample, choose Custom HTML for a minimal template
skeleton.

If you've already created a template, upload the file directly using the Upload file button in the upper
right of the task setup area or paste your template code into the editor area.

Developing templates locally
While you need to be in the console to test how your template will process incoming data, you can test
the look and feel of your template's HTML and custom elements in your browser by adding this code to
the top of your HTML file.

Example

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

This loads the necessary code to render the custom HTML elements. Use this if you want to develop your
template's look and feel in your preferred editor rather than in the console.

Remember, though, this will not parse your variables. You may want to replace them with sample
content while developing locally.

Using External Assets
Amazon SageMaker Ground Truth custom templates allow external scripts and style sheets to be
embedded.

558

Amazon SageMaker Developer Guide
Step 2: Creating your custom labeling task template

Example

<script src="https://www.example.com/my-enhancment-script.js"></script>
<link rel="stylesheet" type="text/css" href="https://www.example.com/my-enhancement-
styles.css">

If you encounter errors, ensure that your originating server is sending the correct MIME type and
encoding headers with the assets.

For example, the MIME and encoding types for remote scripts: application/
javascript;CHARSET=UTF-8.

The MIME and encoding type for remote stylesheets: text/css;CHARSET=UTF-8.

Track your variables
In the process of building the sample below, there will be a step that adds variables to it to represent
the pieces of data that may change from task to task, worker to worker. If you're starting with one of the
sample templates, you will need to make sure you're aware of the variables it already uses. When you
create your pre-annotation AWS Lambda script, its output will need to contain values for any of those
variables you choose to keep.

The values you use for the variables can come from your manifest file. All the key-value pairs in your
data object are provided to your pre-annotation Lambda. If it's a simple pass-through script, matching
keys for values in your data object to variable names in your template is the easiest way to pass those
values through to the tasks forms your workers see.

A simple sample
All tasks begin and end with the <crowd-form> </crowd-form> elements. Like standard HTML
<form> elements, all of your form code should go between them.

For a simple tweet-analysis task, use the <crowd-classifier> element. It requires the following
attributes:

• name - the variable name to use for the result in the form output.
• categories - a JSON formatted array of the possible answers.
• header - a title for the annotation tool

As children of the <crowd-classifier> element, you must have three regions.

• <classification-target> - the text the worker will classify based on the options specified in the
categories attribute above.

• <full-instructions> - instructions that are available from the "View full instructions" link in the tool.
This can be left blank, but it is recommended that you give good instructions to get better results.

• <short-instructions> - a more brief description of the task that appears in the tool's sidebar. This can be
left blank, but it is recommended that you give good instructions to get better results.

A simple version of this tool would look like this.

Example of using crowd-classifier

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-classifier
 name="tweetFeeling"

559

Amazon SageMaker Developer Guide
Step 2: Creating your custom labeling task template

 categories="['positive','negative','neutral', 'unclear']"
 header="Which term best describes this tweet?"
 >
 <classification-target>
 My favorite football team won today!
 Bring on the division finals!
 </classification-target>

 <full-instructions header="Sentiment Analysis Instructions">
 Try to determine the sentiment the author
 of the tweet is trying to express.
 If none seem to match, choose "cannot determine."
 </full-instructions>

 <short-instructions>
 Pick the term best describing the sentiment
 of the tweet.
 </short-instructions>

 </crowd-classifier>
</crowd-form>

You can copy and paste the code into the editor in the Ground Truth labeling job creation workflow to
preview the tool, or try out a demo of this code on CodePen.

Adding automation with Liquid
Our custom template system uses Liquid for automation. It is an open source inline markup language.
For more information and documentation, visit the Liquid homepage.

The most common use of Liquid will be to parse the data coming from your pre-annotation Lambda
and pull out the relevant variables to create the task. In Liquid, the text between single curly braces and
percent symbols is an instruction or "tag" that creates control flow. Text between double curly braces is a
variable or "object" which outputs its value.

560

https://codepen.io/MTGT/full/OqBvJw
https://codepen.io/MTGT/full/OqBvJw
https://shopify.github.io/liquid/
https://shopify.github.io/liquid/

Amazon SageMaker Developer Guide
Step 2: Creating your custom labeling task template

The taskInput object returned by your Pre-annotation Lambda (p. 574) will be available as the
task.input object in your templates.

The properties in your manifest's data objects are passed into your Pre-annotation Lambda (p. 574)
as the event.dataObject. A simple pass-through script simply returns that object as the taskInput
object. You would represent values from your manifest as variables as follows.

Example Manifest data object

{
 "source": "This is a sample text for classification",
 "labels": ["angry" , "sad" , "happy" , "inconclusive"],
 "header": "What emotion is the speaker feeling?"
}

Example Sample HTML using variables

<crowd-classifier
 name='tweetFeeling'
 categories='{{ task.input.labels | to_json }}'
 header='{{ task.input.header }}' >
<classification-target>
 {{ task.input.source }}
</classification-target>

Note the addition of " | to_json" to the labels property above. That's a filter to turn the array into a
JSON representation of the array. Variable filters are explained next.

Variable filters

In addition to the standard Liquid filters and actions, Ground Truth offers a few additional filters. Filters
are applied by placing a pipe (|) character after the variable name, then specifying a filter name. Filters
can be chained in the form of:

Example

{{ <content> | <filter> | <filter> }}

Autoescape and explicit escape

By default, inputs will be HTML escaped to prevent confusion between your variable text and HTML.
You can explicitly add the escape filter to make it more obvious to someone reading the source of your
template that the escaping is being done.

escape_once

escape_once ensures that if you've already escaped your code, it doesn't get re-escaped on top of that.
For example, so that & doesn't become &amp;.

skip_autoescape

skip_autoescape is useful when your content is meant to be used as HTML. For example, you might
have a few paragraphs of text and some images in the full instructions for a bounding box.

Use skip_autoescape sparingly
The best practice in templates is to avoid passing in functional code or markup with
skip_autoescape unless you are absolutely sure you have strict control over what's being

561

Amazon SageMaker Developer Guide
Step 2: Creating your custom labeling task template

passed. If you're passing user input, you could be opening your workers up to a Cross Site
Scripting attack.

to_json

to_json will encode what you feed it to JSON (JavaScript Object Notation). If you feed it an object, it
will serialize it.

grant_read_access

grant_read_access takes an S3 URI and encodes it into an HTTPS URL with a short-lived access token
for that resource. This makes it possible to display to workers photo, audio, or video objects stored in S3
buckets that are not otherwise publicly accessible.

Example of the filters

Input

auto-escape: {{ "Have you read 'James & the Giant Peach'?" }}
explicit escape: {{ "Have you read 'James & the Giant Peach'?" | escape }}
explicit escape_once: {{ "Have you read 'James & the Giant Peach'?" | escape_once }}
skip_autoescape: {{ "Have you read 'James & the Giant Peach'?" | skip_autoescape }}
to_json: {{ jsObject | to_json }}
grant_read_access: {{ "s3://mybucket/myphoto.png" | grant_read_access }}

Example

Output

auto-escape: Have you read 'James & the Giant Peach'?
explicit escape: Have you read 'James & the Giant Peach'?
explicit escape_once: Have you read 'James & the Giant Peach'?
skip_autoescape: Have you read 'James & the Giant Peach'?
to_json: { "point_number": 8, "coords": [59, 76] }
grant_read_access: https://s3.amazonaws.com/mybucket/myphoto.png?<access token and other
 params>

Example of an automated classification template.

To automate the simple text classification sample, replace the tweet text with a variable.

The text classification template is below with automation added. The changes/additions are highlighted
in bold.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-classifier
 name="tweetFeeling"
 categories="['positive', 'negative', 'neutral', 'cannot determine']"
 header="Which term best describes this tweet?"
 >
 <classification-target>
 {{ task.input.source }}
 </classification-target>

 <full-instructions header="Analyzing a sentiment">
 Try to determine the feeling the author
 of the tweet is trying to express.
 If none seem to match, choose "other."
 </full-instructions>

562

Amazon SageMaker Developer Guide
Demo: Image Annotation with crowd-bounding-box

 <short-instructions>
 Pick the term best describing the sentiment
 of the tweet.
 </short-instructions>

 </crowd-classifier>
</crowd-form>

The tweet text that was in the prior sample is now replaced with an object. The entry.taskInput
object uses source (or another name you specify in your pre-annotation Lambda) as the property name
for the text and it is inserted directly in the HTML by virtue of being between double curly braces.

End-to-end demos
You can view the following end-to-end demos which include sample Lambdas:

• Demo Template: Annotation of Images with crowd-bounding-box (p. 563)
• Demo Template: Labeling Intents with crowd-classifier (p. 567)

Next
Step 3: Processing with AWS Lambda (p. 574)

Demo Template: Annotation of Images with crowd-
bounding-box
When you chose to use a custom template, you reach the Custom labeling task panel. There you can
choose from multiple base templates. The templates represent some of the most common tasks and
provide a sample to work from as you create your customized labeling task's template.

This demonstration works with the BoundingBox template. The demonstration also works with the AWS
Lambda functions needed for processing your data before and after the task.

Topics
• Starter Bounding Box custom template (p. 563)
• Your own Bounding Box custom template (p. 564)
• Your manifest file (p. 565)
• Your pre-annotation Lambda function (p. 565)
• Your post-annotation Lambda function (p. 566)
• The output of your labeling job (p. 567)

Starter Bounding Box custom template
This is the starter bounding box template that is provided.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-bounding-box
 name="annotatedResult"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="{{ task.input.header }}"
 labels="{{ task.input.labels | to_json | escape }}"

563

Amazon SageMaker Developer Guide
Demo: Image Annotation with crowd-bounding-box

 >

 <!-- The <full-instructions> tag is where you will define the full instructions of your
 task. -->
 <full-instructions header="Bounding Box Instructions" >
 <p>Use the bounding box tool to draw boxes around the requested target of interest:</
p>

 Draw a rectangle using your mouse over each instance of the target.
 Make sure the box does not cut into the target, leave a 2 - 3 pixel margin

 When targets are overlapping, draw a box around each object,
 include all contiguous parts of the target in the box.
 Do not include parts that are completely overlapped by another object.

 Do not include parts of the target that cannot be seen,
 even though you think you can interpolate the whole shape of the target.

 Avoid shadows, they're not considered as a part of the target.
 If the target goes off the screen, label up to the edge of the image.

 </full-instructions>

 <!-- The <short-instructions> tag allows you to specify instructions that are displayed
 in the left hand side of the task interface.
 It is a best practice to provide good and bad examples in this section for quick
 reference. -->
 <short-instructions>
 Use the bounding box tool to draw boxes around the requested target of interest.
 </short-instructions>
 </crowd-bounding-box>
</crowd-form>

The custom templates use the Liquid template language, and each of the items between double
curly braces is a variable. The pre-annotation AWS Lambda function should provide an object named
taskInput and that object's properties can be accessed as {{ task.input.<property name> }} in
your template.

Your own Bounding Box custom template
As an example, assume you have a large collection of animal photos in which you know the kind of
animal in an image from a prior image-classification job. Now you want to have a bounding box drawn
around it.

In the starter sample, there are three variables: taskObject, header, and labels.

Each of these would be represented in different parts of the bounding box.

• taskObject is an HTTP(S) URL or S3 URI for the photo to be annotated. The added |
grant_read_access is a filter that will convert an S3 URI to an HTTPS URL with short-lived access to
that resource. If you're using an HTTP(S) URL, it's not needed.

• header is the text above the photo to be labeled, something like "Draw a box around the bird in the
photo."

• labels is an array, represented as ['item1', 'item2', ...]. These are labels that can be
assigned by the worker to the different boxes they draw. You can have one or many.

Each of the variable names come from the JSON object in the response from your pre-annotation
Lambda, The names above are merely suggested, Use whatever variable names make sense to you and
will promote code readability among your team.

564

https://shopify.github.io/liquid/

Amazon SageMaker Developer Guide
Demo: Image Annotation with crowd-bounding-box

Only use variables when necessary
If a field will not change, you can remove that variable from the template and replace it with
that text, otherwise you have to repeat that text as a value in each object in your manifest or
code it into your pre-annotation Lambda function.

Example : Final Customized Bounding Box Template

To keep things simple, this template will have one variable, one label, and very basic instructions.
Assuming your manifest has an "animal" property in each data object, that value can be re-used in two
parts of the template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-bounding-box
 name="annotatedResult"
 labels="['{{ task.input.animal }}']"
 src="{{ task.input.source-ref | grant_read_access }}"
 header="Draw a box around the {{ task.input.animal }}."
 >
 <full-instructions header="Bounding Box Instructions" >
 <p>Draw a bounding box around the {{ task.input.animal }} in the image. If
 there is more than one {{ task.input.animal }} per image, draw a bounding
 box around the largest one.</p>
 <p>The box should be tight around the {{ task.input.animal }} with
 no more than a couple of pixels of buffer around the
 edges.</p>
 <p>If the image does not contain a {{ task.input.animal }}, check the
 Nothing to label box.
 </full-instructions>
 <short-instructions>
 <p>Draw a bounding box around the {{ task.input.animal }} in each image. If
 there is more than one {{ task.input.animal }} per image, draw a bounding
 box around the largest one.</p>
 </short-instructions>
 </crowd-bounding-box>
</crowd-form>

Note the re-use of {{ task.input.animal }} throughout the template. If your manifest had
all of the animal names beginning with a capital letter, you could use {{ task.input.animal |
downcase }}, incorporating one of Liquid's built-in filters in sentences where it needed to be presented
lowercase.

Your manifest file
Your manifest file should provide the variable values you're using in your template. You can do some
transformation of your manifest data in your pre-annotation Lambda, but if you don't need to, you
maintain a lower risk of errors and your Lambda will run faster. Here's a sample manifest file for the
template.

{"source-ref": "<S3 image URI>", "animal": "horse"}
{"source-ref": "<S3 image URI>", "animal" : "bird"}
{"source-ref": "<S3 image URI>", "animal" : "dog"}
{"source-ref": "<S3 image URI>", "animal" : "cat"}

Your pre-annotation Lambda function
As part of the job set-up, provide the ARN of an AWS Lambda function that can be called to process your
manifest entries and pass them to the template engine.

565

Amazon SageMaker Developer Guide
Demo: Image Annotation with crowd-bounding-box

Naming your Lambda function
The best practice in naming your function is to use one of the following four strings as part of
the function name: SageMaker, Sagemaker, sagemaker, or LabelingFunction. This applies
to both your pre-annotation and post-annotation functions.

When you're using the console, if you have AWS Lambda functions that are owned by your account, a
drop-down list of functions meeting the naming requirements will be provided to choose one.

In this very basic example, you're just passing through the information from the manifest without doing
any additional processing on it. This sample pre-annotation function is written for Python 3.7.

import json

def lambda_handler(event, context):
 return {
 "taskInput": event['dataObject']
 }

The JSON object from your manifest will be provided as a child of the event object. The properties
inside the taskInput object will be available as variables to your template, so simply setting the value
of taskInput to event['dataObject'] will pass all the values from your manifest object to your
template without having to copy them individually. If you wish to send more values to the template, you
can add them to the taskInput object.

Your post-annotation Lambda function
As part of the job set-up, provide the ARN of an AWS Lambda function that can be called to process the
form data when a worker completes a task. This can be as simple or complex as you want. If you want
to do answer consolidation and scoring as it comes in, you can apply the scoring and/or consolidation
algorithms of your choice. If you want to store the raw data for offline processing, that is an option.

Provide permissions to your post-annotation Lambda
The annotation data will be in a file designated by the s3Uri string in the payload object. To
process the annotations as they come in, even for a simple pass through function, you need to
assign S3ReadOnly access to your Lambda so it can read the annotation files.
In the Console page for creating your Lambda, scroll to the Execution role panel. Select Create
a new role from one or more templates. Give the role a name. From the Policy templates
drop-down, choose Amazon S3 object read-only permissions. Save the Lambda and the role
will be saved and selected.

The following sample is in Python 2.7.

import json
import boto3
from urlparse import urlparse

def lambda_handler(event, context):
 consolidated_labels = []

 parsed_url = urlparse(event['payload']['s3Uri']);
 s3 = boto3.client('s3')
 textFile = s3.get_object(Bucket = parsed_url.netloc, Key = parsed_url.path[1:])
 filecont = textFile['Body'].read()
 annotations = json.loads(filecont);

 for dataset in annotations:
 for annotation in dataset['annotations']:
 new_annotation = json.loads(annotation['annotationData']['content'])
 label = {
 'datasetObjectId': dataset['datasetObjectId'],

566

Amazon SageMaker Developer Guide
Demo: Text Intent with crowd-classifier

 'consolidatedAnnotation' : {
 'content': {
 event['labelAttributeName']: {
 'workerId': annotation['workerId'],
 'boxesInfo': new_annotation,
 'imageSource': dataset['dataObject']
 }
 }
 }
 }
 consolidated_labels.append(label)

 return consolidated_labels

The post-annotation Lambda will often receive batches of task results in the event object. That batch
will be the payload object the Lambda should iterate through. What you send back will be an object
meeting the API contract (p. 574).

The output of your labeling job
You'll find the output of the job in a folder named after your labeling job in the target S3 bucket you
specified. It will be in a subfolder named manifests.

For a bounding box task, the output you find in the output manifest will look a bit like the demo below.
The example has been cleaned up for printing. The actual output will be a single line per record.

Example : JSON in your output manifest

{
 "source-ref":"<URL>",
 "<label attribute name>":
 {
 "workerId":"<URL>",
 "imageSource":"<image URL>",
 "boxesInfo":"{\"annotatedResult\":{\"boundingBoxes\":[{\"height\":878, \"label
\":\"bird\", \"left\":208, \"top\":6, \"width\":809}], \"inputImageProperties\":{\"height
\":924, \"width\":1280}}}"},
 "<label attribute name>-metadata":
 {
 "type":"groundTruth/custom",
 "job_name":"<Labeling job name>",
 "human-annotated":"yes"
 },
 "animal" : "bird"
}

Note how the additional animal attribute from your original manifest is passed to the output manifest
on the same level as the source-ref and labeling data. Any properties from your input manifest,
whether they were used in your template or not, will be passed to the output manifest.

This should help you create your own custom template.

Demo Template: Labeling Intents with crowd-
classifier
If you choose a custom template, you'll reach the Custom labeling task panel. There you can select from
multiple starter templates that represent some of the more common tasks. The templates provide a
starting point to work from in building your customized labeling task's template.

567

Amazon SageMaker Developer Guide
Demo: Text Intent with crowd-classifier

In this demonstration, you work with the Intent Detection template, which uses the crowd-
classifier (p. 582) element, and the AWS Lambda functions needed for processing your data
before and after the task.

Topics

• Starter Intent Detection custom template (p. 568)

• Your Intent Detection custom template (p. 568)

• Your pre-annotation Lambda function (p. 572)

• Your post-annotation Lambda function (p. 572)

• Your labeling job output (p. 573)

Starter Intent Detection custom template

This is the intent detection template that is provided as a starting point.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-classifier
 name="intent"
 categories="{{ task.input.labels | to_json | escape }}"
 header="Pick the most relevant intention expressed by the below text"
 >
 <classification-target>
 {{ task.input.utterance }}
 </classification-target>

 <full-instructions header="Intent Detection Instructions">
 <p>Select the most relevant intention expressed by the text.</p>
 <div>
 <p>Example: I would like to return a pair of shoes</p>
 <p>Intent: Return</p>
 </div>
 </full-instructions>

 <short-instructions>
 Pick the most relevant intention expressed by the text
 </short-instructions>
 </crowd-classifier>
</crowd-form>

The custom templates use the Liquid template language, and each of the items between double
curly braces is a variable. The pre-annotation AWS Lambda function should provide an object named
taskInput and that object's properties can be accessed as {{ task.input.<property name> }} in
your template.

Your Intent Detection custom template

In the starter template, there are two variables: the task.input.labels property in the crowd-
classifier element opening tag and the task.input.utterance in the classification-target
region's content.

Unless you need to offer different sets of labels with different utterances, avoiding a variable and
just using text will save processing time and creates less possibility of error. The template used in this
demonstration will remove that variable, but variables and filters like to_json are explained in more
detail in the crowd-bounding-box demonstration article.

568

https://shopify.github.io/liquid/

Amazon SageMaker Developer Guide
Demo: Text Intent with crowd-classifier

Styling Your Elements

Two parts of these custom elements that sometimes get overlooked are the <full-instructions>
and <short-instructions> regions. Good instructions generate good results.

In the elements that include these regions, the <short-instructions> appear automatically in the
"Instructions" pane on the left of the worker's screen. The <full-instructions> are linked from the
"View full instructions" link near the top of that pane. Clicking the link opens a modal pane with more
detailed instructions.

You can not only use HTML, CSS, and JavaScript in these sections, you are encouraged to if you believe
you can provide a strong set of instructions and examples that will help workers complete your tasks
with better speed and accuracy.

Example Try out a sample with JSFiddle

Try out an example <crowd-classifier> task. The example is rendered by JSFiddle, therefore all the
template variables are replaced with hard-coded values. Click the "View full instructions" link to see a set
of examples with extended CSS styling. You can fork the project to experiment with your own changes to
the CSS, adding sample images, or adding extended JavaScript functionality.

Example : Final Customized Intent Detection Template

This uses the example <crowd-classifier> task, but with a variable for the <classification-
target>. If you are trying to keep a consistent CSS design among a series of different labeling jobs, you
can include an external stylesheet using a <link rel...> element the same way you'd do in any other
HTML document.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-classifier
 name="intent"
 categories="['buy', 'eat', 'watch', 'browse', 'leave']"

569

https://jsfiddle.net/MTGT_Fiddle_Manager/bjc0y1vd/35/
https://jsfiddle.net/MTGT_Fiddle_Manager/bjc0y1vd/35/
https://jsfiddle.net/MTGT_Fiddle_Manager/bjc0y1vd/35/

Amazon SageMaker Developer Guide
Demo: Text Intent with crowd-classifier

 header="Pick the most relevant intent expressed by the text below"
 >
 <classification-target>
 {{ task.input.source }}
 </classification-target>

 <full-instructions header="Emotion Classification Instructions">
 <p>In the statements and questions provided in this exercise, what category of action
 is the speaker interested in doing?</p>
 <table>
 <tr>
 <th>Example Utterance</th>
 <th>Good Choice</th>
 </tr>
 <tr>
 <td>When is the Seahawks game on?</td>
 <td>
 eat

 <greenbg>watch</greenbg>
 <botchoice>browse</botchoice>
 </td>
 </tr>
 <tr>
 <th>Example Utterance</th>
 <th>Bad Choice</th>
 </tr>
 <tr>
 <td>When is the Seahawks game on?</td>
 <td>
 buy

 <greenbg>eat</greenbg>
 <botchoice>watch</botchoice>
 </td>
 </tr>
 </table>
 </full-instructions>

 <short-instructions>
 What is the speaker expressing they would like to do next?
 </short-instructions>
 </crowd-classifier>
</crowd-form>
<style>
 greenbg {
 background: #feee23;
 display: block;
 }

 table {
 border-collapse: collapse; / IE7 and lower */
 border-spacing: 0;
 }

 th, tfoot, .fakehead {
 background-color: #8888ee;
 color: #f3f3f3;
 font-weight: 700;
 }

 th, td, tfoot {
 border: 1px solid blue;
 }

 th:first-child {
 border-radius: 6px 0 0 0;
 }

570

Amazon SageMaker Developer Guide
Demo: Text Intent with crowd-classifier

 th:last-child {
 border-radius: 0 6px 0 0;
 }

 th:only-child{
 border-radius: 6px 6px 0 0;
 }

 tfoot:first-child {
 border-radius: 0 0 6px 0;
 }

 tfoot:last-child {
 border-radius: 0 0 0 6px;
 }

 tfoot:only-child{
 border-radius: 6px 6px;
 }

 td {
 padding-left: 15px ;
 padding-right: 15px ;
 }

 botchoice {
 display: block;
 height: 17px;
 width: 490px;
 overflow: hidden;
 position: relative;
 background: #fff;
 padding-bottom: 20px;
 }

 botchoice:after {
 position: absolute;
 bottom: 0;
 left: 0;
 height: 100%;
 width: 100%;
 content: "";
 background: linear-gradient(to top,
 rgba(255,255,255, 1) 55%,
 rgba(255,255,255, 0) 100%
);
 pointer-events: none; /* so the text is still selectable */
 }
</style>

Example : Your manifest file

If you are preparing your manifest file manually for a text-classification task like this, have your data
formatted in the following manner.

{"source": "Roses are red"}
{"source": "Violets are Blue"}
{"source": "Ground Truth is the best"}
{"source": "And so are you"}

This differs from the manifest file used for the "Demo Template: Annotation of Images with crowd-
bounding-box (p. 563)" demonstration in that source-ref was used as the property name instead

571

Amazon SageMaker Developer Guide
Demo: Text Intent with crowd-classifier

of source. The use of source-ref designates S3 URIs for images or other files that must be converted
to HTTP. Otherwise, source should be used like it is with the text strings above.

Your pre-annotation Lambda function
As part of the job set-up, provide the ARN of an AWS Lambda that can be called to process your manifest
entries and pass them to the template engine.

This Lambda function is required to have one of the following four strings as part of the function name:
SageMaker, Sagemaker, sagemaker, or LabelingFunction.

This applies to both your pre-annotation and post-annotation Lambdas.

When you're using the console, if you have Lambdas that are owned by your account, a drop-down list of
functions meeting the naming requirements will be provided to choose one.

In this very basic sample, where you have only one variable, it's primarily a pass-through function. Here's
a sample pre-labeling Lambda using Python 3.7.

import json

def lambda_handler(event, context):
 return {
 "taskInput": event['dataObject']
 }

The dataObject property of the event contains the properties from a data object in your manifest.

In this demonstration, which is a simple pass through, you just pass that straight through as
the taskInput value. If you add properties with those values to the event['dataObject']
object, they will be available to your HTML template as Liquid variables with the format
{{ task.input.<property name> }}.

Your post-annotation Lambda function
As part of the job set up, provide the ARN of an Lambda function that can be called to process the
form data when a worker completes a task. This can be as simple or complex as you want. If you want
to do answer-consolidation and scoring as data comes in, you can apply the scoring or consolidation
algorithms of your choice. If you want to store the raw data for offline processing, that is an option.

Set permissions for your post-annotation Lambda function
The annotation data will be in a file designated by the s3Uri string in the payload object. To
process the annotations as they come in, even for a simple pass through function, you need to
assign S3ReadOnly access to your Lambda so it can read the annotation files.
In the Console page for creating your Lambda, scroll to the Execution role panel. Select Create
a new role from one or more templates. Give the role a name. From the Policy templates
drop-down, choose Amazon S3 object read-only permissions. Save the Lambda and the role
will be saved and selected.

The following sample is for Python 3.7.

import json
import boto3
from urllib.parse import urlparse

def lambda_handler(event, context):
 consolidated_labels = []

572

Amazon SageMaker Developer Guide
Demo: Text Intent with crowd-classifier

 parsed_url = urlparse(event['payload']['s3Uri']);
 s3 = boto3.client('s3')
 textFile = s3.get_object(Bucket = parsed_url.netloc, Key = parsed_url.path[1:])
 filecont = textFile['Body'].read()
 annotations = json.loads(filecont);

 for dataset in annotations:
 for annotation in dataset['annotations']:
 new_annotation = json.loads(annotation['annotationData']['content'])
 label = {
 'datasetObjectId': dataset['datasetObjectId'],
 'consolidatedAnnotation' : {
 'content': {
 event['labelAttributeName']: {
 'workerId': annotation['workerId'],
 'result': new_annotation,
 'labeledContent': dataset['dataObject']
 }
 }
 }
 }
 consolidated_labels.append(label)

 return consolidated_labels

Your labeling job output
The post-annotation Lambda will often receive batches of task results in the event object. That batch will
be the payload object the Lambda should iterate through.

You'll find the output of the job in a folder named after your labeling job in the target S3 bucket you
specified. It will be in a subfolder named manifests.

For an intent detection task, the output in the output manifest will look a bit like the demo below. The
example has been cleaned up and spaced out to be easier for humans to read. The actual output will be
more compressed for machine reading.

Example : JSON in your output manifest

[
 {
 "datasetObjectId":"<Number representing item's place in the manifest>",
 "consolidatedAnnotation":
 {
 "content":
 {
 "<name of labeling job>":
 {
 "workerId":"private.us-east-1.XXXXXXXXXXXXXXXXXXXXXX",
 "result":
 {
 "intent":
 {
 "label":"<label chosen by worker>"
 }
 },
 "labeledContent":
 {
 "content":"<text content that was labeled>"
 }
 }
 }

573

Amazon SageMaker Developer Guide
Step 3: Processing with AWS Lambda

 }
 },
 "datasetObjectId":"<Number representing item's place in the manifest>",
 "consolidatedAnnotation":
 {
 "content":
 {
 "<name of labeling job>":
 {
 "workerId":"private.us-east-1.6UDLPKQZHYWJQSCA4MBJBB7FWE",
 "result":
 {
 "intent":
 {
 "label": "<label chosen by worker>"
 }
 },
 "labeledContent":
 {
 "content": "<text content that was labeled>"
 }
 }
 }
 }
 },
 ...
 ...
 ...
]

This should help you create and use your own custom template.

Step 3: Processing with AWS Lambda
In this step, you set which AWS Lambda functions to trigger on each dataset object prior to sending
it to workers and which function will be used to process the results once the task is submitted. These
functions are required.

You will first need to visit the AWS Lambda console or use AWS Lambda's APIs to create your functions.
The AmazonSageMakerFullAccess policy is restricted to invoking AWS Lambda functions with one
of the following four strings as part of the function name: SageMaker, Sagemaker, sagemaker, or
LabelingFunction. This applies to both your pre-annotation and post-annotation Lambdas. If you
choose to use names without those strings, you must explicitly provide lambda:InvokeFunction
permission to the IAM role used for creating the labeling job.

Select your lambdas from the Lambda functions section that comes after the code editor for your
custom HTML in the Ground Truth console.

If you need an example, there is an end-to-end demo, including Python code for the Lambdas, in the
"Demo Template: Annotation of Images with crowd-bounding-box (p. 563)" document.

Pre-annotation Lambda
Before a labeling task is sent to the worker, your AWS Lambda function will be sent a JSON formatted
request to provide details.

Example of a Pre-annotation request

{
 "version": "2018-10-16",

574

Amazon SageMaker Developer Guide
Step 3: Processing with AWS Lambda

 "labelingJobArn": <labelingJobArn>
 "dataObject" : {
 "source-ref": "s3://mybucket/myimage.png"
 }
}

The dataObject will contain the JSON formatted properties from your manifest's data object. For
a very basic image annotation job, it might just be a source-ref property specifying the image to
be annotated. The JSON line objects in your manifest can be up to 100 kilobytes in size and contain a
variety of data.

In return, Ground Truth will require a response formatted like this:

Example of expected return data

{
 "taskInput": <json object>,
 "isHumanAnnotationRequired": <boolean> # Optional
}

That <json object> may be a bit deceiving. It needs to contain all the data your custom form will
need. If you're doing a bounding box task where the instructions stay the same all the time, it may just
be the HTTP(S) or S3 resource for your image file. If it's a sentiment analysis task and different objects
may have different choices, it would be the object reference as a string and the choices as an array of
strings.

Implications of isHumanAnnotationRequired
This value is optional because it will default to true. The primary use case for explicitly setting
it is when you want to exclude this data object from being labeled by human workers.

If you have a mix of objects in your manifest, with some requiring human annotation and some not
needing it, you can include a isHumanAnnotationRequired value in each data object. You can then
use code in your pre-annotation Lambda to read the value from the data object and set the value in your
Lambda output.

The pre-annotation Lambda runs first
Before any tasks are available to workers, your entire manifest will be processed into an
intermediate form, using your Lambda. This means you won't be able to change your Lambda
part of the way through a labeling job and see that have an impact on the remaining tasks.

Post-annotation Lambda
When the worker has completed the task, Ground Truth will send the results to your Post-annotation
Lambda. This Lambda is generally used for Annotation Consolidation (p. 537). The request object will
come in like this:

Example of a post-labeling task request

{
 "version": "2018-10-16",
 "labelingJobArn": <labelingJobArn>,
 "labelCategories": [<string>],
 "labelAttributeName": <string>,
 "roleArn" : "string",
 "payload": {
 "s3Uri": <string>
 }
 }

575

Amazon SageMaker Developer Guide
Step 3: Processing with AWS Lambda

Post-labeling task Lambda permissions

The actual annotation data will be in a file designated by the s3Uri string in the payload object. To
process the annotations as they come in, even for a simple pass through function, you need to assign the
necessary permissions to your Lambda to read files from your S3 bucket.

In the Console page for creating your Lambda, scroll to the Execution role panel. Select Create a new
role from one or more templates. Give the role a name. From the Policy templates drop-down, choose
Amazon S3 object read-only permissions. Save the Lambda and the role will be saved and selected.

Example of an annotation data file

[
 {
 "datasetObjectId": <string>,
 "dataObject": {
 "s3Uri": <string>,
 "content": <string>
 },
 "annotations": [{
 "workerId": <string>,
 "annotationData": {
 "content": <string>,
 "s3Uri": <string>
 }
 }]
 }
]

Essentially, all the fields from your form will be in the content object. At this point you can start
running data consolidation algorithms on the data, using an AWS database service to store results. Or
you can pass some processed/optimized results back to Ground Truth for storage in your consolidated
annotation manifests in the S3 bucket you specify for output during the configuration of the labeling
job.

In return, Ground Truth will require a response formatted like this:

Example of expected return data

[
 {
 "datasetObjectId": <string>,
 "consolidatedAnnotation": {
 "content": {
 "<labelattributename>": {
 # ... label content
 }
 }
 }
 },
 {
 "datasetObjectId": <string>,
 "consolidatedAnnotation": {
 "content": {
 "<labelattributename>": {
 # ... label content
 }
 }
 }
 }
 .

576

Amazon SageMaker Developer Guide
Custom Workflows via the API

 .
 .
]

At this point, all the data you're sending to your S3 bucket, other than the datasetObjectId will be in
the content object.

That will result in an entry in your job's consolidation manifest like this:

Example of label format in output manifest

{ "source-ref"/"source" : "<s3uri or content>",
 "<labelAttributeName>": {
 # ... label content from you
 },
 "<labelAttributeName>-metadata": { # This will be added by Ground Truth
 "job_name": <labelingJobName>,
 "type": "groundTruth/custom",
 "human-annotated": "yes",
 "creation_date": <date> # Timestamp of when received from Post-labeling Lambda
 }
}

Because of the potentially complex nature of a custom template and the data it collects, Ground Truth
does not offer further processing of the data or insights into it.

Next
Custom Workflows via the API (p. 577)

Custom Workflows via the API
When you have created your custom UI template (Step 2) and processing Lambda functions
(Step 3), you should place the template in an Amazon S3 bucket with a file name format of:
<FileName>.liquid.html.

Use the CreateLabelingJob (p. 643) action to configure your task. You'll use the location of
a custom template (Step 2: Creating your custom labeling task template (p. 558)) stored in
a <filename>.liquid.html file on S3 as the value for the UiTemplateS3Uri field in the
UiConfig (p. 1036) object within the HumanTaskConfig (p. 907) object.

For the AWS Lambda tasks described in Step 3: Processing with AWS Lambda (p. 574), the post-
annotation task's ARN will be used as the value for the AnnotationConsolidationLambdaArn field,
and the pre-annotation task will be used as the value for the PreHumanTaskLambdaArn.

HTML Elements Reference
Amazon SageMaker Ground Truth provides customers with the ability to design their own custom task
templates in HTML. Documentation of how to implement custom templates is available in Creating
Custom Labeling Workflows (p. 557). Below is a list of enhanced HTML elements that make building a
custom template easier and provide a familiar UI for workers.

Topics
• crowd-bounding-box (p. 578)
• crowd-image-classifier (p. 581)
• crowd-classifier (p. 582)

577

Amazon SageMaker Developer Guide
HTML Elements Reference

• crowd-instance-segmentation (p. 583)
• crowd-semantic-segmentation (p. 585)
• crowd-entity-annotation (p. 587)
• crowd-alert (p. 589)
• crowd-badge (p. 590)
• crowd-button (p. 591)
• crowd-card (p. 592)
• crowd-checkbox (p. 592)
• crowd-fab (p. 594)
• crowd-form (p. 595)
• crowd-icon-button (p. 595)
• crowd-input (p. 596)
• crowd-instructions (p. 598)
• crowd-keypoint (p. 599)
• crowd-modal (p. 601)
• crowd-polygon (p. 602)
• crowd-radio-button (p. 607)
• crowd-radio-group (p. 608)
• crowd-slider (p. 609)
• crowd-tab (p. 610)
• crowd-tabs (p. 610)
• crowd-text-area (p. 611)
• crowd-toast (p. 612)
• crowd-toggle-button (p. 613)

crowd-bounding-box
A widget for drawing rectangles on an image and assigning a label to the portion of the image that is
enclosed in each rectangle.

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to the image portion
enclosed by a rectangle. Limit: 10 labels.

name

The name of this widget. It's used as a key for the widget's input in the form output.

src

The URL of the image on which to draw bounding boxes.

578

Amazon SageMaker Developer Guide
HTML Elements Reference

initial-value

An array of JSON objects, each of which sets a bounding box when the component is loaded. Each JSON
object in the array contains the following properties.

• height – The height of the box in pixels.
• label – The text assigned to the box as part of the labeling task. This text must match one of the labels

defined in the labels attribute of the <crowd-bounding-box> element.
• left – Distance of the top-left corner of the box from the left side of the image, measured in pixels.
• top – Distance of the top-left corner of the box from the top of the image, measured in pixels.
• width – The width of the box in pixels.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: full-instructions (p. 579), short-instructions (p. 579)

Regions

The following regions are required by this element.

full-instructions

General instructions about how to draw bounding boxes.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

boundingBoxes

An array of JSON objects, each of which specifies a bounding box that has been created by the worker.
Each JSON object in the array contains the following properties.

• height – The height of the box in pixels.
• label – The text assigned to the box as part of the labeling task. This text must match one of the labels

defined in the labels attribute of the <crowd-bounding-box> element.
• left – Distance of the top-left corner of the box from the left side of the image, measured in pixels.
• top – Distance of the top-left corner of the box from the top of the image, measured in pixels.
• width – The width of the box in pixels.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker. This
object contains the following properties.

• height – The height, in pixels, of the image.
• width – The width, in pixels, of the image.

579

Amazon SageMaker Developer Guide
HTML Elements Reference

Example : Sample Element Outputs

The following are samples of outputs from common use scenarios for this element.

Single Label, Single Box / Multiple Label, Single Box

[
 {
 "annotatedResult": {
 "boundingBoxes": [
 {
 "height": 401,
 "label": "Dog",
 "left": 243,
 "top": 117,
 "width": 187
 }
],
 "inputImageProperties": {
 "height": 533,
 "width": 800
 }
 }
 }
]

Single Label, Multiple Box

[
 {
 "annotatedResult": {
 "boundingBoxes": [
 {
 "height": 401,
 "label": "Dog",
 "left": 243,
 "top": 117,
 "width": 187
 },
 {
 "height": 283,
 "label": "Dog",
 "left": 684,
 "top": 120,
 "width": 116
 }
],
 "inputImageProperties": {
 "height": 533,
 "width": 800
 }
 }
 }
]

Multiple Label, Multiple Box

[
 {
 "annotatedResult": {
 "boundingBoxes": [
 {

580

Amazon SageMaker Developer Guide
HTML Elements Reference

 "height": 395,
 "label": "Dog",
 "left": 241,
 "top": 125,
 "width": 158
 },
 {
 "height": 298,
 "label": "Cat",
 "left": 699,
 "top": 116,
 "width": 101
 }
],
 "inputImageProperties": {
 "height": 533,
 "width": 800
 }
 }
 }
]

You could have many labels available, but only the ones that are used appear in the output.

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-image-classifier
A widget for classifying an image, which can be a JPG, PNG, or GIF, with no size limit.

Attributes

The following attributes are required by this element.

categories

A JSON formatted array of strings, each of which is a category that a worker can assign to the image. You
should include "other" as a category, so that the worker can provide an answer. You can specify up to 10
categories.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

name

The name of this widget. It is used as a key for the widget's input in the form output.

src

The URL of the image to be classified.

Element Hierarchy

This element has the following parent and child elements.

581

Amazon SageMaker Developer Guide
HTML Elements Reference

• Parent elements: crowd-form (p. 595)

• Child elements: full-instructions (p. 582), short-instructions (p. 582)

Regions

The following regions are required by this element.

full-instructions

General instructions about how to do image classification.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The output of this element is a string that specifies one of the values defined in the categories attribute
of the <crowd-image-classifier> element.

Example : Sample Element Outputs

The following is a sample of output from this element.

[
 {
 "<name>": {
 "label": "<value>"
 }
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-classifier
A widget for classifying non-image content, such as audio, video, or text.

Attributes

The following attributes are supported by this element.

categories

A JSON formatted array of strings, each of which is a category that a worker can assign to the to the text.
You should include "other" as a category, otherwise the worker my not be able to provide an answer.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

582

Amazon SageMaker Developer Guide
HTML Elements Reference

name

The name of this widget. It is used as a key for the widget's input in the form output.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: classification-target (p. 583), full-instructions (p. 583), short-instructions (p. 583)

Regions

The following regions are supported by this element.

classification-target

The content to be classified by the worker. This can be plain text or HTML. Examples of how the HTML
can be used include but are not limited to embedding a video or audio player, embedding a PDF, or
performing a comparison of two or more images.

full-instructions

General instructions about how to do text classification.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The output of this element is an object using the specified name value as a property name, and a string
from the categories as the property's value.

Example : Sample Element Outputs

The following is a sample of output from this element.

[
 {
 "<name>": {
 "label": "<value>"
 }
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-instance-segmentation
A widget for identifying individual instances of specific objects within an image and creating a colored
overlay for each labeled instance.

583

Amazon SageMaker Developer Guide
HTML Elements Reference

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to an instance of an
object in the image. Workers can generate different overlay colors for each relevant instance by selecting
"add instance" under the label in the tool.

name

The name of this widget. It is used as a key for the labeling data in the form output.

src

The URL of the image that is to be labeled.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

• Child elements: full-instructions (p. 584), short-instructions (p. 584)

Regions

The following regions are supported by this element.

full-instructions

General instructions about how to do image segmentation.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

labeledImage

A JSON Object containing a Base64 encoded PNG of the labels.

instances

A JSON Array containing objects with the instance labels and colors.

• color – The hexadecimal value of the label's RGB color in the labeledImage PNG.

• label – The label given to overlay(s) using that color. This value may repeat, because the different
instances of the label are identified by their unique color.

584

Amazon SageMaker Developer Guide
HTML Elements Reference

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker. This
object contains the following properties.

• height – The height, in pixels, of the image.
• width – The width, in pixels, of the image.

Example : Sample Element Outputs

The following is a sample of output from this element.

[
 {
 "annotatedResult": {
 "inputImageProperties": {
 "height": 533,
 "width": 800
 },
 "instances": [
 {
 "color": "#1f77b4",
 "label": "<Label 1>":
 },
 {
 "color": "#2ca02c",
 "label": "<Label 1>":
 },
 {
 "color": "#ff7f0e",
 "label": "<Label 3>":
 },
],
 "labeledImage": {
 "pngImageData": "<Base-64 Encoded Data>"
 }
 }
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-semantic-segmentation
A widget for segmenting an image and assigning a label to each image segment.

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

585

Amazon SageMaker Developer Guide
HTML Elements Reference

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to a segment of the
image.

name

The name of this widget. It is used as a key for the widget's input in the form output.

src

The URL of the image that is to be segmented.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: full-instructions (p. 586), short-instructions (p. 586)

Regions

The following regions are supported by this element.

full-instructions

General instructions about how to do image segmentation.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

labeledImage

A JSON Object containing a Base64 encoded PNG of the labels.

labelMappings

A JSON Object containing objects with named with the segmentation labels.

• color – The hexadecimal value of the label's RGB color in the labeledImage PNG.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker. This
object contains the following properties.

• height – The height, in pixels, of the image.
• width – The width, in pixels, of the image.

Example : Sample Element Outputs

The following is a sample of output from this element.

586

Amazon SageMaker Developer Guide
HTML Elements Reference

[
 {
 "annotatedResult": {
 "inputImageProperties": {
 "height": 533,
 "width": 800
 },
 "labelMappings": {
 "<Label 2>": {
 "color": "#ff7f0e"
 },
 "<label 3>": {
 "color": "#2ca02c"
 },
 "<label 1>": {
 "color": "#1f77b4"
 }
 },
 "labeledImage": {
 "pngImageData": "<Base-64 Encoded Data>"
 }
 }
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-entity-annotation
A widget for labeling words, phrases, or character strings within a longer text.

Important: Self-contained Widget
Do not use <crowd-entity-annotation> element with the <crowd-form> element. It
contains its own form submission logic and Submit button.

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

initial-value

A JSON formatted array of objects, each of which defines an annotation to apply to the text at
initialization. Objects contain a label value that matches one in the labels attribute, an integer
startOffset value for labeled span's starting unicode offset, and an integer endOffset value for the
ending unicode offset.

Example

[
 {

587

Amazon SageMaker Developer Guide
HTML Elements Reference

 label: 'person',
 startOffset: 0,
 endOffset: 16
 },
 ...
]

labels

A JSON formatted array of objects, each of which contains:

• label (required): The name used to identify entities.
• fullDisplayName (optional): Used for the label list in the task widget. Defaults to the label value if

not specified.
• shortDisplayName (optional): An abbreviation of 3-4 letters to display above selected entities.

Defaults to the label value if not specified.

shortDisplayName is highly recommended
Values displayed above the selections can overlap and create difficulty managing labeled
entities in the workspace. Providing a 3-4 character shortDisplayName for each label
is highly recommended to prevent overlap and keep the workspace manageable for your
workers.

Example

[
 {
 label: 'person',
 shortDisplayName: 'per',
 fullDisplayName: 'person'
 }
]

name

Serves as the widget's name in the DOM. It is also used as the label attribute name in form output and
the output manifest.

text

The text to be annotated. The templating system escapes quotes and HTML strings by default. If your
code is already escaped or partially escaped, see Variable filters (p. 561) for more ways to control
escaping.

Element Hierarchy

This element has the following parent and child elements.

• Child elements: full-instructions (p. 588), short-instructions (p. 589)

Regions

The following regions are supported by this element.

full-instructions

General instructions about how to work with the widget.

588

Amazon SageMaker Developer Guide
HTML Elements Reference

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

entities

A JSON object that specifies the start, end, and label of an annotation. This object contains the following
properties.

• label – The assigned label.
• startOffset – The Unicode offset of the beginning of the selected text.
• endOffset – The Unicode offset of the first character after the selection.

Example : Sample Element Outputs

The following is a sample of the output from this element.

{
 "myAnnotatedResult": {
 "entities": [
 {
 "endOffset": 54,
 "label": "person",
 "startOffset": 47
 },
 {
 "endOffset": 97,
 "label": "event",
 "startOffset": 93
 },
 {
 "endOffset": 219,
 "label": "date",
 "startOffset": 212
 },
 {
 "endOffset": 271,
 "label": "location",
 "startOffset": 260
 }
]
 }
}

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-alert
A message that alerts the worker to a current situation.

589

Amazon SageMaker Developer Guide
HTML Elements Reference

Attributes

The following attributes are supported by this element.

dismissible

A Boolean switch that, if present, allows the message to be closed by the worker.

type

A string that specifies the type of message to be displayed. The possible values are "info" (the default),
"success", "error", and "warning".

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-badge
An icon that floats over the top right corner of another element to which it is attached.

Attributes

The following attributes are supported by this element.

for

A string that specifies the ID of the element to which the badge is attached.

icon

A string that specifies the icon to be displayed in the badge. The string must be either the name of an
icon from the open-source iron-icons set, which is pre-loaded, or the URL to a custom icon.

This attribute overrides the label attribute.

label

The text to display in the badge. Three characters or less is recommended because text that is too large
will overflow the badge area. An icon can be displayed instead of text by setting the icon attribute.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: none

590

https://github.com/PolymerElements/iron-icons

Amazon SageMaker Developer Guide
HTML Elements Reference

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-button
A styled button that represents some action.

Attributes

The following attributes are supported by this element.

disabled

A Boolean switch that, if present, displays the button as disabled and prevents clicks.

form-action

A switch that either submits its parent crowd-form (p. 595) element, if set to "submit", or resets its
parent <crowd-form> element, if set to "reset".

href

The URL to an online resource. Use this property if you need a link styled as a button.

icon

A string that specifies the icon to be displayed next to the button's text. The string must be either the
name of an icon from the open-source iron-icons set, which is pre-loaded, or the URL to a custom icon.

The icon is positioned to either the left or the right of the text, as specified by the icon-align attribute.

icon-align

The left or right position of the icon relative to the button's text. The default is "left".

icon-url

A URL to a custom image for the icon. A custom image can be used in place of a standard icon that is
specified by the icon attribute.

loading

A Boolean switch that, if present, displays the button as being in a loading state. This attribute has
precedence over the disabled attribute if both attributes are present.

target

When you use the href attribute to make the button act as a hyperlink to a specific URL, the target
attribute optionally targets a frame or window where the linked URL should load.

variant

The general style of the button. Use "primary" for primary buttons, "normal" for secondary buttons,
"link" for tertiary buttons, or "icon" to display only the icon without text.

591

https://github.com/PolymerElements/iron-icons

Amazon SageMaker Developer Guide
HTML Elements Reference

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-card
A box with an elevated appearance for displaying information.

Attributes

The following attributes are supported by this element.

heading

The text displayed at the top of the box.

image

A URL to an image to be displayed within the box.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-checkbox
A UI component that can be checked or unchecked allowing a user to select multiple options from a set.

Attributes

The following attributes are supported by this element.

checked

A Boolean switch that, if present, displays the check box as checked.

592

Amazon SageMaker Developer Guide
HTML Elements Reference

disabled

A Boolean switch that, if present, displays the check box as disabled and prevents it from being checked.

name

A string that is used to identify the answer submitted by the worker. This value will match a key in the
JSON object that specifies the answer.

required

A Boolean switch that, if present, requires the worker to provide input.

value

A string used as the name for the check box state in the output. Defaults to "on" if not specified.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

• Child elements: none

Output

Provides a JSON object. The name string is the object name and the valuestring is the property name
for a Boolean value based on the check box state; true if checked, false if not checked.

Example : Sample Element Outputs

Using the same name value for multiple boxes.

<!-- INPUT -->
<div><crowd-checkbox name="myformbit" value="Red"> Red </div>
<div><crowd-checkbox name="myformbit" value="Yellow"> Yellow </div>
<div><crowd-checkbox name="myformbit" value="Green"> Green </div>

//Output with "Red" checked
[
 {
 "myformbit": {
 "Green": false,
 "Red": true,
 "Yellow": false
 }
 }
]

Note that all three color values are properties of a single object.

Using different name values for each box.

<!-- INPUT -->
<div><crowd-checkbox name="Stop" value="Red"> Red </div>
<div><crowd-checkbox name="Slow" value="Yellow"> Yellow </div>

593

Amazon SageMaker Developer Guide
HTML Elements Reference

<div><crowd-checkbox name="Go" value="Green"> Green </div>

//Output with "Red" checked
[
 {
 "Go": {
 "Green": false
 },
 "Slow": {
 "Yellow": false
 },
 "Stop": {
 "Red": true
 }
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-fab
A floating button with an image in its center.

Attributes

The following attributes are supported by this element.

disabled

A Boolean switch that, if present, displays the floating button as disabled and prevents clicks.

icon

A string that specifies the icon to be displayed in the center of the button. The string must be either the
name of an icon from the open-source iron-icons set, which is pre-loaded, or the URL to a custom icon.

label

A string consisting of a single character that can be used instead of an icon. Emojis or multiple characters
may result in the button displaying an ellipsis instead.

title

A string that will display as a tool tip when the mouse hovers over the button.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

• Child elements: none

594

https://github.com/PolymerElements/iron-icons

Amazon SageMaker Developer Guide
HTML Elements Reference

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-form
The form wrapper for all custom tasks. Sets and implements important actions for the proper
submission of your form data.

If a crowd-button (p. 591) of type "submit" is not included inside the <crowd-form> element, it will
automatically be appended within the <crowd-form> element.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: none
• Child elements: Any of the UI Template (p. 577) elements

Element Events

The crowd-form element extends the standard HTML form element and inherits its events, such as
onclick and onsubmit.

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-icon-button
A button with an image placed in the center. When the user touches the button, a ripple effect emanates
from the center of the button.

Attributes

The following attributes are supported by this element.

disabled

A Boolean switch that, if present, displays the button as disabled and prevents clicks.

icon

A string that specifies the icon to be displayed in the center of the button. The string must be either the
name of an icon from the open-source iron-icons set, which is pre-loaded, or the URL to a custom icon.

Element Hierarchy

This element has the following parent and child elements.

595

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://github.com/PolymerElements/iron-icons

Amazon SageMaker Developer Guide
HTML Elements Reference

• Parent elements: crowd-form (p. 595)

• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-input
A box that accepts input data.

Cannot be self-closing
Unlike the input element in the HTML standard, this element cannot be self-closed by putting
a slash before the ending bracket, e.g. <crowd-input ... />. It must be followed with a </
crowd-input> to close the element.

Attributes

The following attributes are supported by this element.

allowed-pattern

A regular expression that is used with the auto-validate attribute to ignore non-matching characters as
the worker types.

auto-focus

When the value is set to true, the browser places focus inside the input area after loading. This way, the
worker can start typing without having to select it first.

auto-validate

A Boolean switch that, if present, turns on input validation. The behavior of the validator can be
modified by the error-message and allowed-pattern attributes.

disabled

A Boolean switch that, if present, displays the input area as disabled.

error-message

The text to be displayed below the input field, on the left side, if validation fails.

label

A string that is displayed inside a text field.

This text shrinks and rises up above a text field when the worker starts typing in the field or when the
value attribute is set.

max-length

A maximum number of characters the input will accept. Input beyond this limit is ignored.

596

Amazon SageMaker Developer Guide
HTML Elements Reference

min-length

A minimum length for the input in the field

name

Sets the name of the input to be used in the DOM and the output of the form.

placeholder

A string value that is used as placeholder text, displayed until the worker starts entering data into the
input, It is not used as a default value.

required

A Boolean switch that, if present, requires the worker to provide input.

type

Takes a string to set the HTML5 input-type behavior for the input. Examples include file and date.

value

A preset that becomes the default if the worker does not provide input. The preset appears in a text field.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

• Child elements: none

Output

Provides a name string as the property name, and the text that was entered in the field as its value.

Example : Sample JSON Output

The values for multiple elements are output in the same object, with their name attribute value as their
property name. Elements with no input do not appear in the output. For example, let's use three inputs:

<crowd-input name="tag1" label="Word/phrase 1"></crowd-input>
<crowd-input name="tag2" label="Word/phrase 2"></crowd-input>
<crowd-input name="tag3" label="Word/phrase 3"></crowd-input>

This is the output if only two have input:

[
 {
 "tag1": "blue",
 "tag2": "red"
 }
]

This means any code built to parse these results should be able to handle the presence or absence of
each input in the answers.

597

Amazon SageMaker Developer Guide
HTML Elements Reference

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-instructions
An element that displays instructions on three tabbed pages, Summary, Detailed Instructions, and
Examples, when the worker clicks on a link or button.

Attributes

The following attributes are supported by this element.

link-text

The text to display for opening the instructions. The default is Click for instructions.

link-type

A string that specifies the type of trigger for the instructions. The possible values are "link" (default) and
"button".

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

• Child elements: none

Regions

The following regions are supported by this element.

detailed-instructions

Content that provides specific instructions for a task. This appears on the page of the "Detailed
Instructions" tab.

negative-example

Content that provides examples of inadequate task completion. This appears on the page of the
"Examples" tab. More than one example may be provided within this element.

positive-example

Content that provides examples of proper task completion. This appears on the page of the "Examples"
tab.

short-summary

A brief statement that summarizes the task to be completed. This appears on the page of the "Summary"
tab. More than one example may be provided within this element.

598

Amazon SageMaker Developer Guide
HTML Elements Reference

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-keypoint
Generates a tool to select and annotate key points on an image.

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

initial-value

An array, in JSON format, of keypoints to be applied to the image on start. For example:

initial-value="[
 {
 'label': 'Left Eye',
 'x': 1022,
 'y': 429
 },
 {
 'label': 'Beak',
 'x': 941,
 'y': 403
 }
]

Note
Please note that label values used in this attribute must have a matching value in the labels
attribute or the point will not be rendered.

labels

An array, in JSON format, of strings to be used as keypoint annotation labels.

name

A string used to identify the answer submitted by the worker. This value will match a key in the JSON
object that specifies the answer.

src

The source URI of the image to be annotated.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

599

Amazon SageMaker Developer Guide
HTML Elements Reference

• Child elements: full-instructions (p. 600), short-instructions (p. 600)

Regions

The following regions are required by this element.

full-instructions

General instructions about how to annotate the image.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker. This
object contains the following properties.

• height – The height, in pixels, of the image.
• width – The width, in pixels, of the image.

keypoints

An array of JSON objects containing the coordinates and label of a keypoint. Each object contains the
following properties.

• label – The assigned label for the keypoint.
• x – The X coordinate, in pixels, of the keypoint on the image.
• y – The Y coordinate, in pixels, of the keypoint on the image.

Note
X and Y coordinates are based on 0,0 being the top left corner of the image.

Example : Sample Element Outputs

The following is a sample output from using this element.

[
 {
 "crowdKeypoint": {
 "inputImageProperties": {
 "height": 1314,
 "width": 962
 },
 "keypoints": [
 {
 "label": "dog",
 "x": 155,
 "y": 275
 },
 {
 "label": "cat",

600

Amazon SageMaker Developer Guide
HTML Elements Reference

 "x": 341,
 "y": 447
 },
 {
 "label": "cat",
 "x": 491,
 "y": 513
 },
 {
 "label": "dog",
 "x": 714,
 "y": 578
 },
 {
 "label": "cat",
 "x": 712,
 "y": 763
 },
 {
 "label": "cat",
 "x": 397,
 "y": 814
 }
]
 }
 }
]

You may have many labels available, but only the ones that are used appear in the output.

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-modal
A small window that pops up on the display when it is opened.

Attributes

The following attributes are supported by this element.

link-text

The text to display for opening the modal. The default is "Click to open modal".

link-type

A string that specifies the type of trigger for the modal. The possible values are "link" (default) and
"button".

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

601

Amazon SageMaker Developer Guide
HTML Elements Reference

• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-polygon
A widget for drawing polygons on an image and assigning a label to the portion of the image that is
enclosed in each polygon.

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the worker.

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to the image portion
enclosed by a polygon.

name

The name of this widget. It's used as a key for the widget's input in the form output.

src

The URL of the image on which to draw polygons.

initial-value

An array of JSON objects, each of which defines a polygon to be drawn when the component is loaded.
Each JSON object in the array contains the following properties.

• label – The text assigned to the polygon as part of the labeling task. This text must match one of the
labels defined in the labels attribute of the <crowd-polygon> element.

• vertices – An array of JSON objects. Each object contains an x and y coordinate value for a point in the
polygon.

Example

An initial-value attribute might look something like this.

initial-value =
 '[
 {
 "label": "dog",
 "vertices":
 [

602

Amazon SageMaker Developer Guide
HTML Elements Reference

 {
 "x": 570,
 "y": 239
 },
 ...
 {
 "x": 759,
 "y": 281
 }
]
 }
]'

Because this will be within an HTML element, the JSON array must be enclosed in single or double
quotes. The example above uses single quotes to encapsulate the JSON and double quotes within the
JSON itself. If you must mix single and double quotes inside your JSON, replace them with their HTML
entity codes (" for double quote, ' for single) to safely escape them.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: full-instructions (p. 603), short-instructions (p. 603)

Regions

The following regions are required.

full-instructions

General instructions about how to draw polygons.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

polygons

An array of JSON objects, each of which describes a polygon that has been created by the worker. Each
JSON object in the array contains the following properties.

• label – The text assigned to the polygon as part of the labeling task.
• vertices – An array of JSON objects. Each object contains an x and y coordinate value for a point in the

polygon. The top left corner of the image is 0,0.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker. This
object contains the following properties.

• height – The height, in pixels, of the image.
• width – The width, in pixels, of the image.

603

Amazon SageMaker Developer Guide
HTML Elements Reference

Example : Sample Element Outputs

The following are samples of outputs from common use scenarios for this element.

Single Label, Single Polygon

{
 "annotatedResult":
 {
 "inputImageProperties": {
 "height": 853,
 "width": 1280
 },
 "polygons":
 [
 {
 "label": "dog",
 "vertices":
 [
 {
 "x": 570,
 "y": 239
 },
 {
 "x": 603,
 "y": 513
 },
 {
 "x": 823,
 "y": 645
 },
 {
 "x": 901,
 "y": 417
 },
 {
 "x": 759,
 "y": 281
 }
]
 }
]
 }
 }
]

Single Label, Multiple Polygons

[
 {
 "annotatedResult": {
 "inputImageProperties": {
 "height": 853,
 "width": 1280
 },
 "polygons": [
 {
 "label": "dog",
 "vertices": [
 {
 "x": 570,
 "y": 239
 },
 {

604

Amazon SageMaker Developer Guide
HTML Elements Reference

 "x": 603,
 "y": 513
 },
 {
 "x": 823,
 "y": 645
 },
 {
 "x": 901,
 "y": 417
 },
 {
 "x": 759,
 "y": 281
 }
]
 },
 {
 "label": "dog",
 "vertices": [
 {
 "x": 870,
 "y": 278
 },
 {
 "x": 908,
 "y": 446
 },
 {
 "x": 1009,
 "y": 602
 },
 {
 "x": 1116,
 "y": 519
 },
 {
 "x": 1174,
 "y": 498
 },
 {
 "x": 1227,
 "y": 479
 },
 {
 "x": 1179,
 "y": 405
 },
 {
 "x": 1179,
 "y": 337
 }
]
 }
]
 }
 }
]

Multiple Labels, Multiple Polygons

[
 {
 "annotatedResult": {
 "inputImageProperties": {

605

Amazon SageMaker Developer Guide
HTML Elements Reference

 "height": 853,
 "width": 1280
 },
 "polygons": [
 {
 "label": "dog",
 "vertices": [
 {
 "x": 570,
 "y": 239
 },
 {
 "x": 603,
 "y": 513
 },
 {
 "x": 823,
 "y": 645
 },
 {
 "x": 901,
 "y": 417
 },
 {
 "x": 759,
 "y": 281
 }
]
 },
 {
 "label": "cat",
 "vertices": [
 {
 "x": 870,
 "y": 278
 },
 {
 "x": 908,
 "y": 446
 },
 {
 "x": 1009,
 "y": 602
 },
 {
 "x": 1116,
 "y": 519
 },
 {
 "x": 1174,
 "y": 498
 },
 {
 "x": 1227,
 "y": 479
 },
 {
 "x": 1179,
 "y": 405
 },
 {
 "x": 1179,
 "y": 337
 }
]
 }

606

Amazon SageMaker Developer Guide
HTML Elements Reference

]
 }
 }
]

You could have many labels available, but only the ones that are used appear in the output.

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-radio-button
A button that can be either checked or unchecked. When radio buttons are inside a radio group, exactly
one radio button in the group can be checked at any time.

Attributes

The following attributes are supported by this element.

checked

A Boolean switch that, if present, displays the radio button as checked.

disabled

A Boolean switch that, if present, displays the button as disabled and prevents it from being checked.

name

A string that is used to identify the answer submitted by the worker. This value will match a key in the
JSON object that specifies the answer.

Note
If you use the buttons outside of a crowd-radio-group (p. 608) element, but with the same
name string and different value strings, the name object in the output will contain a Boolean
value for each value string. To ensure that only one button in a group is selected, make them
children of a crowd-radio-group (p. 608) element and use different name values.

value

A property name for the element's boolean value. If not specified, it uses "on" as the default, e.g.
{ "<name>": { "<value>": <true or false> } }.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-radio-group (p. 608)
• Child elements: none

Output

Outputs an object with the following pattern: { "<name>": { "<value>": <true or false> } }.
If you use the buttons outside of a crowd-radio-group (p. 608) element, but with the same name

607

Amazon SageMaker Developer Guide
HTML Elements Reference

string and different value strings, the name object will contain a Boolean value for each value
string. To ensure that only one in a group of buttons is selected, make them children of a crowd-radio-
group (p. 608) element and use different name values.

Example Sample output of this element

[
 {
 "btn1": {
 "yes": true
 },
 "btn2": {
 "no": false
 }
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-radio-group
A group of radio buttons. Only one radio button within the group can be selected. Choosing one radio
button clears any previously chosen radio button within the same group.

Attributes

No special attributes are supported by this element.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: crowd-radio-button (p. 607)

Output

Outputs an array of objects representing the crowd-radio-button (p. 607) elements within it.

Example Sample of Element Output

[
 {
 "btn1": {
 "yes": true
 },
 "btn2": {
 "no": false
 }
 }
]

608

Amazon SageMaker Developer Guide
HTML Elements Reference

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-slider
A bar with a sliding knob that allows a worker to select a value from a range of values by moving
the knob. The slider makes it a great choice for settings that reflect intensity levels, such as volume,
brightness, or color saturation.

Attributes

The following attributes are supported by this element.

disabled

A Boolean switch that, if present, displays the slider as disabled.

editable

A Boolean switch that, if present, displays an up/down button that can be chosen to select the value.

Selecting the value via the up/down button is an alternative to selecting the value by moving the knob
on the slider. The knob on the slider will move synchronously with the up/down button choices.

max

A number that specifies the maximum value on the slider.

min

A number that specifies the minimum value on the slider.

name

A string that is used to identify the answer submitted by the worker. This value will match a key in the
JSON object that specifies the answer.

pin

A Boolean switch that, if present, displays the current value above the knob as the knob is moved.

required

A Boolean switch that, if present, requires the worker to provide input.

secondary-progress

When used with a crowd-slider-secondary-color CSS attribute, the progress bar is colored
to the point represented by the secondary-progress. For example, if this was representing the
progress on a streaming video, the value would represent where the viewer was in the video timeline.
The secondary-progress value would represent the point on the timeline to which the video had
buffered.

step

A number that specifies the difference between selectable values on the slider.

609

Amazon SageMaker Developer Guide
HTML Elements Reference

value

A preset that becomes the default if the worker does not provide input.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)

• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-tab
A component styled to look like a tab with information below.

Attributes

The following attributes are supported by this element.

header

The text appearing on the tab. This is usually some short descriptive name indicative of the information
contained below the tab.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-tabs (p. 610)

• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)

• HTML Elements Reference (p. 577)

crowd-tabs
A container for tabbed information.

Attributes

This element has no attributes.

610

Amazon SageMaker Developer Guide
HTML Elements Reference

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: crowd-tab (p. 610)

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-text-area
A field for text input.

Attributes

The following attributes are supported by this element.

auto-focus

A Boolean switch that, if present, puts the cursor in this element on-load so that users can immediately
begin typing without having to click inside the element.

auto-validate

A Boolean switch that, if present, turns on input validation. The behavior of the validator can be
modified by the error-message and allowed-pattern attributes.

char-counter

A Boolean switch that, if present, puts a small text field beneath the lower-right corner of the element,
displaying the number of characters inside the element.

disabled

A Boolean switch that, if present, displays the input area as disabled.

error-message

The text to be displayed below the input field, on the left side, if validation fails.

label

A string that is displayed inside a text field.

This text shrinks and rises up above a text field when the worker starts typing in the field or when the
value attribute is set.

max-length

An integer that specifies the maximum number of characters allowed by the element. Characters typed
or pasted beyond the maximum are ignored.

611

Amazon SageMaker Developer Guide
HTML Elements Reference

max-rows

An integer that specifies the maximum number of rows of text that are allowed within a crowd-text-
area. Normally the element expands to accommodate new rows. If this is set, after the number of rows
exceeds it, content scrolls upward out of view and a scrollbar control appears.

name

A string used to represent the element's data in the output.

placeholder

A string presented to the user as placeholder text. It disappears after the user puts something in the
input area.

rows

An integer that specifies the height of the element in rows of text.

value

A preset that becomes the default if the worker does not provide input. The preset appears in a text field.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: none

Output

This element outputs the name as a property name and the element's text contents as the value. Carriage
returns in the text are represented as \n.

Example Sample output for this element

[
 {
 "textInput1": "This is the text; the text that\nmakes the crowd go wild."
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-toast
A subtle notification that temporarily appears on the display. Only one crowd-toast is visible.

Attributes

The following attributes are supported by this element.

612

Amazon SageMaker Developer Guide
HTML Elements Reference

duration

A number that specifies the duration, in seconds, that the notification appears on the screen.

text

The text to display in the notification.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: none

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

crowd-toggle-button
A button that acts as an ON/OFF switch, toggling a state.

Attributes

The following attributes are supported by this element.

checked

A Boolean switch that, if present, displays the button switched to the ON position.

disabled

A Boolean switch that, if present, displays the button as disabled and prevents toggling.

invalid

When in an off position, a button using this attribute, will display in an alert color. The standard is red,
but may be changed in CSS. When toggled on, the button will display in the same color as other buttons
in the on position.

name

A string that is used to identify the answer submitted by the worker. This value matches a key in the
JSON object that specifies the answer.

required

A Boolean switch that, if present, requires the worker to provide input.

value

A value used in the output as the property name for the element's Boolean state. Defaults to "on" if not
provided.

613

Amazon SageMaker Developer Guide
HTML Elements Reference

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form (p. 595)
• Child elements: none

Output

This element outputs the name as the name of an object, containing the value as a property name
and the element's state as Boolean value for the property. If no value for the element is specified, the
property name defaults to "on."

Example Sample output for this element

[
 {
 "theToggler": {
 "on": true
 }
 }
]

See Also

For more information, see the following.

• Amazon SageMaker Ground Truth (p. 532)
• HTML Elements Reference (p. 577)

614

Amazon SageMaker Developer Guide

Limits and Supported Regions
For Amazon SageMaker service limits, see Amazon SageMaker Limits.

For information about requesting limit increases for AWS resources, see AWS Service Limits.

For a list of the AWS Regions supporting Amazon SageMaker, see Amazon SageMaker Regions.

615

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_sagemaker
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#sagemaker_region

Amazon SageMaker Developer Guide
Actions

API Reference
This section contains the API Reference documentation.

Topics

• Actions (p. 616)
• Data Types (p. 856)

Actions
The following actions are supported by Amazon SageMaker Service:

• AddTags (p. 620)
• CreateAlgorithm (p. 622)
• CreateCodeRepository (p. 627)
• CreateCompilationJob (p. 629)
• CreateEndpoint (p. 632)
• CreateEndpointConfig (p. 635)
• CreateHyperParameterTuningJob (p. 638)
• CreateLabelingJob (p. 643)
• CreateModel (p. 648)
• CreateModelPackage (p. 652)
• CreateNotebookInstance (p. 656)
• CreateNotebookInstanceLifecycleConfig (p. 662)
• CreatePresignedNotebookInstanceUrl (p. 665)
• CreateTrainingJob (p. 667)
• CreateTransformJob (p. 673)
• CreateWorkteam (p. 678)
• DeleteAlgorithm (p. 681)
• DeleteCodeRepository (p. 682)
• DeleteEndpoint (p. 683)
• DeleteEndpointConfig (p. 685)
• DeleteModel (p. 686)
• DeleteModelPackage (p. 688)
• DeleteNotebookInstance (p. 690)
• DeleteNotebookInstanceLifecycleConfig (p. 692)
• DeleteTags (p. 693)
• DeleteWorkteam (p. 695)
• DescribeAlgorithm (p. 697)
• DescribeCodeRepository (p. 703)
• DescribeCompilationJob (p. 705)
• DescribeEndpoint (p. 709)

616

Amazon SageMaker Developer Guide
Actions

• DescribeEndpointConfig (p. 712)
• DescribeHyperParameterTuningJob (p. 715)
• DescribeLabelingJob (p. 721)
• DescribeModel (p. 727)
• DescribeModelPackage (p. 730)
• DescribeNotebookInstance (p. 734)
• DescribeNotebookInstanceLifecycleConfig (p. 739)
• DescribeSubscribedWorkteam (p. 742)
• DescribeTrainingJob (p. 744)
• DescribeTransformJob (p. 752)
• DescribeWorkteam (p. 757)
• GetSearchSuggestions (p. 759)
• ListAlgorithms (p. 761)
• ListCodeRepositories (p. 764)
• ListCompilationJobs (p. 767)
• ListEndpointConfigs (p. 771)
• ListEndpoints (p. 774)
• ListHyperParameterTuningJobs (p. 777)
• ListLabelingJobs (p. 781)
• ListLabelingJobsForWorkteam (p. 785)
• ListModelPackages (p. 788)
• ListModels (p. 791)
• ListNotebookInstanceLifecycleConfigs (p. 794)
• ListNotebookInstances (p. 797)
• ListSubscribedWorkteams (p. 801)
• ListTags (p. 803)
• ListTrainingJobs (p. 805)
• ListTrainingJobsForHyperParameterTuningJob (p. 808)
• ListTransformJobs (p. 811)
• ListWorkteams (p. 814)
• RenderUiTemplate (p. 817)
• Search (p. 819)
• StartNotebookInstance (p. 824)
• StopCompilationJob (p. 826)
• StopHyperParameterTuningJob (p. 828)
• StopLabelingJob (p. 830)
• StopNotebookInstance (p. 832)
• StopTrainingJob (p. 834)
• StopTransformJob (p. 836)
• UpdateCodeRepository (p. 838)
• UpdateEndpoint (p. 840)
• UpdateEndpointWeightsAndCapacities (p. 842)
• UpdateNotebookInstance (p. 844)
• UpdateNotebookInstanceLifecycleConfig (p. 848)
• UpdateWorkteam (p. 850)

617

Amazon SageMaker Developer Guide
Amazon SageMaker Service

The following actions are supported by Amazon SageMaker Runtime:

• InvokeEndpoint (p. 853)

Amazon SageMaker Service
The following actions are supported by Amazon SageMaker Service:

• AddTags (p. 620)
• CreateAlgorithm (p. 622)
• CreateCodeRepository (p. 627)
• CreateCompilationJob (p. 629)
• CreateEndpoint (p. 632)
• CreateEndpointConfig (p. 635)
• CreateHyperParameterTuningJob (p. 638)
• CreateLabelingJob (p. 643)
• CreateModel (p. 648)
• CreateModelPackage (p. 652)
• CreateNotebookInstance (p. 656)
• CreateNotebookInstanceLifecycleConfig (p. 662)
• CreatePresignedNotebookInstanceUrl (p. 665)
• CreateTrainingJob (p. 667)
• CreateTransformJob (p. 673)
• CreateWorkteam (p. 678)
• DeleteAlgorithm (p. 681)
• DeleteCodeRepository (p. 682)
• DeleteEndpoint (p. 683)
• DeleteEndpointConfig (p. 685)
• DeleteModel (p. 686)
• DeleteModelPackage (p. 688)
• DeleteNotebookInstance (p. 690)
• DeleteNotebookInstanceLifecycleConfig (p. 692)
• DeleteTags (p. 693)
• DeleteWorkteam (p. 695)
• DescribeAlgorithm (p. 697)
• DescribeCodeRepository (p. 703)
• DescribeCompilationJob (p. 705)
• DescribeEndpoint (p. 709)
• DescribeEndpointConfig (p. 712)
• DescribeHyperParameterTuningJob (p. 715)
• DescribeLabelingJob (p. 721)
• DescribeModel (p. 727)
• DescribeModelPackage (p. 730)
• DescribeNotebookInstance (p. 734)
• DescribeNotebookInstanceLifecycleConfig (p. 739)
• DescribeSubscribedWorkteam (p. 742)

618

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• DescribeTrainingJob (p. 744)
• DescribeTransformJob (p. 752)
• DescribeWorkteam (p. 757)
• GetSearchSuggestions (p. 759)
• ListAlgorithms (p. 761)
• ListCodeRepositories (p. 764)
• ListCompilationJobs (p. 767)
• ListEndpointConfigs (p. 771)
• ListEndpoints (p. 774)
• ListHyperParameterTuningJobs (p. 777)
• ListLabelingJobs (p. 781)
• ListLabelingJobsForWorkteam (p. 785)
• ListModelPackages (p. 788)
• ListModels (p. 791)
• ListNotebookInstanceLifecycleConfigs (p. 794)
• ListNotebookInstances (p. 797)
• ListSubscribedWorkteams (p. 801)
• ListTags (p. 803)
• ListTrainingJobs (p. 805)
• ListTrainingJobsForHyperParameterTuningJob (p. 808)
• ListTransformJobs (p. 811)
• ListWorkteams (p. 814)
• RenderUiTemplate (p. 817)
• Search (p. 819)
• StartNotebookInstance (p. 824)
• StopCompilationJob (p. 826)
• StopHyperParameterTuningJob (p. 828)
• StopLabelingJob (p. 830)
• StopNotebookInstance (p. 832)
• StopTrainingJob (p. 834)
• StopTransformJob (p. 836)
• UpdateCodeRepository (p. 838)
• UpdateEndpoint (p. 840)
• UpdateEndpointWeightsAndCapacities (p. 842)
• UpdateNotebookInstance (p. 844)
• UpdateNotebookInstanceLifecycleConfig (p. 848)
• UpdateWorkteam (p. 850)

619

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AddTags
Service: Amazon SageMaker Service

Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to
notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling
jobs, work teams, endpoint configurations, and endpoints.

Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more
information about tags, see For more information, see AWS Tagging Strategies.

Note
Tags that you add to a hyperparameter tuning job by calling this API are also added to any
training jobs that the hyperparameter tuning job launches after you call this API, but not to
training jobs that the hyperparameter tuning job launched before you called this API. To make
sure that the tags associated with a hyperparameter tuning job are also added to all training
jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning
job by specifying them in the Tags parameter of CreateHyperParameterTuningJob (p. 638)

Request Syntax

{
 "ResourceArn": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

ResourceArn (p. 620)

The Amazon Resource Name (ARN) of the resource that you want to tag.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:.*

Required: Yes

Tags (p. 620)

An array of Tag objects. Each tag is a key-value pair. Only the key parameter is required. If you don't
specify a value, Amazon SageMaker sets the value to an empty string.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: Yes

620

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Response Syntax

{
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Tags (p. 621)

A list of tags associated with the Amazon SageMaker resource.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

621

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/AddTags
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AddTags

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateAlgorithm
Service: Amazon SageMaker Service

Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS
Marketplace.

Request Syntax

{
 "AlgorithmDescription": "string",
 "AlgorithmName": "string",
 "CertifyForMarketplace": boolean,
 "InferenceSpecification": {
 "Containers": [
 {
 "ContainerHostname": "string",
 "Image": "string",
 "ImageDigest": "string",
 "ModelDataUrl": "string",
 "ProductId": "string"
 }
],
 "SupportedContentTypes": ["string"],
 "SupportedRealtimeInferenceInstanceTypes": ["string"],
 "SupportedResponseMIMETypes": ["string"],
 "SupportedTransformInstanceTypes": ["string"]
 },
 "TrainingSpecification": {
 "MetricDefinitions": [
 {
 "Name": "string",
 "Regex": "string"
 }
],
 "SupportedHyperParameters": [
 {
 "DefaultValue": "string",
 "Description": "string",
 "IsRequired": boolean,
 "IsTunable": boolean,
 "Name": "string",
 "Range": {
 "CategoricalParameterRangeSpecification": {
 "Values": ["string"]
 },
 "ContinuousParameterRangeSpecification": {
 "MaxValue": "string",
 "MinValue": "string"
 },
 "IntegerParameterRangeSpecification": {
 "MaxValue": "string",
 "MinValue": "string"
 }
 },
 "Type": "string"
 }
],
 "SupportedTrainingInstanceTypes": ["string"],
 "SupportedTuningJobObjectiveMetrics": [
 {
 "MetricName": "string",
 "Type": "string"
 }
],

622

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "SupportsDistributedTraining": boolean,
 "TrainingChannels": [
 {
 "Description": "string",
 "IsRequired": boolean,
 "Name": "string",
 "SupportedCompressionTypes": ["string"],
 "SupportedContentTypes": ["string"],
 "SupportedInputModes": ["string"]
 }
],
 "TrainingImage": "string",
 "TrainingImageDigest": "string"
 },
 "ValidationSpecification": {
 "ValidationProfiles": [
 {
 "ProfileName": "string",
 "TrainingJobDefinition": {
 "HyperParameters": {
 "string" : "string"
 },
 "InputDataConfig": [
 {
 "ChannelName": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "string",
 "FileSystemAccessMode": "string",
 "FileSystemId": "string",
 "FileSystemType": "string"
 },
 "S3DataSource": {
 "AttributeNames": ["string"],
 "S3DataDistributionType": "string",
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "InputMode": "string",
 "RecordWrapperType": "string",
 "ShuffleConfig": {
 "Seed": number
 }
 }
],
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "ResourceConfig": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string",
 "VolumeSizeInGB": number
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 },
 "TrainingInputMode": "string"
 },
 "TransformJobDefinition": {
 "BatchStrategy": "string",

623

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "Environment": {
 "string" : "string"
 },
 "MaxConcurrentTransforms": number,
 "MaxPayloadInMB": number,
 "TransformInput": {
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "SplitType": "string"
 },
 "TransformOutput": {
 "Accept": "string",
 "AssembleWith": "string",
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "TransformResources": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string"
 }
 }
 }
],
 "ValidationRole": "string"
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AlgorithmDescription (p. 622)

A description of the algorithm.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*

Required: No
AlgorithmName (p. 622)

The name of the algorithm.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes

624

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CertifyForMarketplace (p. 622)

Whether to certify the algorithm so that it can be listed in AWS Marketplace.

Type: Boolean

Required: No
InferenceSpecification (p. 622)

Specifies details about inference jobs that the algorithm runs, including the following:
• The Amazon ECR paths of containers that contain the inference code and model artifacts.
• The instance types that the algorithm supports for transform jobs and real-time endpoints used

for inference.
• The input and output content formats that the algorithm supports for inference.

Type: InferenceSpecification (p. 929) object

Required: No
TrainingSpecification (p. 622)

Specifies details about training jobs run by this algorithm, including the following:
• The Amazon ECR path of the container and the version digest of the algorithm.
• The hyperparameters that the algorithm supports.
• The instance types that the algorithm supports for training.
• Whether the algorithm supports distributed training.
• The metrics that the algorithm emits to Amazon CloudWatch.
• Which metrics that the algorithm emits can be used as the objective metric for hyperparameter

tuning jobs.
• The input channels that the algorithm supports for training data. For example, an algorithm might

support train, validation, and test channels.

Type: TrainingSpecification (p. 1021) object

Required: Yes
ValidationSpecification (p. 622)

Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the
algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker
runs to test the algorithm's inference code.

Type: AlgorithmValidationSpecification (p. 870) object

Required: No

Response Syntax

{
 "AlgorithmArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

625

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmArn (p. 625)

The Amazon Resource Name (ARN) of the new algorithm.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:algorithm/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

626

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateAlgorithm
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateAlgorithm

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateCodeRepository
Service: Amazon SageMaker Service

Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the
repository with notebook instances so that you can use Git source control for the notebooks you create.
The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more
than one notebook instance, and it persists independently from the lifecycle of any notebook instances it
is associated with.

The repository can be hosted either in AWS CodeCommit or in any other Git repository.

Request Syntax

{
 "CodeRepositoryName": "string",
 "GitConfig": {
 "Branch": "string",
 "RepositoryUrl": "string",
 "SecretArn": "string"
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CodeRepositoryName (p. 627)

The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-
Z, 0-9, and - (hyphen).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
GitConfig (p. 627)

Specifies details about the repository, including the URL where the repository is located, the default
branch, and credentials to use to access the repository.

Type: GitConfig (p. 905) object

Required: Yes

Response Syntax

{
 "CodeRepositoryArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

627

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

The following data is returned in JSON format by the service.

CodeRepositoryArn (p. 627)

The Amazon Resource Name (ARN) of the new repository.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:code-repository/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

628

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateCodeRepository
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateCodeRepository

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateCompilationJob
Service: Amazon SageMaker Service

Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the
resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting
model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that
case, deploy them as an ML resource.

In the request body, you provide the following:

• A name for the compilation job
• Information about the input model artifacts
• The output location for the compiled model and the device (target) that the model runs on
• The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes
to perform the model compilation job

You can also provide a Tag to track the model compilation job's resource use and costs. The response
body contains the CompilationJobArn for the compiled job.

To stop a model compilation job, use StopCompilationJob (p. 826). To get information about a
particular model compilation job, use DescribeCompilationJob (p. 705). To get information about
multiple model compilation jobs, use ListCompilationJobs (p. 767).

Request Syntax

{
 "CompilationJobName": "string",
 "InputConfig": {
 "DataInputConfig": "string",
 "Framework": "string",
 "S3Uri": "string"
 },
 "OutputConfig": {
 "S3OutputLocation": "string",
 "TargetDevice": "string"
 },
 "RoleArn": "string",
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CompilationJobName (p. 629)

A name for the model compilation job. The name must be unique within the AWS Region and within
your AWS account.

Type: String

629

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
InputConfig (p. 629)

Provides information about the location of input model artifacts, the name and shape of the
expected data inputs, and the framework in which the model was trained.

Type: InputConfig (p. 931) object

Required: Yes
OutputConfig (p. 629)

Provides information about the output location for the compiled model and the target device the
model runs on.

Type: OutputConfig (p. 975) object

Required: Yes
RoleArn (p. 629)

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks
on your behalf.

During model compilation, Amazon SageMaker needs your permission to:
• Read input data from an S3 bucket
• Write model artifacts to an S3 bucket
• Write logs to Amazon CloudWatch Logs
• Publish metrics to Amazon CloudWatch

You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker,
the caller of this API must have the iam:PassRole permission. For more information, see Amazon
SageMaker Roles.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StoppingCondition (p. 629)

Specifies a limit to how long a model compilation job can run. When the job reaches the time limit,
Amazon SageMaker ends the compilation job. Use this API to cap model training costs.

Type: StoppingCondition (p. 1004) object

Required: Yes

Response Syntax

{
 "CompilationJobArn": "string"
}

630

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CompilationJobArn (p. 630)

If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns
the following data in JSON format:
• CompilationJobArn: The Amazon Resource Name (ARN) of the compiled job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:compilation-job/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

631

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateCompilationJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateCompilationJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateEndpoint
Service: Amazon SageMaker Service

Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses
the endpoint to provision resources and deploy models. You create the endpoint configuration with the
CreateEndpointConfig API.

Note
Use this API only for hosting models using Amazon SageMaker hosting services.
You must not delete an EndpointConfig in use by an endpoint that is live or while the
UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To
update an endpoint, you must create a new EndpointConfig.

The endpoint name must be unique within an AWS Region in your AWS account.

When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML
compute instances), and deploys the model(s) on them.

When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates
the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests
for inferences. To check the status of an endpoint, use the DescribeEndpoint API.

For an example, see Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker.

If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon
SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided.
AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for
a region, you need to reactivate AWS STS for that region. For more information, see Activating and
Deactivating AWS STS i an AWS Region in the AWS Identity and Access Management User Guide.

Request Syntax

{
 "EndpointConfigName": "string",
 "EndpointName": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

EndpointConfigName (p. 632)

The name of an endpoint configuration. For more information, see CreateEndpointConfig.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

632

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1.html
IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

EndpointName (p. 632)

The name of the endpoint. The name must be unique within an AWS Region in your AWS account.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
Tags (p. 632)

An array of key-value pairs. For more information, see Using Cost Allocation Tagsin the AWS Billing
and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

{
 "EndpointArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

EndpointArn (p. 633)

The Amazon Resource Name (ARN) of the endpoint.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

633

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

634

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateEndpoint
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateEndpoint

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateEndpointConfig
Service: Amazon SageMaker Service

Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In
the configuration, you identify one or more models, created using the CreateModel API, to deploy and
the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.

Note
Use this API only if you want to use Amazon SageMaker hosting services to deploy models into
production.

In the request, you define one or more ProductionVariants, each of which identifies a model. Each
ProductionVariant parameter also describes the resources that you want Amazon SageMaker to
provision. This includes the number and type of ML compute instances to deploy.

If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you
want to allocate to each model. For example, suppose that you want to host two models, A and B, and
you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of
the traffic to Model A, and one-third to model B.

Request Syntax

{
 "EndpointConfigName": "string",
 "KmsKeyId": "string",
 "ProductionVariants": [
 {
 "AcceleratorType": "string",
 "InitialInstanceCount": number,
 "InitialVariantWeight": number,
 "InstanceType": "string",
 "ModelName": "string",
 "VariantName": "string"
 }
],
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

EndpointConfigName (p. 635)

The name of the endpoint configuration. You specify this name in a CreateEndpoint request.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

635

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

KmsKeyId (p. 635)

The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker
uses to encrypt data on the storage volume attached to the ML compute instance that hosts the
endpoint.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No
ProductionVariants (p. 635)

An list of ProductionVariant objects, one for each model that you want to host at this endpoint.

Type: Array of ProductionVariant (p. 981) objects

Array Members: Minimum number of 1 item. Maximum number of 10 items.

Required: Yes
Tags (p. 635)

A list of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and
Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

{
 "EndpointConfigArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

EndpointConfigArn (p. 636)

The Amazon Resource Name (ARN) of the endpoint configuration.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint-config/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

636

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

637

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateEndpointConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateEndpointConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateHyperParameterTuningJob
Service: Amazon SageMaker Service

Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model
by running many training jobs on your dataset using the algorithm you choose and values for
hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in
a model that performs the best, as measured by an objective metric that you choose.

Request Syntax

{
 "HyperParameterTuningJobConfig": {
 "HyperParameterTuningJobObjective": {
 "MetricName": "string",
 "Type": "string"
 },
 "ParameterRanges": {
 "CategoricalParameterRanges": [
 {
 "Name": "string",
 "Values": ["string"]
 }
],
 "ContinuousParameterRanges": [
 {
 "MaxValue": "string",
 "MinValue": "string",
 "Name": "string",
 "ScalingType": "string"
 }
],
 "IntegerParameterRanges": [
 {
 "MaxValue": "string",
 "MinValue": "string",
 "Name": "string",
 "ScalingType": "string"
 }
]
 },
 "ResourceLimits": {
 "MaxNumberOfTrainingJobs": number,
 "MaxParallelTrainingJobs": number
 },
 "Strategy": "string",
 "TrainingJobEarlyStoppingType": "string"
 },
 "HyperParameterTuningJobName": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "TrainingJobDefinition": {
 "AlgorithmSpecification": {
 "AlgorithmName": "string",
 "MetricDefinitions": [
 {
 "Name": "string",
 "Regex": "string"
 }
],

638

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "TrainingImage": "string",
 "TrainingInputMode": "string"
 },
 "CheckpointConfig": {
 "LocalPath": "string",
 "S3Uri": "string"
 },
 "EnableInterContainerTrafficEncryption": boolean,
 "EnableManagedSpotTraining": boolean,
 "EnableNetworkIsolation": boolean,
 "InputDataConfig": [
 {
 "ChannelName": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "string",
 "FileSystemAccessMode": "string",
 "FileSystemId": "string",
 "FileSystemType": "string"
 },
 "S3DataSource": {
 "AttributeNames": ["string"],
 "S3DataDistributionType": "string",
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "InputMode": "string",
 "RecordWrapperType": "string",
 "ShuffleConfig": {
 "Seed": number
 }
 }
],
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "ResourceConfig": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string",
 "VolumeSizeInGB": number
 },
 "RoleArn": "string",
 "StaticHyperParameters": {
 "string" : "string"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 },
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
 },
 "WarmStartConfig": {
 "ParentHyperParameterTuningJobs": [
 {
 "HyperParameterTuningJobName": "string"
 }
],
 "WarmStartType": "string"

639

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

HyperParameterTuningJobConfig (p. 638)

The HyperParameterTuningJobConfig (p. 922) object that describes the tuning job, including the
search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search,
and resource limits for the tuning job. For more information, see Automatic Model Tuning (p. 288)

Type: HyperParameterTuningJobConfig (p. 922) object

Required: Yes
HyperParameterTuningJobName (p. 638)

The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning
job launches. The name must be unique within the same AWS account and AWS Region. The name
must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The
name is not case sensitive.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
Tags (p. 638)

An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for
example, by purpose, owner, or environment. For more information, see AWS Tagging Strategies.

Tags that you specify for the tuning job are also added to all training jobs that the tuning job
launches.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TrainingJobDefinition (p. 638)

The HyperParameterTrainingJobDefinition (p. 916) object that describes the training jobs that
this tuning job launches, including static hyperparameters, input data configuration, output data
configuration, resource configuration, and stopping condition.

Type: HyperParameterTrainingJobDefinition (p. 916) object

Required: No
WarmStartConfig (p. 638)

Specifies the configuration for starting the hyperparameter tuning job using one or more previous
tuning jobs as a starting point. The results of previous tuning jobs are used to inform which
combinations of hyperparameters to search over in the new tuning job.

640

https://docs.aws.amazon.com/https:/aws.amazon.com/answers/account-management/aws-tagging-strategies/

Amazon SageMaker Developer Guide
Amazon SageMaker Service

All training jobs launched by the new hyperparameter tuning job are evaluated by using the
objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value
for the warm start configuration, the training job that performs the best in the new tuning job is
compared to the best training jobs from the parent tuning jobs. From these, the training job that
performs the best as measured by the objective metric is returned as the overall best training job.

Note
All training jobs launched by parent hyperparameter tuning jobs and the new
hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

Type: HyperParameterTuningJobWarmStartConfig (p. 927) object

Required: No

Response Syntax

{
 "HyperParameterTuningJobArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

HyperParameterTuningJobArn (p. 641)

The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a
hyperparameter tuning job when you create it.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:hyper-parameter-
tuning-job/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

641

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

642

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateHyperParameterTuningJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateLabelingJob
Service: Amazon SageMaker Service

Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled
data to train machine learning models.

You can select your workforce from one of three providers:

• A private workforce that you create. It can include employees, contractors, and outside experts. Use a
private workforce when want the data to stay within your organization or when a specific set of skills is
required.

• One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific
areas.

• The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for
public data or data that has been stripped of any personally identifiable information.

You can also use automated data labeling to reduce the number of data objects that need to be labeled
by a human. Automated data labeling uses active learning to determine if a data object can be labeled by
machine or if it needs to be sent to a human worker. For more information, see Using Automated Data
Labeling.

The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that
describes the location of each object. For more information, see Using Input and Output Data.

The output can be used as the manifest file for another labeling job or as training data for your machine
learning models.

Request Syntax

{
 "HumanTaskConfig": {
 "AnnotationConsolidationConfig": {
 "AnnotationConsolidationLambdaArn": "string"
 },
 "MaxConcurrentTaskCount": number,
 "NumberOfHumanWorkersPerDataObject": number,
 "PreHumanTaskLambdaArn": "string",
 "PublicWorkforceTaskPrice": {
 "AmountInUsd": {
 "Cents": number,
 "Dollars": number,
 "TenthFractionsOfACent": number
 }
 },
 "TaskAvailabilityLifetimeInSeconds": number,
 "TaskDescription": "string",
 "TaskKeywords": ["string"],
 "TaskTimeLimitInSeconds": number,
 "TaskTitle": "string",
 "UiConfig": {
 "UiTemplateS3Uri": "string"
 },
 "WorkteamArn": "string"
 },
 "InputConfig": {
 "DataAttributes": {
 "ContentClassifiers": ["string"]
 },
 "DataSource": {
 "S3DataSource": {

643

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "ManifestS3Uri": "string"
 }
 }
 },
 "LabelAttributeName": "string",
 "LabelCategoryConfigS3Uri": "string",
 "LabelingJobAlgorithmsConfig": {
 "InitialActiveLearningModelArn": "string",
 "LabelingJobAlgorithmSpecificationArn": "string",
 "LabelingJobResourceConfig": {
 "VolumeKmsKeyId": "string"
 }
 },
 "LabelingJobName": "string",
 "OutputConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "RoleArn": "string",
 "StoppingConditions": {
 "MaxHumanLabeledObjectCount": number,
 "MaxPercentageOfInputDatasetLabeled": number
 },
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

HumanTaskConfig (p. 643)

Configures the information required for human workers to complete a labeling task.

Type: HumanTaskConfig (p. 907) object

Required: Yes

InputConfig (p. 643)

Input data for the labeling job, such as the Amazon S3 location of the data objects and the location
of the manifest file that describes the data objects.

Type: LabelingJobInputConfig (p. 945) object

Required: Yes

LabelAttributeName (p. 643)

The attribute name to use for the label in the output manifest file. This is the key for the key/value
pair formed with the label that a worker assigns to the object. The name can't end with "-metadata".
If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If
you are running any other kind of labeling job, the attribute name must not end with "-ref".

Type: String

644

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Length Constraints: Minimum length of 1. Maximum length of 127.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
LabelCategoryConfigS3Uri (p. 643)

The S3 URL of the file that defines the categories used to label the data objects.

The file is a JSON structure in the following format:

{

"document-version": "2018-11-28"

"labels": [

{

"label": "label 1"

},

{

"label": "label 2"

},

...

{

"label": "label n"

}

]

}

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: No
LabelingJobAlgorithmsConfig (p. 643)

Configures the information required to perform automated data labeling.

Type: LabelingJobAlgorithmsConfig (p. 939) object

Required: No
LabelingJobName (p. 643)

The name of the labeling job. This name is used to identify the job in a list of labeling jobs.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

645

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
OutputConfig (p. 643)

The location of the output data and the AWS Key Management Service key ID for the key used to
encrypt the output data, if any.

Type: LabelingJobOutputConfig (p. 947) object

Required: Yes
RoleArn (p. 643)

The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your
behalf during data labeling. You must grant this role the necessary permissions so that Amazon
SageMaker can successfully complete data labeling.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StoppingConditions (p. 643)

A set of conditions for stopping the labeling job. If any of the conditions are met, the job is
automatically stopped. You can use these conditions to control the cost of data labeling.

Type: LabelingJobStoppingConditions (p. 950) object

Required: No
Tags (p. 643)

An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing
and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

{
 "LabelingJobArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LabelingJobArn (p. 646)

The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.

646

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:labeling-job/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

647

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateLabelingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateLabelingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateModel
Service: Amazon SageMaker Service

Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary
container. For the primary container, you specify the docker image containing inference code, artifacts
(from prior training), and custom environment map that the inference code uses when you deploy the
model for predictions.

Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch
transform job.

To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and
then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the
containers that you defined for the model in the hosting environment.

To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon
SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3
location.

In the CreateModel request, you must define a container with the PrimaryContainer parameter.

In the request, you also provide an IAM role that Amazon SageMaker can assume to access model
artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs.
In addition, you also use the IAM role to manage permissions the inference code needs. For example, if
the inference code access any other AWS resources, you grant necessary permissions via this role.

Request Syntax

{
 "Containers": [
 {
 "ContainerHostname": "string",
 "Environment": {
 "string" : "string"
 },
 "Image": "string",
 "ModelDataUrl": "string",
 "ModelPackageName": "string"
 }
],
 "EnableNetworkIsolation": boolean,
 "ExecutionRoleArn": "string",
 "ModelName": "string",
 "PrimaryContainer": {
 "ContainerHostname": "string",
 "Environment": {
 "string" : "string"
 },
 "Image": "string",
 "ModelDataUrl": "string",
 "ModelPackageName": "string"
 },
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }

648

Amazon SageMaker Developer Guide
Amazon SageMaker Service

}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

Containers (p. 648)

Specifies the containers in the inference pipeline.

Type: Array of ContainerDefinition (p. 886) objects

Array Members: Maximum number of 5 items.

Required: No
EnableNetworkIsolation (p. 648)

Isolates the model container. No inbound or outbound network calls can be made to or from the
model container.

Note
The Semantic Segmentation built-in algorithm does not support network isolation.

Type: Boolean

Required: No
ExecutionRoleArn (p. 648)

The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access
model artifacts and docker image for deployment on ML compute instances or for batch transform
jobs. Deploying on ML compute instances is part of model hosting. For more information, see
Amazon SageMaker Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must have the
iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
ModelName (p. 648)

The name of the new model.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
PrimaryContainer (p. 648)

The location of the primary docker image containing inference code, associated artifacts, and
custom environment map that the inference code uses when the model is deployed for predictions.

649

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: ContainerDefinition (p. 886) object

Required: No

Tags (p. 648)

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing
and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

VpcConfig (p. 648)

A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to
and from your model container by configuring the VPC. VpcConfig is used in hosting services and
in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private
Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.

Type: VpcConfig (p. 1039) object

Required: No

Response Syntax

{
 "ModelArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ModelArn (p. 650)

The ARN of the model created in Amazon SageMaker.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

650

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
https://docs.aws.amazon.com/sagemaker/latest/dg/API_VpcConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

651

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateModel
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateModel

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateModelPackage
Service: Amazon SageMaker Service

Creates a model package that you can use to create Amazon SageMaker models or list on AWS
Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in
Amazon SageMaker.

To create a model package by specifying a Docker container that contains your inference code and the
Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a
model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value
for SourceAlgorithmSpecification.

Request Syntax

{
 "CertifyForMarketplace": boolean,
 "InferenceSpecification": {
 "Containers": [
 {
 "ContainerHostname": "string",
 "Image": "string",
 "ImageDigest": "string",
 "ModelDataUrl": "string",
 "ProductId": "string"
 }
],
 "SupportedContentTypes": ["string"],
 "SupportedRealtimeInferenceInstanceTypes": ["string"],
 "SupportedResponseMIMETypes": ["string"],
 "SupportedTransformInstanceTypes": ["string"]
 },
 "ModelPackageDescription": "string",
 "ModelPackageName": "string",
 "SourceAlgorithmSpecification": {
 "SourceAlgorithms": [
 {
 "AlgorithmName": "string",
 "ModelDataUrl": "string"
 }
]
 },
 "ValidationSpecification": {
 "ValidationProfiles": [
 {
 "ProfileName": "string",
 "TransformJobDefinition": {
 "BatchStrategy": "string",
 "Environment": {
 "string" : "string"
 },
 "MaxConcurrentTransforms": number,
 "MaxPayloadInMB": number,
 "TransformInput": {
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "SplitType": "string"
 },

652

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "TransformOutput": {
 "Accept": "string",
 "AssembleWith": "string",
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "TransformResources": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string"
 }
 }
 }
],
 "ValidationRole": "string"
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CertifyForMarketplace (p. 652)

Whether to certify the model package for listing on AWS Marketplace.

Type: Boolean

Required: No
InferenceSpecification (p. 652)

Specifies details about inference jobs that can be run with models based on this model package,
including the following:
• The Amazon ECR paths of containers that contain the inference code and model artifacts.
• The instance types that the model package supports for transform jobs and real-time endpoints

used for inference.
• The input and output content formats that the model package supports for inference.

Type: InferenceSpecification (p. 929) object

Required: No
ModelPackageDescription (p. 652)

A description of the model package.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*

Required: No
ModelPackageName (p. 652)

The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-
Z, 0-9, and - (hyphen).

653

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
SourceAlgorithmSpecification (p. 652)

Details about the algorithm that was used to create the model package.

Type: SourceAlgorithmSpecification (p. 1003) object

Required: No
ValidationSpecification (p. 652)

Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the
model package.

Type: ModelPackageValidationSpecification (p. 965) object

Required: No

Response Syntax

{
 "ModelPackageArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ModelPackageArn (p. 654)

The Amazon Resource Name (ARN) of the new model package.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model-package/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

654

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateModelPackage

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

655

https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateModelPackage
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateModelPackage

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateNotebookInstance
Service: Amazon SageMaker Service

Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML)
compute instance running on a Jupyter notebook.

In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run.
Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets
for model training, and attaches an ML storage volume to the notebook instance.

Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use
Amazon SageMaker with a specific algorithm or with a machine learning framework.

After receiving the request, Amazon SageMaker does the following:

1. Creates a network interface in the Amazon SageMaker VPC.
2. (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own

VPC, which is inferred from the subnet ID that you provide in the input. When creating this network
interface, Amazon SageMaker attaches the security group that you specified in the request to the
network interface that it creates in your VPC.

3. Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If
you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when
launching this instance. This enables inbound traffic from your own VPC to the notebook instance,
assuming that the security groups allow it.

After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You
can't change the name of a notebook instance after you create it.

After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work
in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model
training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted
models.

For more information, see How It Works.

Request Syntax

{
 "AcceleratorTypes": ["string"],
 "AdditionalCodeRepositories": ["string"],
 "DefaultCodeRepository": "string",
 "DirectInternetAccess": "string",
 "InstanceType": "string",
 "KmsKeyId": "string",
 "LifecycleConfigName": "string",
 "NotebookInstanceName": "string",
 "RoleArn": "string",
 "RootAccess": "string",
 "SecurityGroupIds": ["string"],
 "SubnetId": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "VolumeSizeInGB": number
}

656

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AcceleratorTypes (p. 656)

A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only
one instance type can be associated with a notebook instance. For more information, see Using
Elastic Inference in Amazon SageMaker.

Type: Array of strings

Valid Values: ml.eia1.medium | ml.eia1.large | ml.eia1.xlarge

Required: No
AdditionalCodeRepositories (p. 656)

An array of up to three Git repositories to associate with the notebook instance. These can be either
the names of Git repositories stored as resources in your account, or the URL of Git repositories in
AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level
as the default repository of your notebook instance. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: Array of strings

Array Members: Maximum number of 3 items.

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
DefaultCodeRepository (p. 656)

A Git repository to associate with the notebook instance as its default code repository. This can
be either the name of a Git repository stored as a resource in your account, or the URL of a Git
repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance,
it opens in the directory that contains this repository. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
DirectInternetAccess (p. 656)

Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this
to Disabled this notebook instance will be able to access resources only in your VPC, and will not
be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT
Gateway in your VPC.

For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the
value of this parameter to Disabled only if you set a value for the SubnetId parameter.

657

https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Valid Values: Enabled | Disabled

Required: No
InstanceType (p. 656)

The type of ML compute instance to launch for the notebook instance.

Type: String

Valid Values: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge |
ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m4.xlarge
| ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge
| ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge
| ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge |
ml.c4.8xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge
| ml.c5.18xlarge | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge
| ml.c5d.9xlarge | ml.c5d.18xlarge | ml.p2.xlarge | ml.p2.8xlarge |
ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge

Required: Yes
KmsKeyId (p. 656)

The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker
uses to encrypt data on the storage volume attached to your notebook instance. The KMS key
you provide must be enabled. For information, see Enabling and Disabling Keys in the AWS Key
Management Service Developer Guide.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No
LifecycleConfigName (p. 656)

The name of a lifecycle configuration to associate with the notebook instance. For information about
lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
NotebookInstanceName (p. 656)

The name of the new notebook instance.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

658

https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

RoleArn (p. 656)

When you send any requests to AWS resources from the notebook instance, Amazon SageMaker
assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so
Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service
principal (sagemaker.amazonaws.com) permissionsto to assume this role. For more information, see
Amazon SageMaker Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must have the
iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
RootAccess (p. 656)

Whether root access is enabled or disabled for users of the notebook instance. The default value is
Enabled.

Note
Lifecycle configurations need root access to be able to set up a notebook instance. Because
of this, lifecycle configurations associated with a notebook instance always run with root
access even if you disable root access for users.

Type: String

Valid Values: Enabled | Disabled

Required: No
SecurityGroupIds (p. 656)

The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC
as specified in the subnet.

Type: Array of strings

Array Members: Maximum number of 5 items.

Length Constraints: Maximum length of 32.

Pattern: [-0-9a-zA-Z]+

Required: No
SubnetId (p. 656)

The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute
instance.

Type: String

Length Constraints: Maximum length of 32.

Pattern: [-0-9a-zA-Z]+

Required: No

659

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Tags (p. 656)

A list of tags to associate with the notebook instance. You can add tags later by using the
CreateTags API.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
VolumeSizeInGB (p. 656)

The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5
GB.

Type: Integer

Valid Range: Minimum value of 5. Maximum value of 16384.

Required: No

Response Syntax

{
 "NotebookInstanceArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NotebookInstanceArn (p. 660)

The Amazon Resource Name (ARN) of the notebook instance.

Type: String

Length Constraints: Maximum length of 256.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface

660

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

661

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateNotebookInstanceLifecycleConfig
Service: Amazon SageMaker Service

Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration
is a collection of shell scripts that run when you create or start a notebook instance.

Each lifecycle configuration script has a limit of 16384 characters.

The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/
sbin:/usr/bin.

View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/
NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook].

Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5
minutes, it fails and the notebook instance is not created or started.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a
Notebook Instance.

Request Syntax

{
 "NotebookInstanceLifecycleConfigName": "string",
 "OnCreate": [
 {
 "Content": "string"
 }
],
 "OnStart": [
 {
 "Content": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceLifecycleConfigName (p. 662)

The name of the lifecycle configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
OnCreate (p. 662)

A shell script that runs only once, when you create a notebook instance. The shell script must be a
base64-encoded string.

Type: Array of NotebookInstanceLifecycleHook (p. 969) objects

662

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Array Members: Maximum number of 1 item.

Required: No
OnStart (p. 662)

A shell script that runs every time you start a notebook instance, including when you create the
notebook instance. The shell script must be a base64-encoded string.

Type: Array of NotebookInstanceLifecycleHook (p. 969) objects

Array Members: Maximum number of 1 item.

Required: No

Response Syntax

{
 "NotebookInstanceLifecycleConfigArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NotebookInstanceLifecycleConfigArn (p. 663)

The Amazon Resource Name (ARN) of the lifecycle configuration.

Type: String

Length Constraints: Maximum length of 256.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java

663

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

664

https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreatePresignedNotebookInstanceUrl
Service: Amazon SageMaker Service

Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the
Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker
opens a new tab showing the Jupyter server home page from the notebook instance. The console uses
this API to get the URL and show the page.

IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame
that attempts to connect to the notebook instance.For example, you can restrict access to this API and
to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition
operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want
to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance
by IP Address.

Note
The URL that you get from a call to CreatePresignedNotebookInstanceUrl (p. 665) is valid only
for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the
AWS console sign-in page.

Request Syntax

{
 "NotebookInstanceName": "string",
 "SessionExpirationDurationInSeconds": number
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceName (p. 665)

The name of the notebook instance.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
SessionExpirationDurationInSeconds (p. 665)

The duration of the session, in seconds. The default is 12 hours.

Type: Integer

Valid Range: Minimum value of 1800. Maximum value of 43200.

Required: No

Response Syntax

{

665

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-ip-filter.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-ip-filter.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "AuthorizedUrl": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AuthorizedUrl (p. 665)

A JSON object that contains the URL string.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

666

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrl

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateTrainingJob
Service: Amazon SageMaker Service

Starts a model training job. After training completes, Amazon SageMaker saves the resulting model
artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting
model artifacts as part of the model. You can also use the artifacts in a machine learning service other
than Amazon SageMaker, provided that you know how to use them for inferences.

In the request body, you provide the following:

• AlgorithmSpecification - Identifies the training algorithm to use.

• HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model
parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list
of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.

• InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it
is stored.

• OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save
the results of model training.

• ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy
for model training. In distributed training, you specify more than one instance.

• EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to
80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.

• RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on
your behalf during model training. You must grant this role the necessary permissions so that Amazon
SageMaker can successfully complete model training.

• StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for
training. Use MaxWaitTimeInSeconds to specify how long you are willing to to wait for a managed
spot training job to complete.

For more information about Amazon SageMaker, see How It Works.

Request Syntax

{
 "AlgorithmSpecification": {
 "AlgorithmName": "string",
 "MetricDefinitions": [
 {
 "Name": "string",
 "Regex": "string"
 }
],
 "TrainingImage": "string",
 "TrainingInputMode": "string"
 },
 "CheckpointConfig": {
 "LocalPath": "string",
 "S3Uri": "string"
 },
 "EnableInterContainerTrafficEncryption": boolean,
 "EnableManagedSpotTraining": boolean,
 "EnableNetworkIsolation": boolean,
 "HyperParameters": {

667

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "string" : "string"
 },
 "InputDataConfig": [
 {
 "ChannelName": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "string",
 "FileSystemAccessMode": "string",
 "FileSystemId": "string",
 "FileSystemType": "string"
 },
 "S3DataSource": {
 "AttributeNames": ["string"],
 "S3DataDistributionType": "string",
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "InputMode": "string",
 "RecordWrapperType": "string",
 "ShuffleConfig": {
 "Seed": number
 }
 }
],
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "ResourceConfig": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string",
 "VolumeSizeInGB": number
 },
 "RoleArn": "string",
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 },
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "TrainingJobName": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

668

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmSpecification (p. 667)

The registry path of the Docker image that contains the training algorithm and algorithm-specific
metadata, including the input mode. For more information about algorithms provided by Amazon
SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your
Own Algorithms with Amazon SageMaker.

Type: AlgorithmSpecification (p. 863) object

Required: Yes
CheckpointConfig (p. 667)

Contains information about the output location for managed spot training checkpoint data.

Type: CheckpointConfig (p. 880) object

Required: No
EnableInterContainerTrafficEncryption (p. 667)

To encrypt all communications between ML compute instances in distributed training, choose True.
Encryption provides greater security for distributed training, but training might take longer. How
long it takes depends on the amount of communication between compute instances, especially
if you use a deep learning algorithm in distributed training. For more information, see Protect
Communications Between ML Compute Instances in a Distributed Training Job.

Type: Boolean

Required: No
EnableManagedSpotTraining (p. 667)

To train models using managed spot training, choose True. Managed spot training provides a fully
managed and scalable infrastructure for training machine learning models. this option is useful
when training jobs can be interrupted and when there is flexibility when the training job is run.

The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used
as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in
CloudWatch. They can be used to see when managed spot training jobs are running, interrupted,
resumed, or completed.

Type: Boolean

Required: No
EnableNetworkIsolation (p. 667)

Isolates the training container. No inbound or outbound network calls can be made, except for calls
between peers within a training cluster for distributed training. If you enable network isolation
for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads
customer data and model artifacts through the specified VPC, but the training container does not
have network access.

Note
The Semantic Segmentation built-in algorithm does not support network isolation.

Type: Boolean

Required: No
HyperParameters (p. 667)

Algorithm-specific parameters that influence the quality of the model. You set hyperparameters
before you start the learning process. For a list of hyperparameters for each training algorithm
provided by Amazon SageMaker, see Algorithms.

669

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each
key and value is limited to 256 characters, as specified by the Length Constraint.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
InputDataConfig (p. 667)

An array of Channel objects. Each channel is a named input source. InputDataConfig describes
the input data and its location.

Algorithms can accept input data from one or more channels. For example, an algorithm might
have two channels of input data, training_data and validation_data. The configuration for
each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides
information about the stored data: the MIME type, compression method, and whether the data is
wrapped in RecordIO format.

Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input
data files from an S3 bucket to a local directory in the Docker container, or makes it available as
input streams. For example, if you specify an EFS location, input data files will be made available as
input streams. They do not need to be downloaded.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
OutputDataConfig (p. 667)

Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker
creates subfolders for the artifacts.

Type: OutputDataConfig (p. 976) object

Required: Yes
ResourceConfig (p. 667)

The resources, including the ML compute instances and ML storage volumes, to use for model
training.

ML storage volumes store model artifacts and incremental states. Training algorithms might also use
ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume
to store the training data, choose File as the TrainingInputMode in the algorithm specification.
For distributed training algorithms, specify an instance count greater than 1.

Type: ResourceConfig (p. 991) object

Required: Yes
RoleArn (p. 667)

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform
tasks on your behalf.

670

Amazon SageMaker Developer Guide
Amazon SageMaker Service

During model training, Amazon SageMaker needs your permission to read input data from an S3
bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket,
write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
permissions for all of these tasks to an IAM role. For more information, see Amazon SageMaker
Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must have the
iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StoppingCondition (p. 667)

Specifies a limit to how long a model training job can run. When the job reaches the time limit,
Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job
termination for 120 seconds. Algorithms can use this 120-second window to save the model
artifacts, so the results of training are not lost.

Type: StoppingCondition (p. 1004) object

Required: Yes
Tags (p. 667)

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing
and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TrainingJobName (p. 667)

The name of the training job. The name must be unique within an AWS Region in an AWS account.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
VpcConfig (p. 667)

A VpcConfig (p. 1039) object that specifies the VPC that you want your training job to connect to.
Control access to and from your training container by configuring the VPC. For more information,
see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Type: VpcConfig (p. 1039) object

Required: No

671

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Response Syntax

{
 "TrainingJobArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TrainingJobArn (p. 672)

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-job/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

672

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateTrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateTrainingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateTransformJob
Service: Amazon SageMaker Service

Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves
these results to an Amazon S3 location that you specify.

To perform batch transformations, you create a transform job and use the data that you have readily
available.

In the request body, you provide the following:

• TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in
an AWS account.

• ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon
SageMaker model in the same AWS Region and AWS account. For information on creating a model, see
CreateModel (p. 648).

• TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is
stored.

• TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save
the results from the transform job.

• TransformResources - Identifies the ML compute instances for the transform job.

For more information about how batch transformation works Amazon SageMaker, see How It Works.

Request Syntax

{
 "BatchStrategy": "string",
 "DataProcessing": {
 "InputFilter": "string",
 "JoinSource": "string",
 "OutputFilter": "string"
 },
 "Environment": {
 "string" : "string"
 },
 "MaxConcurrentTransforms": number,
 "MaxPayloadInMB": number,
 "ModelName": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "TransformInput": {
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "SplitType": "string"
 },
 "TransformJobName": "string",
 "TransformOutput": {
 "Accept": "string",
 "AssembleWith": "string",

673

https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "TransformResources": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string"
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

BatchStrategy (p. 673)

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is
a single unit of input data that inference can be made on. For example, a single line in a CSV file is a
record.

To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.

To use only one record when making an HTTP invocation request to a container, set
BatchStrategy to SingleRecord and SplitType to Line.

To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set
BatchStrategy to MultiRecord and SplitType to Line.

Type: String

Valid Values: MultiRecord | SingleRecord

Required: No
DataProcessing (p. 673)

The data structure used to specify the data to be used for inference in a batch transform job and to
associate the data that is relevant to the prediction results in the output. The input filter provided
allows you to exclude input data that is not needed for inference in a batch transform job. The
output filter provided allows you to include input data relevant to interpreting the predictions
in the output from the job. For more information, see Associate Prediction Results with their
Corresponding Input Records.

Type: DataProcessing (p. 891) object

Required: No
Environment (p. 673)

The environment variables to set in the Docker container. We support up to 16 key and values
entries in the map.

Type: String to string map

Key Length Constraints: Maximum length of 1024.

Key Pattern: [a-zA-Z_][a-zA-Z0-9_]*

Value Length Constraints: Maximum length of 10240.

674

https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Value Pattern: [\S\s]*

Required: No
MaxConcurrentTransforms (p. 673)

The maximum number of parallel requests that can be sent to each instance in a transform job.
If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional
execution-parameters to determine the optimal settings for your chosen algorithm. If the execution-
parameters endpoint is not enabled, the default value is 1. For more information on execution-
parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a
value for MaxConcurrentTransforms.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
MaxPayloadInMB (p. 673)

The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without
metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single
record. To estimate the size of a record in MB, divide the size of your dataset by the number of
records. To ensure that the records fit within the maximum payload size, we recommend using a
slightly larger value. The default value is 6 MB.

For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked
encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon
SageMaker built-in algorithms do not support HTTP chunked encoding.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
ModelName (p. 673)

The name of the model that you want to use for the transform job. ModelName must be the name of
an existing Amazon SageMaker model within an AWS Region in an AWS account.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
Tags (p. 673)

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the
AWS Billing and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TransformInput (p. 673)

Describes the input source and the way the transform job consumes it.

675

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: TransformInput (p. 1024) object

Required: Yes
TransformJobName (p. 673)

The name of the transform job. The name must be unique within an AWS Region in an AWS account.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
TransformOutput (p. 673)

Describes the results of the transform job.

Type: TransformOutput (p. 1030) object

Required: Yes
TransformResources (p. 673)

Describes the resources, including ML instance types and ML instance count, to use for the transform
job.

Type: TransformResources (p. 1032) object

Required: Yes

Response Syntax

{
 "TransformJobArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TransformJobArn (p. 676)

The Amazon Resource Name (ARN) of the transform job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:transform-job/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceInUse

Resource being accessed is in use.

676

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

677

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateTransformJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateTransformJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreateWorkteam
Service: Amazon SageMaker Service

Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito
user pools. You must first create the user pools before you can create a work team.

You cannot create more than 25 work teams in an account and region.

Request Syntax

{
 "Description": "string",
 "MemberDefinitions": [
 {
 "CognitoMemberDefinition": {
 "ClientId": "string",
 "UserGroup": "string",
 "UserPool": "string"
 }
 }
],
 "NotificationConfiguration": {
 "NotificationTopicArn": "string"
 },
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "WorkteamName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

Description (p. 678)

A description of the work team.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 200.

Pattern: .+

Required: Yes
MemberDefinitions (p. 678)

A list of MemberDefinition objects that contains objects that identify the Amazon Cognito user
pool that makes up the work team. For more information, see Amazon Cognito User Pools.

All of the CognitoMemberDefinition objects that make up the member definition must have the
same ClientId and UserPool values.

Type: Array of MemberDefinition (p. 954) objects

Array Members: Minimum number of 1 item. Maximum number of 10 items.

678

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: Yes
NotificationConfiguration (p. 678)

Configures notification of workers regarding available or expiring work items.

Type: NotificationConfiguration (p. 973) object

Required: No
Tags (p. 678)

An array of key-value pairs.

For more information, see Resource Tag and Using Cost Allocation Tags in the AWS Billing and Cost
Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
WorkteamName (p. 678)

The name of the work team. Use this name to identify the work team.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "WorkteamArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

WorkteamArn (p. 679)

The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work
team.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:workteam/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

679

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-resource-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ResourceInUse

Resource being accessed is in use.

HTTP Status Code: 400
ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

680

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CreateWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteAlgorithm
Service: Amazon SageMaker Service

Removes the specified algorithm from your account.

Request Syntax

{
 "AlgorithmName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AlgorithmName (p. 681)

The name of the algorithm to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

681

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteAlgorithm
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteAlgorithm

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteCodeRepository
Service: Amazon SageMaker Service

Deletes the specified Git repository from your account.

Request Syntax

{
 "CodeRepositoryName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CodeRepositoryName (p. 682)

The name of the Git repository to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

682

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteCodeRepository
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteCodeRepository

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteEndpoint
Service: Amazon SageMaker Service

Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the
endpoint was created.

Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't
need to use the RevokeGrant API call.

Request Syntax

{
 "EndpointName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

EndpointName (p. 683)

The name of the endpoint that you want to delete.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python

683

http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteEndpoint
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteEndpoint

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Ruby V2

684

https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteEndpoint

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteEndpointConfig
Service: Amazon SageMaker Service

Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified
configuration. It does not delete endpoints created using the configuration.

Request Syntax

{
 "EndpointConfigName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

EndpointConfigName (p. 685)

The name of the endpoint configuration that you want to delete.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

685

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteEndpointConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteEndpointConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteModel
Service: Amazon SageMaker Service

Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon
SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or
the IAM role that you specified when creating the model.

Request Syntax

{
 "ModelName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

ModelName (p. 686)

The name of the model to delete.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

686

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html
https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteModel
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteModel

Amazon SageMaker Developer Guide
Amazon SageMaker Service

687

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteModelPackage
Service: Amazon SageMaker Service

Deletes a model package.

A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can
subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.

Request Syntax

{
 "ModelPackageName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

ModelPackageName (p. 688)

The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-
Z, 0-9, and - (hyphen).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python

688

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteModelPackage
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteModelPackage

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Ruby V2

689

https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteModelPackage

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteNotebookInstance
Service: Amazon SageMaker Service

Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must
call the StopNotebookInstance API.

Important
When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes
the ML compute instance, and deletes the ML storage volume and the network interface
associated with the notebook instance.

Request Syntax

{
 "NotebookInstanceName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceName (p. 690)

The name of the Amazon SageMaker notebook instance to delete.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3

690

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Python
• AWS SDK for Ruby V2

691

https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteNotebookInstance
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteNotebookInstanceLifecycleConfig
Service: Amazon SageMaker Service

Deletes a notebook instance lifecycle configuration.

Request Syntax

{
 "NotebookInstanceLifecycleConfigName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceLifecycleConfigName (p. 692)

The name of the lifecycle configuration to delete.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

692

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteNotebookInstanceLifecycleConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteTags
Service: Amazon SageMaker Service

Deletes the specified tags from an Amazon SageMaker resource.

To list a resource's tags, use the ListTags API.

Note
When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are
not removed from training jobs that the hyperparameter tuning job launched before you called
this API.

Request Syntax

{
 "ResourceArn": "string",
 "TagKeys": ["string"]
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

ResourceArn (p. 693)

The Amazon Resource Name (ARN) of the resource whose tags you want to delete.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:.*

Required: Yes
TagKeys (p. 693)

An array or one or more tag keys to delete.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 50 items.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: ^([\p{L}\p{Z}\p{N}_.:/=+\-@]*)$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

693

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

694

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteTags
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteTags

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeleteWorkteam
Service: Amazon SageMaker Service

Deletes an existing work team. This operation can't be undone.

Request Syntax

{
 "WorkteamName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

WorkteamName (p. 695)

The name of the work team to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "Success": boolean
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Success (p. 695)

Returns true if the work team was successfully deleted; otherwise, returns false.

Type: Boolean

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

695

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

696

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DeleteWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeleteWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeAlgorithm
Service: Amazon SageMaker Service

Returns a description of the specified algorithm that is in your account.

Request Syntax

{
 "AlgorithmName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AlgorithmName (p. 697)

The name of the algorithm to describe.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 170.

Pattern: (arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:[a-z\-]*\/)?([a-zA-
Z0-9]([a-zA-Z0-9-]){0,62})(?<!-)$

Required: Yes

Response Syntax

{
 "AlgorithmArn": "string",
 "AlgorithmDescription": "string",
 "AlgorithmName": "string",
 "AlgorithmStatus": "string",
 "AlgorithmStatusDetails": {
 "ImageScanStatuses": [
 {
 "FailureReason": "string",
 "Name": "string",
 "Status": "string"
 }
],
 "ValidationStatuses": [
 {
 "FailureReason": "string",
 "Name": "string",
 "Status": "string"
 }
]
 },
 "CertifyForMarketplace": boolean,
 "CreationTime": number,
 "InferenceSpecification": {
 "Containers": [
 {
 "ContainerHostname": "string",

697

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "Image": "string",
 "ImageDigest": "string",
 "ModelDataUrl": "string",
 "ProductId": "string"
 }
],
 "SupportedContentTypes": ["string"],
 "SupportedRealtimeInferenceInstanceTypes": ["string"],
 "SupportedResponseMIMETypes": ["string"],
 "SupportedTransformInstanceTypes": ["string"]
 },
 "ProductId": "string",
 "TrainingSpecification": {
 "MetricDefinitions": [
 {
 "Name": "string",
 "Regex": "string"
 }
],
 "SupportedHyperParameters": [
 {
 "DefaultValue": "string",
 "Description": "string",
 "IsRequired": boolean,
 "IsTunable": boolean,
 "Name": "string",
 "Range": {
 "CategoricalParameterRangeSpecification": {
 "Values": ["string"]
 },
 "ContinuousParameterRangeSpecification": {
 "MaxValue": "string",
 "MinValue": "string"
 },
 "IntegerParameterRangeSpecification": {
 "MaxValue": "string",
 "MinValue": "string"
 }
 },
 "Type": "string"
 }
],
 "SupportedTrainingInstanceTypes": ["string"],
 "SupportedTuningJobObjectiveMetrics": [
 {
 "MetricName": "string",
 "Type": "string"
 }
],
 "SupportsDistributedTraining": boolean,
 "TrainingChannels": [
 {
 "Description": "string",
 "IsRequired": boolean,
 "Name": "string",
 "SupportedCompressionTypes": ["string"],
 "SupportedContentTypes": ["string"],
 "SupportedInputModes": ["string"]
 }
],
 "TrainingImage": "string",
 "TrainingImageDigest": "string"
 },
 "ValidationSpecification": {
 "ValidationProfiles": [
 {

698

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "ProfileName": "string",
 "TrainingJobDefinition": {
 "HyperParameters": {
 "string" : "string"
 },
 "InputDataConfig": [
 {
 "ChannelName": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "string",
 "FileSystemAccessMode": "string",
 "FileSystemId": "string",
 "FileSystemType": "string"
 },
 "S3DataSource": {
 "AttributeNames": ["string"],
 "S3DataDistributionType": "string",
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "InputMode": "string",
 "RecordWrapperType": "string",
 "ShuffleConfig": {
 "Seed": number
 }
 }
],
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "ResourceConfig": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string",
 "VolumeSizeInGB": number
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 },
 "TrainingInputMode": "string"
 },
 "TransformJobDefinition": {
 "BatchStrategy": "string",
 "Environment": {
 "string" : "string"
 },
 "MaxConcurrentTransforms": number,
 "MaxPayloadInMB": number,
 "TransformInput": {
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "SplitType": "string"
 },
 "TransformOutput": {

699

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "Accept": "string",
 "AssembleWith": "string",
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "TransformResources": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string"
 }
 }
 }
],
 "ValidationRole": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AlgorithmArn (p. 697)

The Amazon Resource Name (ARN) of the algorithm.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:algorithm/.*
AlgorithmDescription (p. 697)

A brief summary about the algorithm.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*
AlgorithmName (p. 697)

The name of the algorithm being described.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$
AlgorithmStatus (p. 697)

The current status of the algorithm.

Type: String

Valid Values: Pending | InProgress | Completed | Failed | Deleting
AlgorithmStatusDetails (p. 697)

Details about the current status of the algorithm.

700

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: AlgorithmStatusDetails (p. 865) object
CertifyForMarketplace (p. 697)

Whether the algorithm is certified to be listed in AWS Marketplace.

Type: Boolean
CreationTime (p. 697)

A timestamp specifying when the algorithm was created.

Type: Timestamp
InferenceSpecification (p. 697)

Details about inference jobs that the algorithm runs.

Type: InferenceSpecification (p. 929) object
ProductId (p. 697)

The product identifier of the algorithm.

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$
TrainingSpecification (p. 697)

Details about training jobs run by this algorithm.

Type: TrainingSpecification (p. 1021) object
ValidationSpecification (p. 697)

Details about configurations for one or more training jobs that Amazon SageMaker runs to test the
algorithm.

Type: AlgorithmValidationSpecification (p. 870) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

701

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeAlgorithm
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeAlgorithm

Amazon SageMaker Developer Guide
Amazon SageMaker Service

702

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeCodeRepository
Service: Amazon SageMaker Service

Gets details about the specified Git repository.

Request Syntax

{
 "CodeRepositoryName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CodeRepositoryName (p. 703)

The name of the Git repository to describe.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes

Response Syntax

{
 "CodeRepositoryArn": "string",
 "CodeRepositoryName": "string",
 "CreationTime": number,
 "GitConfig": {
 "Branch": "string",
 "RepositoryUrl": "string",
 "SecretArn": "string"
 },
 "LastModifiedTime": number
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CodeRepositoryArn (p. 703)

The Amazon Resource Name (ARN) of the Git repository.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:code-repository/.*

703

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CodeRepositoryName (p. 703)

The name of the Git repository.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$
CreationTime (p. 703)

The date and time that the repository was created.

Type: Timestamp
GitConfig (p. 703)

Configuration details about the repository, including the URL where the repository is located, the
default branch, and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that
contains the credentials used to access the repository.

Type: GitConfig (p. 905) object
LastModifiedTime (p. 703)

The date and time that the repository was last changed.

Type: Timestamp

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

704

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeCodeRepository
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeCodeRepository

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeCompilationJob
Service: Amazon SageMaker Service

Returns information about a model compilation job.

To create a model compilation job, use CreateCompilationJob (p. 629). To get information about multiple
model compilation jobs, use ListCompilationJobs (p. 767).

Request Syntax

{
 "CompilationJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CompilationJobName (p. 705)

The name of the model compilation job that you want information about.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes

Response Syntax

{
 "CompilationEndTime": number,
 "CompilationJobArn": "string",
 "CompilationJobName": "string",
 "CompilationJobStatus": "string",
 "CompilationStartTime": number,
 "CreationTime": number,
 "FailureReason": "string",
 "InputConfig": {
 "DataInputConfig": "string",
 "Framework": "string",
 "S3Uri": "string"
 },
 "LastModifiedTime": number,
 "ModelArtifacts": {
 "S3ModelArtifacts": "string"
 },
 "OutputConfig": {
 "S3OutputLocation": "string",
 "TargetDevice": "string"
 },
 "RoleArn": "string",
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number

705

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CompilationEndTime (p. 705)

The time when the model compilation job on a compilation job instance ended. For a successful or
stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is
when Amazon SageMaker detected that the job failed.

Type: Timestamp
CompilationJobArn (p. 705)

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the
model compilation job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:compilation-job/.*
CompilationJobName (p. 705)

The name of the model compilation job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$
CompilationJobStatus (p. 705)

The status of the model compilation job.

Type: String

Valid Values: INPROGRESS | COMPLETED | FAILED | STARTING | STOPPING | STOPPED
CompilationStartTime (p. 705)

The time when the model compilation job started the CompilationJob instances.

You are billed for the time between this timestamp and the timestamp in the
DescribeCompilationJob:CompilationEndTime (p. 706) field. In Amazon CloudWatch Logs, the start
time might be later than this time. That's because it takes time to download the compilation job,
which depends on the size of the compilation job container.

Type: Timestamp
CreationTime (p. 705)

The time that the model compilation job was created.

Type: Timestamp
FailureReason (p. 705)

If a model compilation job failed, the reason it failed.

706

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 1024.
InputConfig (p. 705)

Information about the location in Amazon S3 of the input model artifacts, the name and shape of
the expected data inputs, and the framework in which the model was trained.

Type: InputConfig (p. 931) object
LastModifiedTime (p. 705)

The time that the status of the model compilation job was last modified.

Type: Timestamp
ModelArtifacts (p. 705)

Information about the location in Amazon S3 that has been configured for storing the model
artifacts used in the compilation job.

Type: ModelArtifacts (p. 957) object
OutputConfig (p. 705)

Information about the output location for the compiled model and the target device that the model
runs on.

Type: OutputConfig (p. 975) object
RoleArn (p. 705)

The Amazon Resource Name (ARN) of the model compilation job.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$
StoppingCondition (p. 705)

Specifies a limit to how long a model compilation job can run. When the job reaches the time limit,
Amazon SageMaker ends the compilation job. Use this API to cap model training costs.

Type: StoppingCondition (p. 1004) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface

707

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeCompilationJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

708

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeCompilationJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeCompilationJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeEndpoint
Service: Amazon SageMaker Service

Returns the description of an endpoint.

Request Syntax

{
 "EndpointName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

EndpointName (p. 709)

The name of the endpoint.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "CreationTime": number,
 "EndpointArn": "string",
 "EndpointConfigName": "string",
 "EndpointName": "string",
 "EndpointStatus": "string",
 "FailureReason": "string",
 "LastModifiedTime": number,
 "ProductionVariants": [
 {
 "CurrentInstanceCount": number,
 "CurrentWeight": number,
 "DeployedImages": [
 {
 "ResolutionTime": number,
 "ResolvedImage": "string",
 "SpecifiedImage": "string"
 }
],
 "DesiredInstanceCount": number,
 "DesiredWeight": number,
 "VariantName": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

709

Amazon SageMaker Developer Guide
Amazon SageMaker Service

The following data is returned in JSON format by the service.

CreationTime (p. 709)

A timestamp that shows when the endpoint was created.

Type: Timestamp
EndpointArn (p. 709)

The Amazon Resource Name (ARN) of the endpoint.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint/.*
EndpointConfigName (p. 709)

The name of the endpoint configuration associated with this endpoint.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
EndpointName (p. 709)

Name of the endpoint.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
EndpointStatus (p. 709)

The status of the endpoint.
• OutOfService: Endpoint is not available to take incoming requests.
• Creating: CreateEndpoint (p. 632) is executing.
• Updating: UpdateEndpoint (p. 840) or UpdateEndpointWeightsAndCapacities (p. 842) is

executing.
• SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-

scaled until it has completed. This maintenance operation does not change any customer-specified
values such as VPC config, KMS encryption, model, instance type, or instance count.

• RollingBack: Endpoint fails to scale up or down or change its variant weight and is in
the process of rolling back to its previous configuration. Once the rollback completes,
endpoint returns to an InService status. This transitional status only applies to an
endpoint that has autoscaling enabled and is undergoing variant weight or capacity
changes as part of an UpdateEndpointWeightsAndCapacities (p. 842) call or when the
UpdateEndpointWeightsAndCapacities (p. 842) operation is called explicitly.

• InService: Endpoint is available to process incoming requests.
• Deleting: DeleteEndpoint (p. 683) is executing.
• Failed: Endpoint could not be created, updated, or re-scaled. Use

DescribeEndpoint:FailureReason (p. 711) for information about the failure.
DeleteEndpoint (p. 683) is the only operation that can be performed on a failed endpoint.

Type: String

710

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Values: OutOfService | Creating | Updating | SystemUpdating | RollingBack
| InService | Deleting | Failed

FailureReason (p. 709)

If the status of the endpoint is Failed, the reason why it failed.

Type: String

Length Constraints: Maximum length of 1024.
LastModifiedTime (p. 709)

A timestamp that shows when the endpoint was last modified.

Type: Timestamp
ProductionVariants (p. 709)

An array of ProductionVariantSummary (p. 983) objects, one for each model hosted behind this
endpoint.

Type: Array of ProductionVariantSummary (p. 983) objects

Array Members: Minimum number of 1 item.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

711

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeEndpoint
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeEndpoint

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeEndpointConfig
Service: Amazon SageMaker Service

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

Request Syntax

{
 "EndpointConfigName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

EndpointConfigName (p. 712)

The name of the endpoint configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "CreationTime": number,
 "EndpointConfigArn": "string",
 "EndpointConfigName": "string",
 "KmsKeyId": "string",
 "ProductionVariants": [
 {
 "AcceleratorType": "string",
 "InitialInstanceCount": number,
 "InitialVariantWeight": number,
 "InstanceType": "string",
 "ModelName": "string",
 "VariantName": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CreationTime (p. 712)

A timestamp that shows when the endpoint configuration was created.

712

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: Timestamp
EndpointConfigArn (p. 712)

The Amazon Resource Name (ARN) of the endpoint configuration.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint-config/.*
EndpointConfigName (p. 712)

Name of the Amazon SageMaker endpoint configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
KmsKeyId (p. 712)

AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume
attached to the instance.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*
ProductionVariants (p. 712)

An array of ProductionVariant objects, one for each model that you want to host at this
endpoint.

Type: Array of ProductionVariant (p. 981) objects

Array Members: Minimum number of 1 item. Maximum number of 10 items.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

713

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeEndpointConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeEndpointConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

714

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeHyperParameterTuningJob
Service: Amazon SageMaker Service

Gets a description of a hyperparameter tuning job.

Request Syntax

{
 "HyperParameterTuningJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

HyperParameterTuningJobName (p. 715)

The name of the tuning job to describe.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "BestTrainingJob": {
 "CreationTime": number,
 "FailureReason": "string",
 "FinalHyperParameterTuningJobObjectiveMetric": {
 "MetricName": "string",
 "Type": "string",
 "Value": number
 },
 "ObjectiveStatus": "string",
 "TrainingEndTime": number,
 "TrainingJobArn": "string",
 "TrainingJobName": "string",
 "TrainingJobStatus": "string",
 "TrainingStartTime": number,
 "TunedHyperParameters": {
 "string" : "string"
 },
 "TuningJobName": "string"
 },
 "CreationTime": number,
 "FailureReason": "string",
 "HyperParameterTuningEndTime": number,
 "HyperParameterTuningJobArn": "string",
 "HyperParameterTuningJobConfig": {
 "HyperParameterTuningJobObjective": {
 "MetricName": "string",
 "Type": "string"

715

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 },
 "ParameterRanges": {
 "CategoricalParameterRanges": [
 {
 "Name": "string",
 "Values": ["string"]
 }
],
 "ContinuousParameterRanges": [
 {
 "MaxValue": "string",
 "MinValue": "string",
 "Name": "string",
 "ScalingType": "string"
 }
],
 "IntegerParameterRanges": [
 {
 "MaxValue": "string",
 "MinValue": "string",
 "Name": "string",
 "ScalingType": "string"
 }
]
 },
 "ResourceLimits": {
 "MaxNumberOfTrainingJobs": number,
 "MaxParallelTrainingJobs": number
 },
 "Strategy": "string",
 "TrainingJobEarlyStoppingType": "string"
 },
 "HyperParameterTuningJobName": "string",
 "HyperParameterTuningJobStatus": "string",
 "LastModifiedTime": number,
 "ObjectiveStatusCounters": {
 "Failed": number,
 "Pending": number,
 "Succeeded": number
 },
 "OverallBestTrainingJob": {
 "CreationTime": number,
 "FailureReason": "string",
 "FinalHyperParameterTuningJobObjectiveMetric": {
 "MetricName": "string",
 "Type": "string",
 "Value": number
 },
 "ObjectiveStatus": "string",
 "TrainingEndTime": number,
 "TrainingJobArn": "string",
 "TrainingJobName": "string",
 "TrainingJobStatus": "string",
 "TrainingStartTime": number,
 "TunedHyperParameters": {
 "string" : "string"
 },
 "TuningJobName": "string"
 },
 "TrainingJobDefinition": {
 "AlgorithmSpecification": {
 "AlgorithmName": "string",
 "MetricDefinitions": [
 {
 "Name": "string",
 "Regex": "string"

716

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 }
],
 "TrainingImage": "string",
 "TrainingInputMode": "string"
 },
 "CheckpointConfig": {
 "LocalPath": "string",
 "S3Uri": "string"
 },
 "EnableInterContainerTrafficEncryption": boolean,
 "EnableManagedSpotTraining": boolean,
 "EnableNetworkIsolation": boolean,
 "InputDataConfig": [
 {
 "ChannelName": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "string",
 "FileSystemAccessMode": "string",
 "FileSystemId": "string",
 "FileSystemType": "string"
 },
 "S3DataSource": {
 "AttributeNames": ["string"],
 "S3DataDistributionType": "string",
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "InputMode": "string",
 "RecordWrapperType": "string",
 "ShuffleConfig": {
 "Seed": number
 }
 }
],
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "ResourceConfig": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string",
 "VolumeSizeInGB": number
 },
 "RoleArn": "string",
 "StaticHyperParameters": {
 "string" : "string"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 },
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
 },
 "TrainingJobStatusCounters": {
 "Completed": number,
 "InProgress": number,
 "NonRetryableError": number,
 "RetryableError": number,

717

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "Stopped": number
 },
 "WarmStartConfig": {
 "ParentHyperParameterTuningJobs": [
 {
 "HyperParameterTuningJobName": "string"
 }
],
 "WarmStartType": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

BestTrainingJob (p. 715)

A TrainingJobSummary (p. 1019) object that describes the training job that completed with the best
current HyperParameterTuningJobObjective (p. 924).

Type: HyperParameterTrainingJobSummary (p. 919) object
CreationTime (p. 715)

The date and time that the tuning job started.

Type: Timestamp
FailureReason (p. 715)

If the tuning job failed, the reason it failed.

Type: String

Length Constraints: Maximum length of 1024.
HyperParameterTuningEndTime (p. 715)

The date and time that the tuning job ended.

Type: Timestamp
HyperParameterTuningJobArn (p. 715)

The Amazon Resource Name (ARN) of the tuning job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:hyper-parameter-
tuning-job/.*

HyperParameterTuningJobConfig (p. 715)

The HyperParameterTuningJobConfig (p. 922) object that specifies the configuration of the tuning
job.

Type: HyperParameterTuningJobConfig (p. 922) object
HyperParameterTuningJobName (p. 715)

The name of the tuning job.

718

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
HyperParameterTuningJobStatus (p. 715)

The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.

Type: String

Valid Values: Completed | InProgress | Failed | Stopped | Stopping
LastModifiedTime (p. 715)

The date and time that the status of the tuning job was modified.

Type: Timestamp
ObjectiveStatusCounters (p. 715)

The ObjectiveStatusCounters (p. 974) object that specifies the number of training jobs, categorized
by the status of their final objective metric, that this tuning job launched.

Type: ObjectiveStatusCounters (p. 974) object
OverallBestTrainingJob (p. 715)

If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of
IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary (p. 1019) for the training job
with the best objective metric value of all training jobs launched by this tuning job and all parent
jobs specified for the warm start tuning job.

Type: HyperParameterTrainingJobSummary (p. 919) object
TrainingJobDefinition (p. 715)

The HyperParameterTrainingJobDefinition (p. 916) object that specifies the definition of the
training jobs that this tuning job launches.

Type: HyperParameterTrainingJobDefinition (p. 916) object
TrainingJobStatusCounters (p. 715)

The TrainingJobStatusCounters (p. 1017) object that specifies the number of training jobs,
categorized by status, that this tuning job launched.

Type: TrainingJobStatusCounters (p. 1017) object
WarmStartConfig (p. 715)

The configuration for starting the hyperparameter parameter tuning job using one or more previous
tuning jobs as a starting point. The results of previous tuning jobs are used to inform which
combinations of hyperparameters to search over in the new tuning job.

Type: HyperParameterTuningJobWarmStartConfig (p. 927) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

719

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

720

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeHyperParameterTuningJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeLabelingJob
Service: Amazon SageMaker Service

Gets information about a labeling job.

Request Syntax

{
 "LabelingJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

LabelingJobName (p. 721)

The name of the labeling job to return information for.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "CreationTime": number,
 "FailureReason": "string",
 "HumanTaskConfig": {
 "AnnotationConsolidationConfig": {
 "AnnotationConsolidationLambdaArn": "string"
 },
 "MaxConcurrentTaskCount": number,
 "NumberOfHumanWorkersPerDataObject": number,
 "PreHumanTaskLambdaArn": "string",
 "PublicWorkforceTaskPrice": {
 "AmountInUsd": {
 "Cents": number,
 "Dollars": number,
 "TenthFractionsOfACent": number
 }
 },
 "TaskAvailabilityLifetimeInSeconds": number,
 "TaskDescription": "string",
 "TaskKeywords": ["string"],
 "TaskTimeLimitInSeconds": number,
 "TaskTitle": "string",
 "UiConfig": {
 "UiTemplateS3Uri": "string"
 },
 "WorkteamArn": "string"
 },
 "InputConfig": {
 "DataAttributes": {

721

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "ContentClassifiers": ["string"]
 },
 "DataSource": {
 "S3DataSource": {
 "ManifestS3Uri": "string"
 }
 }
 },
 "JobReferenceCode": "string",
 "LabelAttributeName": "string",
 "LabelCategoryConfigS3Uri": "string",
 "LabelCounters": {
 "FailedNonRetryableError": number,
 "HumanLabeled": number,
 "MachineLabeled": number,
 "TotalLabeled": number,
 "Unlabeled": number
 },
 "LabelingJobAlgorithmsConfig": {
 "InitialActiveLearningModelArn": "string",
 "LabelingJobAlgorithmSpecificationArn": "string",
 "LabelingJobResourceConfig": {
 "VolumeKmsKeyId": "string"
 }
 },
 "LabelingJobArn": "string",
 "LabelingJobName": "string",
 "LabelingJobOutput": {
 "FinalActiveLearningModelArn": "string",
 "OutputDatasetS3Uri": "string"
 },
 "LabelingJobStatus": "string",
 "LastModifiedTime": number,
 "OutputConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "RoleArn": "string",
 "StoppingConditions": {
 "MaxHumanLabeledObjectCount": number,
 "MaxPercentageOfInputDatasetLabeled": number
 },
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CreationTime (p. 721)

The date and time that the labeling job was created.

Type: Timestamp
FailureReason (p. 721)

If the job failed, the reason that it failed.

722

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 1024.
HumanTaskConfig (p. 721)

Configuration information required for human workers to complete a labeling task.

Type: HumanTaskConfig (p. 907) object
InputConfig (p. 721)

Input configuration information for the labeling job, such as the Amazon S3 location of the data
objects and the location of the manifest file that describes the data objects.

Type: LabelingJobInputConfig (p. 945) object
JobReferenceCode (p. 721)

A unique identifier for work done as part of a labeling job.

Type: String

Length Constraints: Minimum length of 1.

Pattern: .+
LabelAttributeName (p. 721)

The attribute used as the label in the output manifest file.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 127.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
LabelCategoryConfigS3Uri (p. 721)

The S3 location of the JSON file that defines the categories used to label data objects.

The file is a JSON structure in the following format:

{

"document-version": "2018-11-28"

"labels": [

{

"label": "label 1"

},

{

"label": "label 2"

},

...

{

723

Amazon SageMaker Developer Guide
Amazon SageMaker Service

"label": "label n"

}

]

}

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$
LabelCounters (p. 721)

Provides a breakdown of the number of data objects labeled by humans, the number of objects
labeled by machine, the number of objects than couldn't be labeled, and the total number of objects
labeled.

Type: LabelCounters (p. 936) object
LabelingJobAlgorithmsConfig (p. 721)

Configuration information for automated data labeling.

Type: LabelingJobAlgorithmsConfig (p. 939) object
LabelingJobArn (p. 721)

The Amazon Resource Name (ARN) of the labeling job.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:labeling-job/.*
LabelingJobName (p. 721)

The name assigned to the labeling job when it was created.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
LabelingJobOutput (p. 721)

The location of the output produced by the labeling job.

Type: LabelingJobOutput (p. 946) object
LabelingJobStatus (p. 721)

The processing status of the labeling job.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped
LastModifiedTime (p. 721)

The date and time that the labeling job was last updated.

Type: Timestamp

724

Amazon SageMaker Developer Guide
Amazon SageMaker Service

OutputConfig (p. 721)

The location of the job's output data and the AWS Key Management Service key ID for the key used
to encrypt the output data, if any.

Type: LabelingJobOutputConfig (p. 947) object
RoleArn (p. 721)

The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your
behalf during data labeling.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$
StoppingConditions (p. 721)

A set of conditions for stopping a labeling job. If any of the conditions are met, the job is
automatically stopped.

Type: LabelingJobStoppingConditions (p. 950) object
Tags (p. 721)

An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing
and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

725

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeLabelingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeLabelingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

726

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeModel
Service: Amazon SageMaker Service

Describes a model that you created using the CreateModel API.

Request Syntax

{
 "ModelName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

ModelName (p. 727)

The name of the model.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "Containers": [
 {
 "ContainerHostname": "string",
 "Environment": {
 "string" : "string"
 },
 "Image": "string",
 "ModelDataUrl": "string",
 "ModelPackageName": "string"
 }
],
 "CreationTime": number,
 "EnableNetworkIsolation": boolean,
 "ExecutionRoleArn": "string",
 "ModelArn": "string",
 "ModelName": "string",
 "PrimaryContainer": {
 "ContainerHostname": "string",
 "Environment": {
 "string" : "string"
 },
 "Image": "string",
 "ModelDataUrl": "string",
 "ModelPackageName": "string"
 },
 "VpcConfig": {
 "SecurityGroupIds": ["string"],

727

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "Subnets": ["string"]
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Containers (p. 727)

The containers in the inference pipeline.

Type: Array of ContainerDefinition (p. 886) objects

Array Members: Maximum number of 5 items.
CreationTime (p. 727)

A timestamp that shows when the model was created.

Type: Timestamp
EnableNetworkIsolation (p. 727)

If True, no inbound or outbound network calls can be made to or from the model container.

Note
The Semantic Segmentation built-in algorithm does not support network isolation.

Type: Boolean
ExecutionRoleArn (p. 727)

The Amazon Resource Name (ARN) of the IAM role that you specified for the model.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$
ModelArn (p. 727)

The Amazon Resource Name (ARN) of the model.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model/.*
ModelName (p. 727)

Name of the Amazon SageMaker model.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
PrimaryContainer (p. 727)

The location of the primary inference code, associated artifacts, and custom environment map that
the inference code uses when it is deployed in production.

728

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: ContainerDefinition (p. 886) object
VpcConfig (p. 727)

A VpcConfig (p. 1039) object that specifies the VPC that this model has access to. For more
information, see Protect Endpoints by Using an Amazon Virtual Private Cloud

Type: VpcConfig (p. 1039) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

729

https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeModel
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeModel

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeModelPackage
Service: Amazon SageMaker Service

Returns a description of the specified model package, which is used to create Amazon SageMaker models
or list them on AWS Marketplace.

To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS
Marketplace.

Request Syntax

{
 "ModelPackageName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

ModelPackageName (p. 730)

The name of the model package to describe.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 170.

Pattern: (arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:[a-z\-]*\/)?([a-zA-
Z0-9]([a-zA-Z0-9-]){0,62})(?<!-)$

Required: Yes

Response Syntax

{
 "CertifyForMarketplace": boolean,
 "CreationTime": number,
 "InferenceSpecification": {
 "Containers": [
 {
 "ContainerHostname": "string",
 "Image": "string",
 "ImageDigest": "string",
 "ModelDataUrl": "string",
 "ProductId": "string"
 }
],
 "SupportedContentTypes": ["string"],
 "SupportedRealtimeInferenceInstanceTypes": ["string"],
 "SupportedResponseMIMETypes": ["string"],
 "SupportedTransformInstanceTypes": ["string"]
 },
 "ModelPackageArn": "string",
 "ModelPackageDescription": "string",
 "ModelPackageName": "string",
 "ModelPackageStatus": "string",
 "ModelPackageStatusDetails": {
 "ImageScanStatuses": [

730

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 {
 "FailureReason": "string",
 "Name": "string",
 "Status": "string"
 }
],
 "ValidationStatuses": [
 {
 "FailureReason": "string",
 "Name": "string",
 "Status": "string"
 }
]
 },
 "SourceAlgorithmSpecification": {
 "SourceAlgorithms": [
 {
 "AlgorithmName": "string",
 "ModelDataUrl": "string"
 }
]
 },
 "ValidationSpecification": {
 "ValidationProfiles": [
 {
 "ProfileName": "string",
 "TransformJobDefinition": {
 "BatchStrategy": "string",
 "Environment": {
 "string" : "string"
 },
 "MaxConcurrentTransforms": number,
 "MaxPayloadInMB": number,
 "TransformInput": {
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "SplitType": "string"
 },
 "TransformOutput": {
 "Accept": "string",
 "AssembleWith": "string",
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "TransformResources": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string"
 }
 }
 }
],
 "ValidationRole": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

731

Amazon SageMaker Developer Guide
Amazon SageMaker Service

The following data is returned in JSON format by the service.

CertifyForMarketplace (p. 730)

Whether the model package is certified for listing on AWS Marketplace.

Type: Boolean
CreationTime (p. 730)

A timestamp specifying when the model package was created.

Type: Timestamp
InferenceSpecification (p. 730)

Details about inference jobs that can be run with models based on this model package.

Type: InferenceSpecification (p. 929) object
ModelPackageArn (p. 730)

The Amazon Resource Name (ARN) of the model package.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model-package/.*
ModelPackageDescription (p. 730)

A brief summary of the model package.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*
ModelPackageName (p. 730)

The name of the model package being described.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$
ModelPackageStatus (p. 730)

The current status of the model package.

Type: String

Valid Values: Pending | InProgress | Completed | Failed | Deleting
ModelPackageStatusDetails (p. 730)

Details about the current status of the model package.

Type: ModelPackageStatusDetails (p. 960) object
SourceAlgorithmSpecification (p. 730)

Details about the algorithm that was used to create the model package.

732

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: SourceAlgorithmSpecification (p. 1003) object
ValidationSpecification (p. 730)

Configurations for one or more transform jobs that Amazon SageMaker runs to test the model
package.

Type: ModelPackageValidationSpecification (p. 965) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

733

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeModelPackage
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeModelPackage

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeNotebookInstance
Service: Amazon SageMaker Service

Returns information about a notebook instance.

Request Syntax

{
 "NotebookInstanceName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceName (p. 734)

The name of the notebook instance that you want information about.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "AcceleratorTypes": ["string"],
 "AdditionalCodeRepositories": ["string"],
 "CreationTime": number,
 "DefaultCodeRepository": "string",
 "DirectInternetAccess": "string",
 "FailureReason": "string",
 "InstanceType": "string",
 "KmsKeyId": "string",
 "LastModifiedTime": number,
 "NetworkInterfaceId": "string",
 "NotebookInstanceArn": "string",
 "NotebookInstanceLifecycleConfigName": "string",
 "NotebookInstanceName": "string",
 "NotebookInstanceStatus": "string",
 "RoleArn": "string",
 "RootAccess": "string",
 "SecurityGroups": ["string"],
 "SubnetId": "string",
 "Url": "string",
 "VolumeSizeInGB": number
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

734

Amazon SageMaker Developer Guide
Amazon SageMaker Service

The following data is returned in JSON format by the service.

AcceleratorTypes (p. 734)

A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently
only one EI instance type can be associated with a notebook instance. For more information, see
Using Elastic Inference in Amazon SageMaker.

Type: Array of strings

Valid Values: ml.eia1.medium | ml.eia1.large | ml.eia1.xlarge
AdditionalCodeRepositories (p. 734)

An array of up to three Git repositories associated with the notebook instance. These can be either
the names of Git repositories stored as resources in your account, or the URL of Git repositories in
AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level
as the default repository of your notebook instance. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: Array of strings

Array Members: Maximum number of 3 items.

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*
CreationTime (p. 734)

A timestamp. Use this parameter to return the time when the notebook instance was created

Type: Timestamp
DefaultCodeRepository (p. 734)

The Git repository associated with the notebook instance as its default code repository. This can
be either the name of a Git repository stored as a resource in your account, or the URL of a Git
repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance,
it opens in the directory that contains this repository. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*
DirectInternetAccess (p. 734)

Describes whether Amazon SageMaker provides internet access to the notebook instance. If this
value is set to Disabled, the notebook instance does not have internet access, and cannot connect to
Amazon SageMaker training and endpoint services.

For more information, see Notebook Instances Are Internet-Enabled by Default.

Type: String

Valid Values: Enabled | Disabled
FailureReason (p. 734)

If status is Failed, the reason it failed.

Type: String

735

sagemaker/latest/dg/ei.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Length Constraints: Maximum length of 1024.
InstanceType (p. 734)

The type of ML compute instance running on the notebook instance.

Type: String

Valid Values: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge |
ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m4.xlarge
| ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge
| ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge
| ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge |
ml.c4.8xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge
| ml.c5.18xlarge | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge
| ml.c5d.9xlarge | ml.c5d.18xlarge | ml.p2.xlarge | ml.p2.8xlarge |
ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge

KmsKeyId (p. 734)

The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage
volume attached to the instance.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*
LastModifiedTime (p. 734)

A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.

Type: Timestamp
NetworkInterfaceId (p. 734)

The network interface IDs that Amazon SageMaker created at the time of creating the instance.

Type: String
NotebookInstanceArn (p. 734)

The Amazon Resource Name (ARN) of the notebook instance.

Type: String

Length Constraints: Maximum length of 256.
NotebookInstanceLifecycleConfigName (p. 734)

Returns the name of a notebook instance lifecycle configuration.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize
a Notebook Instance

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
NotebookInstanceName (p. 734)

The name of the Amazon SageMaker notebook instance.

Type: String

736

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
NotebookInstanceStatus (p. 734)

The status of the notebook instance.

Type: String

Valid Values: Pending | InService | Stopping | Stopped | Failed | Deleting |
Updating

RoleArn (p. 734)

The Amazon Resource Name (ARN) of the IAM role associated with the instance.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$
RootAccess (p. 734)

Whether root access is enabled or disabled for users of the notebook instance.

Note
Lifecycle configurations need root access to be able to set up a notebook instance. Because
of this, lifecycle configurations associated with a notebook instance always run with root
access even if you disable root access for users.

Type: String

Valid Values: Enabled | Disabled
SecurityGroups (p. 734)

The IDs of the VPC security groups.

Type: Array of strings

Array Members: Maximum number of 5 items.

Length Constraints: Maximum length of 32.

Pattern: [-0-9a-zA-Z]+
SubnetId (p. 734)

The ID of the VPC subnet.

Type: String

Length Constraints: Maximum length of 32.

Pattern: [-0-9a-zA-Z]+
Url (p. 734)

The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.

Type: String
VolumeSizeInGB (p. 734)

The size, in GB, of the ML storage volume attached to the notebook instance.

737

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: Integer

Valid Range: Minimum value of 5. Maximum value of 16384.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

738

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeNotebookInstance
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeNotebookInstanceLifecycleConfig
Service: Amazon SageMaker Service

Returns a description of a notebook instance lifecycle configuration.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a
Notebook Instance.

Request Syntax

{
 "NotebookInstanceLifecycleConfigName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceLifecycleConfigName (p. 739)

The name of the lifecycle configuration to describe.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "CreationTime": number,
 "LastModifiedTime": number,
 "NotebookInstanceLifecycleConfigArn": "string",
 "NotebookInstanceLifecycleConfigName": "string",
 "OnCreate": [
 {
 "Content": "string"
 }
],
 "OnStart": [
 {
 "Content": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

739

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CreationTime (p. 739)

A timestamp that tells when the lifecycle configuration was created.

Type: Timestamp
LastModifiedTime (p. 739)

A timestamp that tells when the lifecycle configuration was last modified.

Type: Timestamp
NotebookInstanceLifecycleConfigArn (p. 739)

The Amazon Resource Name (ARN) of the lifecycle configuration.

Type: String

Length Constraints: Maximum length of 256.
NotebookInstanceLifecycleConfigName (p. 739)

The name of the lifecycle configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
OnCreate (p. 739)

The shell script that runs only once, when you create a notebook instance.

Type: Array of NotebookInstanceLifecycleHook (p. 969) objects

Array Members: Maximum number of 1 item.
OnStart (p. 739)

The shell script that runs every time you start a notebook instance, including when you create the
notebook instance.

Type: Array of NotebookInstanceLifecycleHook (p. 969) objects

Array Members: Maximum number of 1 item.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript

740

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

741

https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeNotebookInstanceLifecycleConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeSubscribedWorkteam
Service: Amazon SageMaker Service

Gets information about a work team provided by a vendor. It returns details about the subscription with
a vendor in the AWS Marketplace.

Request Syntax

{
 "WorkteamArn": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

WorkteamArn (p. 742)

The Amazon Resource Name (ARN) of the subscribed work team to describe.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:workteam/.*

Required: Yes

Response Syntax

{
 "SubscribedWorkteam": {
 "ListingId": "string",
 "MarketplaceDescription": "string",
 "MarketplaceTitle": "string",
 "SellerName": "string",
 "WorkteamArn": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

SubscribedWorkteam (p. 742)

A Workteam instance that contains information about the work team.

Type: SubscribedWorkteam (p. 1005) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

742

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

743

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeSubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeSubscribedWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeTrainingJob
Service: Amazon SageMaker Service

Returns information about a training job.

Request Syntax

{
 "TrainingJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

TrainingJobName (p. 744)

The name of the training job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "AlgorithmSpecification": {
 "AlgorithmName": "string",
 "MetricDefinitions": [
 {
 "Name": "string",
 "Regex": "string"
 }
],
 "TrainingImage": "string",
 "TrainingInputMode": "string"
 },
 "BillableTimeInSeconds": number,
 "CheckpointConfig": {
 "LocalPath": "string",
 "S3Uri": "string"
 },
 "CreationTime": number,
 "EnableInterContainerTrafficEncryption": boolean,
 "EnableManagedSpotTraining": boolean,
 "EnableNetworkIsolation": boolean,
 "FailureReason": "string",
 "FinalMetricDataList": [
 {
 "MetricName": "string",
 "Timestamp": number,
 "Value": number
 }

744

Amazon SageMaker Developer Guide
Amazon SageMaker Service

],
 "HyperParameters": {
 "string" : "string"
 },
 "InputDataConfig": [
 {
 "ChannelName": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "string",
 "FileSystemAccessMode": "string",
 "FileSystemId": "string",
 "FileSystemType": "string"
 },
 "S3DataSource": {
 "AttributeNames": ["string"],
 "S3DataDistributionType": "string",
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "InputMode": "string",
 "RecordWrapperType": "string",
 "ShuffleConfig": {
 "Seed": number
 }
 }
],
 "LabelingJobArn": "string",
 "LastModifiedTime": number,
 "ModelArtifacts": {
 "S3ModelArtifacts": "string"
 },
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "ResourceConfig": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string",
 "VolumeSizeInGB": number
 },
 "RoleArn": "string",
 "SecondaryStatus": "string",
 "SecondaryStatusTransitions": [
 {
 "EndTime": number,
 "StartTime": number,
 "Status": "string",
 "StatusMessage": "string"
 }
],
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 },
 "TrainingEndTime": number,
 "TrainingJobArn": "string",
 "TrainingJobName": "string",
 "TrainingJobStatus": "string",
 "TrainingStartTime": number,
 "TrainingTimeInSeconds": number,
 "TuningJobArn": "string",

745

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AlgorithmSpecification (p. 744)

Information about the algorithm used for training, and algorithm metadata.

Type: AlgorithmSpecification (p. 863) object
BillableTimeInSeconds (p. 744)

The billable time in seconds.

You can calculate the savings from using managed spot training using the formula (1
- BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For example, if
BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.

Type: Integer

Valid Range: Minimum value of 1.
CheckpointConfig (p. 744)

Contains information about the output location for managed spot training checkpoint data.

Type: CheckpointConfig (p. 880) object
CreationTime (p. 744)

A timestamp that indicates when the training job was created.

Type: Timestamp
EnableInterContainerTrafficEncryption (p. 744)

To encrypt all communications between ML compute instances in distributed training, choose True.
Encryption provides greater security for distributed training, but training might take longer. How
long it takes depends on the amount of communication between compute instances, especially if
you use a deep learning algorithms in distributed training.

Type: Boolean
EnableManagedSpotTraining (p. 744)

A Boolean indicating whether managed spot training is enabled (True) or not (False).

Type: Boolean
EnableNetworkIsolation (p. 744)

If you want to allow inbound or outbound network calls, except for calls between peers within a
training cluster for distributed training, choose True. If you enable network isolation for training
jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data
and model artifacts through the specified VPC, but the training container does not have network
access.

746

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Note
The Semantic Segmentation built-in algorithm does not support network isolation.

Type: Boolean
FailureReason (p. 744)

If the training job failed, the reason it failed.

Type: String

Length Constraints: Maximum length of 1024.
FinalMetricDataList (p. 744)

A collection of MetricData objects that specify the names, values, and dates and times that the
training algorithm emitted to Amazon CloudWatch.

Type: Array of MetricData (p. 955) objects

Array Members: Minimum number of 0 items. Maximum number of 40 items.
HyperParameters (p. 744)

Algorithm-specific parameters.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*
InputDataConfig (p. 744)

An array of Channel objects that describes each data input channel.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.
LabelingJobArn (p. 744)

The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created
the transform or training job.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:labeling-job/.*
LastModifiedTime (p. 744)

A timestamp that indicates when the status of the training job was last modified.

Type: Timestamp
ModelArtifacts (p. 744)

Information about the Amazon S3 location that is configured for storing model artifacts.

Type: ModelArtifacts (p. 957) object

747

Amazon SageMaker Developer Guide
Amazon SageMaker Service

OutputDataConfig (p. 744)

The S3 path where model artifacts that you configured when creating the job are stored. Amazon
SageMaker creates subfolders for model artifacts.

Type: OutputDataConfig (p. 976) object
ResourceConfig (p. 744)

Resources, including ML compute instances and ML storage volumes, that are configured for model
training.

Type: ResourceConfig (p. 991) object
RoleArn (p. 744)

The AWS Identity and Access Management (IAM) role configured for the training job.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$
SecondaryStatus (p. 744)

Provides detailed information about the state of the training job. For detailed
information on the secondary status of the training job, see StatusMessage under
SecondaryStatusTransition (p. 999).

Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress

• Starting - Starting the training job.
• Downloading - An optional stage for algorithms that support File training input mode. It

indicates that data is being downloaded to the ML storage volumes.
• Training - Training is in progress.
• Uploading - Training is complete and the model artifacts are being uploaded to the S3

location.
Completed

• Completed - The training job has completed.
Failed

• Failed - The training job has failed. The reason for the failure is returned in the
FailureReason field of DescribeTrainingJobResponse.

Stopped
• MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed

runtime.
• MaxWaitTmeExceeded - The job stopped because it exceeded the maximum allowed wait

time.
• Interrupted - The job stopped because the managed spot training instances were

interrupted.
• Stopped - The training job has stopped.

Stopping
• Stopping - Stopping the training job.

Important
Valid values for SecondaryStatus are subject to change.

We no longer support the following secondary statuses:

748

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• LaunchingMLInstances

• PreparingTrainingStack

• DownloadingTrainingImage

Type: String

Valid Values: Starting | LaunchingMLInstances | PreparingTrainingStack |
Downloading | DownloadingTrainingImage | Training | Uploading | Stopping
| Stopped | MaxRuntimeExceeded | Completed | Failed | Interrupted |
MaxWaitTimeExceeded

SecondaryStatusTransitions (p. 744)

A history of all of the secondary statuses that the training job has transitioned through.

Type: Array of SecondaryStatusTransition (p. 999) objects
StoppingCondition (p. 744)

Specifies a limit to how long a model training job can run. It also specifies the maximum time to wait
for a spot instance. When the job reaches the time limit, Amazon SageMaker ends the training job.
Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job
termination for 120 seconds. Algorithms can use this 120-second window to save the model
artifacts, so the results of training are not lost.

Type: StoppingCondition (p. 1004) object
TrainingEndTime (p. 744)

Indicates the time when the training job ends on training instances. You are billed for the time
interval between the value of TrainingStartTime and this time. For successful jobs and stopped
jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when
Amazon SageMaker detects a job failure.

Type: Timestamp
TrainingJobArn (p. 744)

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-job/.*
TrainingJobName (p. 744)

Name of the model training job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
TrainingJobStatus (p. 744)

The status of the training job.

Amazon SageMaker provides the following training job statuses:
• InProgress - The training is in progress.

749

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• Completed - The training job has completed.
• Failed - The training job has failed. To see the reason for the failure, see the FailureReason

field in the response to a DescribeTrainingJobResponse call.
• Stopping - The training job is stopping.
• Stopped - The training job has stopped.

For more detailed information, see SecondaryStatus.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped
TrainingStartTime (p. 744)

Indicates the time when the training job starts on training instances. You are billed for the time
interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs
might be later than this time. The difference is due to the time it takes to download the training data
and to the size of the training container.

Type: Timestamp
TrainingTimeInSeconds (p. 744)

The training time in seconds.

Type: Integer

Valid Range: Minimum value of 1.
TuningJobArn (p. 744)

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job
was launched by a hyperparameter tuning job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:hyper-parameter-
tuning-job/.*

VpcConfig (p. 744)

A VpcConfig (p. 1039) object that specifies the VPC that this training job has access to. For more
information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Type: VpcConfig (p. 1039) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

750

https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

751

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeTrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeTrainingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeTransformJob
Service: Amazon SageMaker Service

Returns information about a transform job.

Request Syntax

{
 "TransformJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

TransformJobName (p. 752)

The name of the transform job that you want to view details of.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "BatchStrategy": "string",
 "CreationTime": number,
 "DataProcessing": {
 "InputFilter": "string",
 "JoinSource": "string",
 "OutputFilter": "string"
 },
 "Environment": {
 "string" : "string"
 },
 "FailureReason": "string",
 "LabelingJobArn": "string",
 "MaxConcurrentTransforms": number,
 "MaxPayloadInMB": number,
 "ModelName": "string",
 "TransformEndTime": number,
 "TransformInput": {
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "SplitType": "string"
 },

752

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "TransformJobArn": "string",
 "TransformJobName": "string",
 "TransformJobStatus": "string",
 "TransformOutput": {
 "Accept": "string",
 "AssembleWith": "string",
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "TransformResources": {
 "InstanceCount": number,
 "InstanceType": "string",
 "VolumeKmsKeyId": "string"
 },
 "TransformStartTime": number
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

BatchStrategy (p. 752)

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is
a single unit of input data that inference can be made on. For example, a single line in a CSV file is a
record.

To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.

Type: String

Valid Values: MultiRecord | SingleRecord
CreationTime (p. 752)

A timestamp that shows when the transform Job was created.

Type: Timestamp
DataProcessing (p. 752)

The data structure used to specify the data to be used for inference in a batch transform job and to
associate the data that is relevant to the prediction results in the output. The input filter provided
allows you to exclude input data that is not needed for inference in a batch transform job. The
output filter provided allows you to include input data relevant to interpreting the predictions
in the output from the job. For more information, see Associate Prediction Results with their
Corresponding Input Records.

Type: DataProcessing (p. 891) object
Environment (p. 752)

The environment variables to set in the Docker container. We support up to 16 key and values
entries in the map.

Type: String to string map

Key Length Constraints: Maximum length of 1024.

Key Pattern: [a-zA-Z_][a-zA-Z0-9_]*

Value Length Constraints: Maximum length of 10240.

753

https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Value Pattern: [\S\s]*
FailureReason (p. 752)

If the transform job failed, FailureReason describes why it failed. A transform job creates a log
file, which includes error messages, and stores it as an Amazon S3 object. For more information, see
Log Amazon SageMaker Events with Amazon CloudWatch.

Type: String

Length Constraints: Maximum length of 1024.
LabelingJobArn (p. 752)

The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created
the transform or training job.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:labeling-job/.*
MaxConcurrentTransforms (p. 752)

The maximum number of parallel requests on each instance node that can be launched in a
transform job. The default value is 1.

Type: Integer

Valid Range: Minimum value of 0.
MaxPayloadInMB (p. 752)

The maximum payload size, in MB, used in the transform job.

Type: Integer

Valid Range: Minimum value of 0.
ModelName (p. 752)

The name of the model used in the transform job.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
TransformEndTime (p. 752)

Indicates when the transform job has been completed, or has stopped or failed. You are billed for
the time interval between this time and the value of TransformStartTime.

Type: Timestamp
TransformInput (p. 752)

Describes the dataset to be transformed and the Amazon S3 location where it is stored.

Type: TransformInput (p. 1024) object
TransformJobArn (p. 752)

The Amazon Resource Name (ARN) of the transform job.

Type: String

754

https://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:transform-job/.*
TransformJobName (p. 752)

The name of the transform job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*
TransformJobStatus (p. 752)

The status of the transform job. If the transform job failed, the reason is returned in the
FailureReason field.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped
TransformOutput (p. 752)

Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the
transform job.

Type: TransformOutput (p. 1030) object
TransformResources (p. 752)

Describes the resources, including ML instance types and ML instance count, to use for the transform
job.

Type: TransformResources (p. 1032) object
TransformStartTime (p. 752)

Indicates when the transform job starts on ML instances. You are billed for the time interval between
this time and the value of TransformEndTime.

Type: Timestamp

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

755

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeTransformJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

756

https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeTransformJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeTransformJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DescribeWorkteam
Service: Amazon SageMaker Service

Gets information about a specific work team. You can see information such as the create date, the last
updated date, membership information, and the work team's Amazon Resource Name (ARN).

Request Syntax

{
 "WorkteamName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

WorkteamName (p. 757)

The name of the work team to return a description of.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "Workteam": {
 "CreateDate": number,
 "Description": "string",
 "LastUpdatedDate": number,
 "MemberDefinitions": [
 {
 "CognitoMemberDefinition": {
 "ClientId": "string",
 "UserGroup": "string",
 "UserPool": "string"
 }
 }
],
 "NotificationConfiguration": {
 "NotificationTopicArn": "string"
 },
 "ProductListingIds": ["string"],
 "SubDomain": "string",
 "WorkteamArn": "string",
 "WorkteamName": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

757

Amazon SageMaker Developer Guide
Amazon SageMaker Service

The following data is returned in JSON format by the service.

Workteam (p. 757)

A Workteam instance that contains information about the work team.

Type: Workteam (p. 1040) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

758

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/DescribeWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DescribeWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

GetSearchSuggestions
Service: Amazon SageMaker Service

An auto-complete API for the search functionality in the Amazon SageMaker console. It returns
suggestions of possible matches for the property name to use in Search queries. Provides suggestions
for HyperParameters, Tags, and Metrics.

Request Syntax

{
 "Resource": "string",
 "SuggestionQuery": {
 "PropertyNameQuery": {
 "PropertyNameHint": "string"
 }
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

Resource (p. 759)

The name of the Amazon SageMaker resource to Search for. The only valid Resource value is
TrainingJob.

Type: String

Valid Values: TrainingJob

Required: Yes
SuggestionQuery (p. 759)

Limits the property names that are included in the response.

Type: SuggestionQuery (p. 1007) object

Required: No

Response Syntax

{
 "PropertyNameSuggestions": [
 {
 "PropertyName": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

759

Amazon SageMaker Developer Guide
Amazon SageMaker Service

PropertyNameSuggestions (p. 759)

A list of property names for a Resource that match a SuggestionQuery.

Type: Array of PropertyNameSuggestion (p. 986) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

760

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/GetSearchSuggestions
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/GetSearchSuggestions

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListAlgorithms
Service: Amazon SageMaker Service

Lists the machine learning algorithms that have been created.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 761)

A filter that returns only algorithms created after the specified time (timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 761)

A filter that returns only algorithms created before the specified time (timestamp).

Type: Timestamp

Required: No
MaxResults (p. 761)

The maximum number of algorithms to return in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 761)

A string in the algorithm name. This filter returns only algorithms whose name contains the
specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9\-]+

Required: No

761

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NextToken (p. 761)

If the response to a previous ListAlgorithms request was truncated, the response includes a
NextToken. To retrieve the next set of algorithms, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 761)

The parameter by which to sort the results. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime

Required: No
SortOrder (p. 761)

The sort order for the results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "AlgorithmSummaryList": [
 {
 "AlgorithmArn": "string",
 "AlgorithmDescription": "string",
 "AlgorithmName": "string",
 "AlgorithmStatus": "string",
 "CreationTime": number
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AlgorithmSummaryList (p. 762)

>An array of AlgorithmSummary objects, each of which lists an algorithm.

Type: Array of AlgorithmSummary (p. 867) objects
NextToken (p. 762)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
algorithms, use it in the subsequent request.

762

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

763

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListAlgorithms
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListAlgorithms

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListCodeRepositories
Service: Amazon SageMaker Service

Gets a list of the Git repositories in your account.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 764)

A filter that returns only Git repositories that were created after the specified time.

Type: Timestamp

Required: No
CreationTimeBefore (p. 764)

A filter that returns only Git repositories that were created before the specified time.

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 764)

A filter that returns only Git repositories that were last modified after the specified time.

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 764)

A filter that returns only Git repositories that were last modified before the specified time.

Type: Timestamp

Required: No
MaxResults (p. 764)

The maximum number of Git repositories to return in the response.

Type: Integer

764

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 764)

A string in the Git repositories name. This filter returns only repositories whose name contains the
specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9-]+

Required: No
NextToken (p. 764)

If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a
NextToken. To get the next set of Git repositories, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 764)

The field to sort results by. The default is Name.

Type: String

Valid Values: Name | CreationTime | LastModifiedTime

Required: No
SortOrder (p. 764)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "CodeRepositorySummaryList": [
 {
 "CodeRepositoryArn": "string",
 "CodeRepositoryName": "string",
 "CreationTime": number,
 "GitConfig": {
 "Branch": "string",
 "RepositoryUrl": "string",
 "SecretArn": "string"
 },
 "LastModifiedTime": number

765

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CodeRepositorySummaryList (p. 765)

Gets a list of summaries of the Git repositories. Each summary specifies the following values for the
repository:
• Name
• Amazon Resource Name (ARN)
• Creation time
• Last modified time
• Configuration information, including the URL location of the repository and the ARN of the AWS

Secrets Manager secret that contains the credentials used to access the repository.

Type: Array of CodeRepositorySummary (p. 881) objects
NextToken (p. 765)

If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a
NextToken. To get the next set of Git repositories, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

766

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListCodeRepositories
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListCodeRepositories

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListCompilationJobs
Service: Amazon SageMaker Service

Lists model compilation jobs that satisfy various filters.

To create a model compilation job, use CreateCompilationJob (p. 629). To get information about a
particular model compilation job you have created, use DescribeCompilationJob (p. 705).

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 767)

A filter that returns the model compilation jobs that were created after a specified time.

Type: Timestamp

Required: No
CreationTimeBefore (p. 767)

A filter that returns the model compilation jobs that were created before a specified time.

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 767)

A filter that returns the model compilation jobs that were modified after a specified time.

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 767)

A filter that returns the model compilation jobs that were modified before a specified time.

Type: Timestamp

Required: No

767

Amazon SageMaker Developer Guide
Amazon SageMaker Service

MaxResults (p. 767)

The maximum number of model compilation jobs to return in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 767)

A filter that returns the model compilation jobs whose name contains a specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9\-]+

Required: No
NextToken (p. 767)

If the result of the previous ListCompilationJobs request was truncated, the response includes a
NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 767)

The field by which to sort results. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime | Status

Required: No
SortOrder (p. 767)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No
StatusEquals (p. 767)

A filter that retrieves model compilation jobs with a specific
DescribeCompilationJob:CompilationJobStatus (p. 706) status.

Type: String

Valid Values: INPROGRESS | COMPLETED | FAILED | STARTING | STOPPING | STOPPED

Required: No

768

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Response Syntax

{
 "CompilationJobSummaries": [
 {
 "CompilationEndTime": number,
 "CompilationJobArn": "string",
 "CompilationJobName": "string",
 "CompilationJobStatus": "string",
 "CompilationStartTime": number,
 "CompilationTargetDevice": "string",
 "CreationTime": number,
 "LastModifiedTime": number
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CompilationJobSummaries (p. 769)

An array of CompilationJobSummary (p. 884) objects, each describing a model compilation job.

Type: Array of CompilationJobSummary (p. 884) objects
NextToken (p. 769)

If the response is truncated, Amazon SageMaker returns this NextToken. To retrieve the next set of
model compilation jobs, use this token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python

769

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListCompilationJobs
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListCompilationJobs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Ruby V2

770

https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListCompilationJobs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListEndpointConfigs
Service: Amazon SageMaker Service

Lists endpoint configurations.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 771)

A filter that returns only endpoint configurations with a creation time greater than or equal to the
specified time (timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 771)

A filter that returns only endpoint configurations created before the specified time (timestamp).

Type: Timestamp

Required: No
MaxResults (p. 771)

The maximum number of training jobs to return in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 771)

A string in the endpoint configuration name. This filter returns only endpoint configurations whose
name contains the specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9-]+

Required: No

771

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NextToken (p. 771)

If the result of the previous ListEndpointConfig request was truncated, the response includes a
NextToken. To retrieve the next set of endpoint configurations, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 771)

The field to sort results by. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime

Required: No
SortOrder (p. 771)

The sort order for results. The default is Descending.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "EndpointConfigs": [
 {
 "CreationTime": number,
 "EndpointConfigArn": "string",
 "EndpointConfigName": "string"
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

EndpointConfigs (p. 772)

An array of endpoint configurations.

Type: Array of EndpointConfigSummary (p. 896) objects
NextToken (p. 772)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
endpoint configurations, use it in the subsequent request

772

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

773

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListEndpointConfigs
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListEndpointConfigs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListEndpoints
Service: Amazon SageMaker Service

Lists endpoints.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 774)

A filter that returns only endpoints with a creation time greater than or equal to the specified time
(timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 774)

A filter that returns only endpoints that were created before the specified time (timestamp).

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 774)

A filter that returns only endpoints that were modified after the specified timestamp.

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 774)

A filter that returns only endpoints that were modified before the specified timestamp.

Type: Timestamp

Required: No
MaxResults (p. 774)

The maximum number of endpoints to return in the response.

774

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 774)

A string in endpoint names. This filter returns only endpoints whose name contains the specified
string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9-]+

Required: No
NextToken (p. 774)

If the result of a ListEndpoints request was truncated, the response includes a NextToken. To
retrieve the next set of endpoints, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 774)

Sorts the list of results. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime | Status

Required: No
SortOrder (p. 774)

The sort order for results. The default is Descending.

Type: String

Valid Values: Ascending | Descending

Required: No
StatusEquals (p. 774)

A filter that returns only endpoints with the specified status.

Type: String

Valid Values: OutOfService | Creating | Updating | SystemUpdating | RollingBack
| InService | Deleting | Failed

Required: No

Response Syntax

{

775

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "Endpoints": [
 {
 "CreationTime": number,
 "EndpointArn": "string",
 "EndpointName": "string",
 "EndpointStatus": "string",
 "LastModifiedTime": number
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Endpoints (p. 775)

An array or endpoint objects.

Type: Array of EndpointSummary (p. 897) objects
NextToken (p. 775)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
training jobs, use it in the subsequent request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

776

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListEndpoints
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListEndpoints

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListHyperParameterTuningJobs
Service: Amazon SageMaker Service

Gets a list of HyperParameterTuningJobSummary (p. 925) objects that describe the hyperparameter
tuning jobs launched in your account.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 777)

A filter that returns only tuning jobs that were created after the specified time.

Type: Timestamp

Required: No
CreationTimeBefore (p. 777)

A filter that returns only tuning jobs that were created before the specified time.

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 777)

A filter that returns only tuning jobs that were modified after the specified time.

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 777)

A filter that returns only tuning jobs that were modified before the specified time.

Type: Timestamp

Required: No
MaxResults (p. 777)

The maximum number of tuning jobs to return. The default value is 10.

777

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 777)

A string in the tuning job name. This filter returns only tuning jobs whose name contains the
specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9\-]+

Required: No
NextToken (p. 777)

If the result of the previous ListHyperParameterTuningJobs request was truncated, the
response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next
request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 777)

The field to sort results by. The default is Name.

Type: String

Valid Values: Name | Status | CreationTime

Required: No
SortOrder (p. 777)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No
StatusEquals (p. 777)

A filter that returns only tuning jobs with the specified status.

Type: String

Valid Values: Completed | InProgress | Failed | Stopped | Stopping

Required: No

Response Syntax

{

778

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "HyperParameterTuningJobSummaries": [
 {
 "CreationTime": number,
 "HyperParameterTuningEndTime": number,
 "HyperParameterTuningJobArn": "string",
 "HyperParameterTuningJobName": "string",
 "HyperParameterTuningJobStatus": "string",
 "LastModifiedTime": number,
 "ObjectiveStatusCounters": {
 "Failed": number,
 "Pending": number,
 "Succeeded": number
 },
 "ResourceLimits": {
 "MaxNumberOfTrainingJobs": number,
 "MaxParallelTrainingJobs": number
 },
 "Strategy": "string",
 "TrainingJobStatusCounters": {
 "Completed": number,
 "InProgress": number,
 "NonRetryableError": number,
 "RetryableError": number,
 "Stopped": number
 }
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

HyperParameterTuningJobSummaries (p. 778)

A list of HyperParameterTuningJobSummary (p. 925) objects that describe the tuning jobs that the
ListHyperParameterTuningJobs request returned.

Type: Array of HyperParameterTuningJobSummary (p. 925) objects

NextToken (p. 778)

If the result of this ListHyperParameterTuningJobs request was truncated, the response
includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

779

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

780

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListHyperParameterTuningJobs
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListHyperParameterTuningJobs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListLabelingJobs
Service: Amazon SageMaker Service

Gets a list of labeling jobs.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 781)

A filter that returns only labeling jobs created after the specified time (timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 781)

A filter that returns only labeling jobs created before the specified time (timestamp).

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 781)

A filter that returns only labeling jobs modified after the specified time (timestamp).

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 781)

A filter that returns only labeling jobs modified before the specified time (timestamp).

Type: Timestamp

Required: No
MaxResults (p. 781)

The maximum number of labeling jobs to return in each page of the response.

Type: Integer

781

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 781)

A string in the labeling job name. This filter returns only labeling jobs whose name contains the
specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9\-]+

Required: No
NextToken (p. 781)

If the result of the previous ListLabelingJobs request was truncated, the response includes a
NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 781)

The field to sort results by. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime | Status

Required: No
SortOrder (p. 781)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No
StatusEquals (p. 781)

A filter that retrieves only labeling jobs with a specific status.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: No

Response Syntax

{

782

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "LabelingJobSummaryList": [
 {
 "AnnotationConsolidationLambdaArn": "string",
 "CreationTime": number,
 "FailureReason": "string",
 "InputConfig": {
 "DataAttributes": {
 "ContentClassifiers": ["string"]
 },
 "DataSource": {
 "S3DataSource": {
 "ManifestS3Uri": "string"
 }
 }
 },
 "LabelCounters": {
 "FailedNonRetryableError": number,
 "HumanLabeled": number,
 "MachineLabeled": number,
 "TotalLabeled": number,
 "Unlabeled": number
 },
 "LabelingJobArn": "string",
 "LabelingJobName": "string",
 "LabelingJobOutput": {
 "FinalActiveLearningModelArn": "string",
 "OutputDatasetS3Uri": "string"
 },
 "LabelingJobStatus": "string",
 "LastModifiedTime": number,
 "PreHumanTaskLambdaArn": "string",
 "WorkteamArn": "string"
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LabelingJobSummaryList (p. 782)

An array of LabelingJobSummary objects, each describing a labeling job.

Type: Array of LabelingJobSummary (p. 951) objects
NextToken (p. 782)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
labeling jobs, use it in the subsequent request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

783

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

784

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListLabelingJobs
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListLabelingJobs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListLabelingJobsForWorkteam
Service: Amazon SageMaker Service

Gets a list of labeling jobs assigned to a specified work team.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "JobReferenceCodeContains": "string",
 "MaxResults": number,
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "WorkteamArn": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 785)

A filter that returns only labeling jobs created after the specified time (timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 785)

A filter that returns only labeling jobs created before the specified time (timestamp).

Type: Timestamp

Required: No
JobReferenceCodeContains (p. 785)

A filter the limits jobs to only the ones whose job reference code contains the specified string.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: No
MaxResults (p. 785)

The maximum number of labeling jobs to return in each page of the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

785

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NextToken (p. 785)

If the result of the previous ListLabelingJobsForWorkteam request was truncated, the response
includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 785)

The field to sort results by. The default is CreationTime.

Type: String

Valid Values: CreationTime

Required: No
SortOrder (p. 785)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No
WorkteamArn (p. 785)

The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:workteam/.*

Required: Yes

Response Syntax

{
 "LabelingJobSummaryList": [
 {
 "CreationTime": number,
 "JobReferenceCode": "string",
 "LabelCounters": {
 "HumanLabeled": number,
 "PendingHuman": number,
 "Total": number
 },
 "LabelingJobName": "string",
 "NumberOfHumanWorkersPerDataObject": number,
 "WorkRequesterAccountId": "string"
 }
],
 "NextToken": "string"

786

Amazon SageMaker Developer Guide
Amazon SageMaker Service

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LabelingJobSummaryList (p. 786)

An array of LabelingJobSummary objects, each describing a labeling job.

Type: Array of LabelingJobForWorkteamSummary (p. 943) objects
NextToken (p. 786)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
labeling jobs, use it in the subsequent request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

787

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListLabelingJobsForWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListLabelingJobsForWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListModelPackages
Service: Amazon SageMaker Service

Lists the model packages that have been created.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 788)

A filter that returns only model packages created after the specified time (timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 788)

A filter that returns only model packages created before the specified time (timestamp).

Type: Timestamp

Required: No
MaxResults (p. 788)

The maximum number of model packages to return in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 788)

A string in the model package name. This filter returns only model packages whose name contains
the specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9\-]+

Required: No

788

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NextToken (p. 788)

If the response to a previous ListModelPackages request was truncated, the response includes a
NextToken. To retrieve the next set of model packages, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 788)

The parameter by which to sort the results. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime

Required: No
SortOrder (p. 788)

The sort order for the results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "ModelPackageSummaryList": [
 {
 "CreationTime": number,
 "ModelPackageArn": "string",
 "ModelPackageDescription": "string",
 "ModelPackageName": "string",
 "ModelPackageStatus": "string"
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ModelPackageSummaryList (p. 789)

An array of ModelPackageSummary objects, each of which lists a model package.

Type: Array of ModelPackageSummary (p. 962) objects
NextToken (p. 789)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model
packages, use it in the subsequent request.

789

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

790

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListModelPackages
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListModelPackages

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListModels
Service: Amazon SageMaker Service

Lists models created with the CreateModel API.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 791)

A filter that returns only models with a creation time greater than or equal to the specified time
(timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 791)

A filter that returns only models created before the specified time (timestamp).

Type: Timestamp

Required: No
MaxResults (p. 791)

The maximum number of models to return in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 791)

A string in the training job name. This filter returns only models in the training job whose name
contains the specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9-]+

Required: No

791

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NextToken (p. 791)

If the response to a previous ListModels request was truncated, the response includes a
NextToken. To retrieve the next set of models, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 791)

Sorts the list of results. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime

Required: No
SortOrder (p. 791)

The sort order for results. The default is Descending.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "Models": [
 {
 "CreationTime": number,
 "ModelArn": "string",
 "ModelName": "string"
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Models (p. 792)

An array of ModelSummary objects, each of which lists a model.

Type: Array of ModelSummary (p. 966) objects
NextToken (p. 792)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
models, use it in the subsequent request.

792

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

793

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListModels
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListModels

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListNotebookInstanceLifecycleConfigs
Service: Amazon SageMaker Service

Lists notebook instance lifestyle configurations created with the
CreateNotebookInstanceLifecycleConfig (p. 662) API.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 794)

A filter that returns only lifecycle configurations that were created after the specified time
(timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 794)

A filter that returns only lifecycle configurations that were created before the specified time
(timestamp).

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 794)

A filter that returns only lifecycle configurations that were modified after the specified time
(timestamp).

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 794)

A filter that returns only lifecycle configurations that were modified before the specified time
(timestamp).

Type: Timestamp

Required: No

794

Amazon SageMaker Developer Guide
Amazon SageMaker Service

MaxResults (p. 794)

The maximum number of lifecycle configurations to return in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 794)

A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose
name contains the specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9-]+

Required: No
NextToken (p. 794)

If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, the
response includes a NextToken. To get the next set of lifecycle configurations, use the token in the
next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 794)

Sorts the list of results. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime | LastModifiedTime

Required: No
SortOrder (p. 794)

The sort order for results.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "NextToken": "string",
 "NotebookInstanceLifecycleConfigs": [
 {

795

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "CreationTime": number,
 "LastModifiedTime": number,
 "NotebookInstanceLifecycleConfigArn": "string",
 "NotebookInstanceLifecycleConfigName": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 795)

If the response is truncated, Amazon SageMaker returns this token. To get the next set of lifecycle
configurations, use it in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
NotebookInstanceLifecycleConfigs (p. 795)

An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle
configuration.

Type: Array of NotebookInstanceLifecycleConfigSummary (p. 968) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

796

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListNotebookInstanceLifecycleConfigs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListNotebookInstances
Service: Amazon SageMaker Service

Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.

Request Syntax

{
 "AdditionalCodeRepositoryEquals": "string",
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "DefaultCodeRepositoryContains": "string",
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "NotebookInstanceLifecycleConfigNameContains": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AdditionalCodeRepositoryEquals (p. 797)

A filter that returns only notebook instances with associated with the specified git repository.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
CreationTimeAfter (p. 797)

A filter that returns only notebook instances that were created after the specified time (timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 797)

A filter that returns only notebook instances that were created before the specified time
(timestamp).

Type: Timestamp

Required: No
DefaultCodeRepositoryContains (p. 797)

A string in the name or URL of a Git repository associated with this notebook instance. This filter
returns only notebook instances associated with a git repository with a name that contains the
specified string.

797

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [a-zA-Z0-9-]+

Required: No
LastModifiedTimeAfter (p. 797)

A filter that returns only notebook instances that were modified after the specified time
(timestamp).

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 797)

A filter that returns only notebook instances that were modified before the specified time
(timestamp).

Type: Timestamp

Required: No
MaxResults (p. 797)

The maximum number of notebook instances to return.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 797)

A string in the notebook instances' name. This filter returns only notebook instances whose name
contains the specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9-]+

Required: No
NextToken (p. 797)

If the previous call to the ListNotebookInstances is truncated, the response includes a
NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch
the next set of notebook instances.

Note
You might specify a filter or a sort order in your request. When response is truncated, you
must use the same values for the filer and sort order in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No

798

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NotebookInstanceLifecycleConfigNameContains (p. 797)

A string in the name of a notebook instances lifecycle configuration associated with this notebook
instance. This filter returns only notebook instances associated with a lifecycle configuration with a
name that contains the specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
SortBy (p. 797)

The field to sort results by. The default is Name.

Type: String

Valid Values: Name | CreationTime | Status

Required: No
SortOrder (p. 797)

The sort order for results.

Type: String

Valid Values: Ascending | Descending

Required: No
StatusEquals (p. 797)

A filter that returns only notebook instances with the specified status.

Type: String

Valid Values: Pending | InService | Stopping | Stopped | Failed | Deleting |
Updating

Required: No

Response Syntax

{
 "NextToken": "string",
 "NotebookInstances": [
 {
 "AdditionalCodeRepositories": ["string"],
 "CreationTime": number,
 "DefaultCodeRepository": "string",
 "InstanceType": "string",
 "LastModifiedTime": number,
 "NotebookInstanceArn": "string",
 "NotebookInstanceLifecycleConfigName": "string",
 "NotebookInstanceName": "string",
 "NotebookInstanceStatus": "string",
 "Url": "string"
 }
]

799

Amazon SageMaker Developer Guide
Amazon SageMaker Service

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 799)

If the response to the previous ListNotebookInstances request was truncated, Amazon
SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the
next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
NotebookInstances (p. 799)

An array of NotebookInstanceSummary objects, one for each notebook instance.

Type: Array of NotebookInstanceSummary (p. 970) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

800

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListNotebookInstances
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListNotebookInstances

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListSubscribedWorkteams
Service: Amazon SageMaker Service

Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if
no work team satisfies the filter specified in the NameContains parameter.

Request Syntax

{
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

MaxResults (p. 801)

The maximum number of work teams to return in each page of the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 801)

A string in the work team name. This filter returns only work teams whose name contains the
specified string.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
NextToken (p. 801)

If the result of the previous ListSubscribedWorkteams request was truncated, the response
includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No

Response Syntax

{

801

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "NextToken": "string",
 "SubscribedWorkteams": [
 {
 "ListingId": "string",
 "MarketplaceDescription": "string",
 "MarketplaceTitle": "string",
 "SellerName": "string",
 "WorkteamArn": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 801)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work
teams, use it in the subsequent request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
SubscribedWorkteams (p. 801)

An array of Workteam objects, each describing a work team.

Type: Array of SubscribedWorkteam (p. 1005) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

802

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListSubscribedWorkteams
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListSubscribedWorkteams

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListTags
Service: Amazon SageMaker Service

Returns the tags for the specified Amazon SageMaker resource.

Request Syntax

{
 "MaxResults": number,
 "NextToken": "string",
 "ResourceArn": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

MaxResults (p. 803)

Maximum number of tags to return.

Type: Integer

Valid Range: Minimum value of 50.

Required: No
NextToken (p. 803)

If the response to the previous ListTags request is truncated, Amazon SageMaker returns this
token. To retrieve the next set of tags, use it in the subsequent request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
ResourceArn (p. 803)

The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:.*

Required: Yes

Response Syntax

{
 "NextToken": "string",
 "Tags": [

803

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 {
 "Key": "string",
 "Value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 803)

If response is truncated, Amazon SageMaker includes a token in the response. You can use this token
in your subsequent request to fetch next set of tokens.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
Tags (p. 803)

An array of Tag objects, each with a tag key and a value.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

804

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListTags
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListTags

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListTrainingJobs
Service: Amazon SageMaker Service

Lists training jobs.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 805)

A filter that returns only training jobs created after the specified time (timestamp).

Type: Timestamp

Required: No
CreationTimeBefore (p. 805)

A filter that returns only training jobs created before the specified time (timestamp).

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 805)

A filter that returns only training jobs modified after the specified time (timestamp).

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 805)

A filter that returns only training jobs modified before the specified time (timestamp).

Type: Timestamp

Required: No
MaxResults (p. 805)

The maximum number of training jobs to return in the response.

Type: Integer

805

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 805)

A string in the training job name. This filter returns only training jobs whose name contains the
specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9\-]+

Required: No
NextToken (p. 805)

If the result of the previous ListTrainingJobs request was truncated, the response includes a
NextToken. To retrieve the next set of training jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 805)

The field to sort results by. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime | Status

Required: No
SortOrder (p. 805)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No
StatusEquals (p. 805)

A filter that retrieves only training jobs with a specific status.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: No

Response Syntax

{
 "NextToken": "string",

806

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "TrainingJobSummaries": [
 {
 "CreationTime": number,
 "LastModifiedTime": number,
 "TrainingEndTime": number,
 "TrainingJobArn": "string",
 "TrainingJobName": "string",
 "TrainingJobStatus": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 806)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
training jobs, use it in the subsequent request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
TrainingJobSummaries (p. 806)

An array of TrainingJobSummary objects, each listing a training job.

Type: Array of TrainingJobSummary (p. 1019) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

807

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListTrainingJobs
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListTrainingJobs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListTrainingJobsForHyperParameterTuningJob
Service: Amazon SageMaker Service

Gets a list of TrainingJobSummary (p. 1019) objects that describe the training jobs that a
hyperparameter tuning job launched.

Request Syntax

{
 "HyperParameterTuningJobName": "string",
 "MaxResults": number,
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

HyperParameterTuningJobName (p. 808)

The name of the tuning job whose training jobs you want to list.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
MaxResults (p. 808)

The maximum number of training jobs to return. The default value is 10.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NextToken (p. 808)

If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was
truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the
token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 808)

The field to sort results by. The default is Name.

808

Amazon SageMaker Developer Guide
Amazon SageMaker Service

If the value of this field is FinalObjectiveMetricValue, any training jobs that did not return an
objective metric are not listed.

Type: String

Valid Values: Name | CreationTime | Status | FinalObjectiveMetricValue

Required: No

SortOrder (p. 808)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No

StatusEquals (p. 808)

A filter that returns only training jobs with the specified status.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: No

Response Syntax

{
 "NextToken": "string",
 "TrainingJobSummaries": [
 {
 "CreationTime": number,
 "FailureReason": "string",
 "FinalHyperParameterTuningJobObjectiveMetric": {
 "MetricName": "string",
 "Type": "string",
 "Value": number
 },
 "ObjectiveStatus": "string",
 "TrainingEndTime": number,
 "TrainingJobArn": "string",
 "TrainingJobName": "string",
 "TrainingJobStatus": "string",
 "TrainingStartTime": number,
 "TunedHyperParameters": {
 "string" : "string"
 },
 "TuningJobName": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

809

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NextToken (p. 809)

If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated,
the response includes a NextToken. To retrieve the next set of training jobs, use the token in the
next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
TrainingJobSummaries (p. 809)

A list of TrainingJobSummary (p. 1019) objects that describe the training jobs that the
ListTrainingJobsForHyperParameterTuningJob request returned.

Type: Array of HyperParameterTrainingJobSummary (p. 919) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

810

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListTransformJobs
Service: Amazon SageMaker Service

Lists transform jobs.

Request Syntax

{
 "CreationTimeAfter": number,
 "CreationTimeBefore": number,
 "LastModifiedTimeAfter": number,
 "LastModifiedTimeBefore": number,
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string",
 "StatusEquals": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CreationTimeAfter (p. 811)

A filter that returns only transform jobs created after the specified time.

Type: Timestamp

Required: No
CreationTimeBefore (p. 811)

A filter that returns only transform jobs created before the specified time.

Type: Timestamp

Required: No
LastModifiedTimeAfter (p. 811)

A filter that returns only transform jobs modified after the specified time.

Type: Timestamp

Required: No
LastModifiedTimeBefore (p. 811)

A filter that returns only transform jobs modified before the specified time.

Type: Timestamp

Required: No
MaxResults (p. 811)

The maximum number of transform jobs to return in the response. The default value is 10.

Type: Integer

811

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 811)

A string in the transform job name. This filter returns only transform jobs whose name contains the
specified string.

Type: String

Length Constraints: Maximum length of 63.

Pattern: [a-zA-Z0-9\-]+

Required: No
NextToken (p. 811)

If the result of the previous ListTransformJobs request was truncated, the response includes a
NextToken. To retrieve the next set of transform jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 811)

The field to sort results by. The default is CreationTime.

Type: String

Valid Values: Name | CreationTime | Status

Required: No
SortOrder (p. 811)

The sort order for results. The default is Descending.

Type: String

Valid Values: Ascending | Descending

Required: No
StatusEquals (p. 811)

A filter that retrieves only transform jobs with a specific status.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: No

Response Syntax

{
 "NextToken": "string",

812

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "TransformJobSummaries": [
 {
 "CreationTime": number,
 "FailureReason": "string",
 "LastModifiedTime": number,
 "TransformEndTime": number,
 "TransformJobArn": "string",
 "TransformJobName": "string",
 "TransformJobStatus": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 812)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of
transform jobs, use it in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
TransformJobSummaries (p. 812)

An array of TransformJobSummary objects.

Type: Array of TransformJobSummary (p. 1028) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

813

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListTransformJobs
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListTransformJobs

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ListWorkteams
Service: Amazon SageMaker Service

Gets a list of work teams that you have defined in a region. The list may be empty if no work team
satisfies the filter specified in the NameContains parameter.

Request Syntax

{
 "MaxResults": number,
 "NameContains": "string",
 "NextToken": "string",
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

MaxResults (p. 814)

The maximum number of work teams to return in each page of the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No
NameContains (p. 814)

A string in the work team's name. This filter returns only work teams whose name contains the
specified string.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
NextToken (p. 814)

If the result of the previous ListWorkteams request was truncated, the response includes a
NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
SortBy (p. 814)

The field to sort results by. The default is CreationTime.

814

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Valid Values: Name | CreateDate

Required: No
SortOrder (p. 814)

The sort order for results. The default is Ascending.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "NextToken": "string",
 "Workteams": [
 {
 "CreateDate": number,
 "Description": "string",
 "LastUpdatedDate": number,
 "MemberDefinitions": [
 {
 "CognitoMemberDefinition": {
 "ClientId": "string",
 "UserGroup": "string",
 "UserPool": "string"
 }
 }
],
 "NotificationConfiguration": {
 "NotificationTopicArn": "string"
 },
 "ProductListingIds": ["string"],
 "SubDomain": "string",
 "WorkteamArn": "string",
 "WorkteamName": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 815)

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work
teams, use it in the subsequent request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

815

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Workteams (p. 815)

An array of Workteam objects, each describing a work team.

Type: Array of Workteam (p. 1040) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

816

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/ListWorkteams
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ListWorkteams

Amazon SageMaker Developer Guide
Amazon SageMaker Service

RenderUiTemplate
Service: Amazon SageMaker Service

Renders the UI template so that you can preview the worker's experience.

Request Syntax

{
 "RoleArn": "string",
 "Task": {
 "Input": "string"
 },
 "UiTemplate": {
 "Content": "string"
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

RoleArn (p. 817)

The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
Task (p. 817)

A RenderableTask object containing a representative task to render.

Type: RenderableTask (p. 989) object

Required: Yes
UiTemplate (p. 817)

A Template object containing the worker UI template to render.

Type: UiTemplate (p. 1037) object

Required: Yes

Response Syntax

{
 "Errors": [
 {
 "Code": "string",
 "Message": "string"
 }

817

Amazon SageMaker Developer Guide
Amazon SageMaker Service

],
 "RenderedContent": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Errors (p. 817)

A list of one or more RenderingError objects if any were encountered while rendering the
template. If there were no errors, the list is empty.

Type: Array of RenderingError (p. 990) objects
RenderedContent (p. 817)

A Liquid template that renders the HTML for the worker UI.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

818

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/RenderUiTemplate
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/RenderUiTemplate

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Search
Service: Amazon SageMaker Service

Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as
a list of SearchResult objects in the response. You can sort the search results by any resource property
in a ascending or descending order.

You can query against the following value types: numerical, text, Booleans, and timestamps.

Request Syntax

{
 "MaxResults": number,
 "NextToken": "string",
 "Resource": "string",
 "SearchExpression": {
 "Filters": [
 {
 "Name": "string",
 "Operator": "string",
 "Value": "string"
 }
],
 "NestedFilters": [
 {
 "Filters": [
 {
 "Name": "string",
 "Operator": "string",
 "Value": "string"
 }
],
 "NestedPropertyName": "string"
 }
],
 "Operator": "string",
 "SubExpressions": [
 "SearchExpression"
]
 },
 "SortBy": "string",
 "SortOrder": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

MaxResults (p. 819)

The maximum number of results to return in a SearchResponse.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

819

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NextToken (p. 819)

If more than MaxResults resource objects match the specified SearchExpression,
the SearchResponse includes a NextToken. The NextToken can be passed to the next
SearchRequest to continue retrieving results for the specified SearchExpression and Sort
parameters.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*

Required: No
Resource (p. 819)

The name of the Amazon SageMaker resource to search for. Currently, the only valid Resource
value is TrainingJob.

Type: String

Valid Values: TrainingJob

Required: Yes
SearchExpression (p. 819)

A Boolean conditional statement. Resource objects must satisfy this condition to be included in
search results. You must provide at least one subexpression, filter, or nested filter. The maximum
number of recursive SubExpressions, NestedFilters, and Filters that can be included in a
SearchExpression object is 50.

Type: SearchExpression (p. 996) object

Required: No
SortBy (p. 819)

The name of the resource property used to sort the SearchResults. The default is
LastModifiedTime.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: No
SortOrder (p. 819)

How SearchResults are ordered. Valid values are Ascending or Descending. The default is
Descending.

Type: String

Valid Values: Ascending | Descending

Required: No

Response Syntax

{
 "NextToken": "string",

820

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "Results": [
 {
 "TrainingJob": {
 "AlgorithmSpecification": {
 "AlgorithmName": "string",
 "MetricDefinitions": [
 {
 "Name": "string",
 "Regex": "string"
 }
],
 "TrainingImage": "string",
 "TrainingInputMode": "string"
 },
 "CreationTime": number,
 "EnableInterContainerTrafficEncryption": boolean,
 "EnableNetworkIsolation": boolean,
 "FailureReason": "string",
 "FinalMetricDataList": [
 {
 "MetricName": "string",
 "Timestamp": number,
 "Value": number
 }
],
 "HyperParameters": {
 "string" : "string"
 },
 "InputDataConfig": [
 {
 "ChannelName": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "string",
 "FileSystemAccessMode": "string",
 "FileSystemId": "string",
 "FileSystemType": "string"
 },
 "S3DataSource": {
 "AttributeNames": ["string"],
 "S3DataDistributionType": "string",
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "InputMode": "string",
 "RecordWrapperType": "string",
 "ShuffleConfig": {
 "Seed": number
 }
 }
],
 "LabelingJobArn": "string",
 "LastModifiedTime": number,
 "ModelArtifacts": {
 "S3ModelArtifacts": "string"
 },
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "ResourceConfig": {
 "InstanceCount": number,
 "InstanceType": "string",

821

Amazon SageMaker Developer Guide
Amazon SageMaker Service

 "VolumeKmsKeyId": "string",
 "VolumeSizeInGB": number
 },
 "RoleArn": "string",
 "SecondaryStatus": "string",
 "SecondaryStatusTransitions": [
 {
 "EndTime": number,
 "StartTime": number,
 "Status": "string",
 "StatusMessage": "string"
 }
],
 "StoppingCondition": {
 "MaxRuntimeInSeconds": number,
 "MaxWaitTimeInSeconds": number
 },
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "TrainingEndTime": number,
 "TrainingJobArn": "string",
 "TrainingJobName": "string",
 "TrainingJobStatus": "string",
 "TrainingStartTime": number,
 "TuningJobArn": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
 }
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 820)

If the result of the previous Search request was truncated, the response includes a NextToken. To
retrieve the next set of results, use the token in the next request.

Type: String

Length Constraints: Maximum length of 8192.

Pattern: .*
Results (p. 820)

A list of SearchResult objects.

Type: Array of SearchRecord (p. 998) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

822

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

823

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/Search
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/Search

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StartNotebookInstance
Service: Amazon SageMaker Service

Launches an ML compute instance with the latest version of the libraries and attaches your ML storage
volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status
to InService. A notebook instance's status must be InService before you can connect to your Jupyter
notebook.

Request Syntax

{
 "NotebookInstanceName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceName (p. 824)

The name of the notebook instance to start.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

824

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StartNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

825

https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/StartNotebookInstance
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StartNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StopCompilationJob
Service: Amazon SageMaker Service

Stops a model compilation job.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job
down. If the job hasn't stopped, it sends the SIGKILL signal.

When it receives a StopCompilationJob request, Amazon SageMaker changes the
CompilationJobSummary:CompilationJobStatus (p. 884) of the job to Stopping. After Amazon
SageMaker stops the job, it sets the CompilationJobSummary:CompilationJobStatus (p. 884) to
Stopped.

Request Syntax

{
 "CompilationJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CompilationJobName (p. 826)

The name of the model compilation job to stop.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface

826

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/StopCompilationJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

827

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/StopCompilationJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StopCompilationJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StopHyperParameterTuningJob
Service: Amazon SageMaker Service

Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.

All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon
S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch.
After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.

Request Syntax

{
 "HyperParameterTuningJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

HyperParameterTuningJobName (p. 828)

The name of the tuning job to stop.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

828

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StopHyperParameterTuningJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

829

https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/StopHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StopHyperParameterTuningJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StopLabelingJob
Service: Amazon SageMaker Service

Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the
job is stopped are placed in the Amazon S3 output bucket.

Request Syntax

{
 "LabelingJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

LabelingJobName (p. 830)

The name of the labeling job to stop.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java

830

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StopLabelingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

831

https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/StopLabelingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StopLabelingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StopNotebookInstance
Service: Amazon SageMaker Service

Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects
the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon
SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance.

To access data on the ML storage volume for a notebook instance that has been terminated, call the
StartNotebookInstance API. StartNotebookInstance launches another ML compute instance,
configures it, and attaches the preserved ML storage volume so you can continue your work.

Request Syntax

{
 "NotebookInstanceName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceName (p. 832)

The name of the notebook instance to terminate.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript

832

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/StopNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

833

https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/StopNotebookInstance
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StopNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StopTrainingJob
Service: Amazon SageMaker Service

Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which
delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model
artifacts, so the results of the training is not lost.

When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to
Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.

Request Syntax

{
 "TrainingJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

TrainingJobName (p. 834)

The name of the training job to stop.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++

834

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StopTrainingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

835

https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/StopTrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StopTrainingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StopTransformJob
Service: Amazon SageMaker Service

Stops a transform job.

When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to
Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a
transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.

Request Syntax

{
 "TransformJobName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

TransformJobName (p. 836)

The name of the transform job to stop.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceNotFound

Resource being access is not found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go

836

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StopTransformJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

837

https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/StopTransformJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StopTransformJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UpdateCodeRepository
Service: Amazon SageMaker Service

Updates the specified Git repository with the specified values.

Request Syntax

{
 "CodeRepositoryName": "string",
 "GitConfig": {
 "SecretArn": "string"
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

CodeRepositoryName (p. 838)

The name of the Git repository to update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
GitConfig (p. 838)

The configuration of the git repository, including the URL and the Amazon Resource Name (ARN)
of the AWS Secrets Manager secret that contains the credentials used to access the repository. The
secret must have a staging label of AWSCURRENT and must be in the following format:

{"username": UserName, "password": Password}

Type: GitConfigForUpdate (p. 906) object

Required: No

Response Syntax

{
 "CodeRepositoryArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CodeRepositoryArn (p. 838)

The ARN of the Git repository.

838

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:code-repository/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

839

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/UpdateCodeRepository
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UpdateCodeRepository

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UpdateEndpoint
Service: Amazon SageMaker Service

Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint,
and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is
no availability loss).

When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After
updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the
DescribeEndpoint API.

Note
You must not delete an EndpointConfig in use by an endpoint that is live or while the
UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To
update an endpoint, you must create a new EndpointConfig.

Request Syntax

{
 "EndpointConfigName": "string",
 "EndpointName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

EndpointConfigName (p. 840)

The name of the new endpoint configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
EndpointName (p. 840)

The name of the endpoint whose configuration you want to update.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "EndpointArn": "string"
}

840

https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

EndpointArn (p. 840)

The Amazon Resource Name (ARN) of the endpoint.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

841

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/UpdateEndpoint
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UpdateEndpoint

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UpdateEndpointWeightsAndCapacities
Service: Amazon SageMaker Service

Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one
variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the
endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check
the status of an endpoint, use the DescribeEndpoint API.

Request Syntax

{
 "DesiredWeightsAndCapacities": [
 {
 "DesiredInstanceCount": number,
 "DesiredWeight": number,
 "VariantName": "string"
 }
],
 "EndpointName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

DesiredWeightsAndCapacities (p. 842)

An object that provides new capacity and weight values for a variant.

Type: Array of DesiredWeightAndCapacity (p. 895) objects

Array Members: Minimum number of 1 item.

Required: Yes
EndpointName (p. 842)

The name of an existing Amazon SageMaker endpoint.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "EndpointArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

842

https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

The following data is returned in JSON format by the service.

EndpointArn (p. 842)

The Amazon Resource Name (ARN) of the updated endpoint.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint/.*

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

843

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacities

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UpdateNotebookInstance
Service: Amazon SageMaker Service

Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the
ML compute instance used for your notebook instance to accommodate changes in your workload
requirements.

Request Syntax

{
 "AcceleratorTypes": ["string"],
 "AdditionalCodeRepositories": ["string"],
 "DefaultCodeRepository": "string",
 "DisassociateAcceleratorTypes": boolean,
 "DisassociateAdditionalCodeRepositories": boolean,
 "DisassociateDefaultCodeRepository": boolean,
 "DisassociateLifecycleConfig": boolean,
 "InstanceType": "string",
 "LifecycleConfigName": "string",
 "NotebookInstanceName": "string",
 "RoleArn": "string",
 "RootAccess": "string",
 "VolumeSizeInGB": number
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

AcceleratorTypes (p. 844)

A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently
only one EI instance type can be associated with a notebook instance. For more information, see
Using Elastic Inference in Amazon SageMaker.

Type: Array of strings

Valid Values: ml.eia1.medium | ml.eia1.large | ml.eia1.xlarge

Required: No
AdditionalCodeRepositories (p. 844)

An array of up to three Git repositories to associate with the notebook instance. These can be either
the names of Git repositories stored as resources in your account, or the URL of Git repositories in
AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level
as the default repository of your notebook instance. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: Array of strings

Array Members: Maximum number of 3 items.

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No

844

sagemaker/latest/dg/ei.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DefaultCodeRepository (p. 844)

The Git repository to associate with the notebook instance as its default code repository. This can
be either the name of a Git repository stored as a resource in your account, or the URL of a Git
repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance,
it opens in the directory that contains this repository. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
DisassociateAcceleratorTypes (p. 844)

A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This
operation is idempotent. If you specify an accelerator type that is not associated with the notebook
instance when you call this method, it does not throw an error.

Type: Boolean

Required: No
DisassociateAdditionalCodeRepositories (p. 844)

A list of names or URLs of the default Git repositories to remove from this notebook instance. This
operation is idempotent. If you specify a Git repository that is not associated with the notebook
instance when you call this method, it does not throw an error.

Type: Boolean

Required: No
DisassociateDefaultCodeRepository (p. 844)

The name or URL of the default Git repository to remove from this notebook instance. This
operation is idempotent. If you specify a Git repository that is not associated with the notebook
instance when you call this method, it does not throw an error.

Type: Boolean

Required: No
DisassociateLifecycleConfig (p. 844)

Set to true to remove the notebook instance lifecycle configuration currently associated with the
notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not
associated with the notebook instance when you call this method, it does not throw an error.

Type: Boolean

Required: No
InstanceType (p. 844)

The Amazon ML compute instance type.

Type: String

Valid Values: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge |
ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m4.xlarge

845

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

| ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge
| ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge
| ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge |
ml.c4.8xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge
| ml.c5.18xlarge | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge
| ml.c5d.9xlarge | ml.c5d.18xlarge | ml.p2.xlarge | ml.p2.8xlarge |
ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge

Required: No
LifecycleConfigName (p. 844)

The name of a lifecycle configuration to associate with the notebook instance. For information about
lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
NotebookInstanceName (p. 844)

The name of the notebook instance to update.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
RoleArn (p. 844)

The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the
notebook instance. For more information, see Amazon SageMaker Roles.

Note
To be able to pass this role to Amazon SageMaker, the caller of this API must have the
iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: No
RootAccess (p. 844)

Whether root access is enabled or disabled for users of the notebook instance. The default value is
Enabled.

Note
If you set this to Disabled, users don't have root access on the notebook instance, but
lifecycle configuration scripts still run with root permissions.

Type: String

Valid Values: Enabled | Disabled

846

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: No
VolumeSizeInGB (p. 844)

The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is
5 GB. ML storage volumes are encrypted, so Amazon SageMaker can't determine the amount of
available free space on the volume. Because of this, you can increase the volume size when you
update a notebook instance, but you can't decrease the volume size. If you want to decrease the size
of the ML storage volume in use, create a new notebook instance with the desired size.

Type: Integer

Valid Range: Minimum value of 5. Maximum value of 16384.

Required: No

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

847

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/UpdateNotebookInstance
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UpdateNotebookInstance

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UpdateNotebookInstanceLifecycleConfig
Service: Amazon SageMaker Service

Updates a notebook instance lifecycle configuration created with the
CreateNotebookInstanceLifecycleConfig (p. 662) API.

Request Syntax

{
 "NotebookInstanceLifecycleConfigName": "string",
 "OnCreate": [
 {
 "Content": "string"
 }
],
 "OnStart": [
 {
 "Content": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

NotebookInstanceLifecycleConfigName (p. 848)

The name of the lifecycle configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
OnCreate (p. 848)

The shell script that runs only once, when you create a notebook instance. The shell script must be a
base64-encoded string.

Type: Array of NotebookInstanceLifecycleHook (p. 969) objects

Array Members: Maximum number of 1 item.

Required: No
OnStart (p. 848)

The shell script that runs every time you start a notebook instance, including when you create the
notebook instance. The shell script must be a base64-encoded string.

Type: Array of NotebookInstanceLifecycleHook (p. 969) objects

Array Members: Maximum number of 1 item.

Required: No

848

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

849

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UpdateWorkteam
Service: Amazon SageMaker Service

Updates an existing work team with new member definitions or description.

Request Syntax

{
 "Description": "string",
 "MemberDefinitions": [
 {
 "CognitoMemberDefinition": {
 "ClientId": "string",
 "UserGroup": "string",
 "UserPool": "string"
 }
 }
],
 "NotificationConfiguration": {
 "NotificationTopicArn": "string"
 },
 "WorkteamName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 1043).

The request accepts the following data in JSON format.

Description (p. 850)

An updated description for the work team.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 200.

Pattern: .+

Required: No

MemberDefinitions (p. 850)

A list of MemberDefinition objects that contain the updated work team members.

Type: Array of MemberDefinition (p. 954) objects

Array Members: Minimum number of 1 item. Maximum number of 10 items.

Required: No

NotificationConfiguration (p. 850)

Configures SNS topic notifications for available or expiring work items

Type: NotificationConfiguration (p. 973) object

Required: No

850

Amazon SageMaker Developer Guide
Amazon SageMaker Service

WorkteamName (p. 850)

The name of the work team to update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

Response Syntax

{
 "Workteam": {
 "CreateDate": number,
 "Description": "string",
 "LastUpdatedDate": number,
 "MemberDefinitions": [
 {
 "CognitoMemberDefinition": {
 "ClientId": "string",
 "UserGroup": "string",
 "UserPool": "string"
 }
 }
],
 "NotificationConfiguration": {
 "NotificationTopicArn": "string"
 },
 "ProductListingIds": ["string"],
 "SubDomain": "string",
 "WorkteamArn": "string",
 "WorkteamName": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Workteam (p. 851)

A Workteam object that describes the updated work team.

Type: Workteam (p. 1040) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

ResourceLimitExceeded

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
training jobs created.

HTTP Status Code: 400

851

Amazon SageMaker Developer Guide
Amazon SageMaker Runtime

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

Amazon SageMaker Runtime
The following actions are supported by Amazon SageMaker Runtime:

• InvokeEndpoint (p. 853)

852

https://docs.aws.amazon.com/goto/aws-cli/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/SdkForPHPV3/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/UpdateWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UpdateWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Runtime

InvokeEndpoint
Service: Amazon SageMaker Runtime

After you deploy a model into production using Amazon SageMaker hosting services, your client
applications use this API to get inferences from the model hosted at the specified endpoint.

For an overview of Amazon SageMaker, see How It Works.

Amazon SageMaker strips all POST headers except those supported by the API. Amazon SageMaker
might add additional headers. You should not rely on the behavior of headers outside those enumerated
in the request syntax.

Calls to InvokeEndpoint are authenticated by using AWS Signature Version 4. For information, see
Authenticating Requests (AWS Signature Version 4) in the Amazon S3 API Reference.

A customer's model containers must respond to requests within 60 seconds. The model itself can have a
maximum processing time of 60 seconds before responding to the /invocations. If your model is going to
take 50-60 seconds of processing time, the SDK socket timeout should be set to be 70 seconds.

Note
Endpoints are scoped to an individual account, and are not public. The URL does not contain the
account ID, but Amazon SageMaker determines the account ID from the authentication token
that is supplied by the caller.

Request Syntax

POST /endpoints/EndpointName/invocations HTTP/1.1
Content-Type: ContentType
Accept: Accept
X-Amzn-SageMaker-Custom-Attributes: CustomAttributes

Body

URI Request Parameters

The request requires the following URI parameters.

Accept (p. 853)

The desired MIME type of the inference in the response.

Length Constraints: Maximum length of 1024.

Pattern: \p{ASCII}*
ContentType (p. 853)

The MIME type of the input data in the request body.

Length Constraints: Maximum length of 1024.

Pattern: \p{ASCII}*
CustomAttributes (p. 853)

Provides additional information about a request for an inference submitted to a model hosted at an
Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You
could use this value, for example, to provide an ID that you can use to track a request or to provide
other metadata that a service endpoint was programmed to process. The value must consist of no
more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of

853

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://tools.ietf.org/html/rfc7230#section-3.2.6

Amazon SageMaker Developer Guide
Amazon SageMaker Runtime

the Hypertext Transfer Protocol (HTTP/1.1). This feature is currently supported in the AWS SDKs but
not in the Amazon SageMaker Python SDK.

Length Constraints: Maximum length of 1024.

Pattern: \p{ASCII}*
EndpointName (p. 853)

The name of the endpoint that you specified when you created the endpoint using the
CreateEndpoint API.

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Request Body

The request accepts the following binary data.

Body (p. 853)

Provides input data, in the format specified in the ContentType request header. Amazon
SageMaker passes all of the data in the body to the model.

For information about the format of the request body, see Common Data Formats—Inference.

Length Constraints: Maximum length of 5242880.

Response Syntax

HTTP/1.1 200
Content-Type: ContentType
x-Amzn-Invoked-Production-Variant: InvokedProductionVariant
X-Amzn-SageMaker-Custom-Attributes: CustomAttributes

Body

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The response returns the following HTTP headers.

ContentType (p. 854)

The MIME type of the inference returned in the response body.

Length Constraints: Maximum length of 1024.

Pattern: \p{ASCII}*
CustomAttributes (p. 854)

Provides additional information in the response about the inference returned by a model hosted at
an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim.
You could use this value, for example, to return an ID received in the CustomAttributes header
of a request or other metadata that a service endpoint was programmed to produce. The value
must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field

854

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://tools.ietf.org/html/rfc7230#section-3.2.6

Amazon SageMaker Developer Guide
Amazon SageMaker Runtime

Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom
attribute returned, the model must set the custom attribute to be included on the way back.

This feature is currently supported in the AWS SDKs but not in the Amazon SageMaker Python SDK.

Length Constraints: Maximum length of 1024.

Pattern: \p{ASCII}*
InvokedProductionVariant (p. 854)

Identifies the production variant that was invoked.

Length Constraints: Maximum length of 1024.

Pattern: \p{ASCII}*

The response returns the following as the HTTP body.

Body (p. 854)

Includes the inference provided by the model.

For information about the format of the response body, see Common Data Formats—Inference.

Length Constraints: Maximum length of 5242880.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 1041).

InternalFailure

An internal failure occurred.

HTTP Status Code: 500
ModelError

Model (owned by the customer in the container) returned 4xx or 5xx error code.

HTTP Status Code: 424
ServiceUnavailable

The service is unavailable. Try your call again.

HTTP Status Code: 503
ValidationError

Inspect your request and try again.

HTTP Status Code: 400

Example

Pass a trace ID in the CustomAttribute of a request and return it in the CustomAttribute of the
response.

In this example a trace ID is passed to the service endpoint in the CustomAttributes header of the
request and then retrieved and returned in the CustomAttributes header of the response.

855

https://tools.ietf.org/html/rfc7230#section-3.2.6
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide
Data Types

Sample Request

import boto3

client = boto3.client('sagemaker-runtime')

custom_attributes = "c000b4f9-df62-4c85-a0bf-7c525f9104a4" # An example of a trace ID.
endpoint_name = "..." # Your endpoint name.
content_type = "..." # The MIME type of the input
 data in the request body.
accept = "..." # The desired MIME type of the
 inference in the response.
payload = "..." # Payload for inference.

Sample Response

response = client.invoke_endpoint(
 EndpointName=endpoint_name,
 CustomAttributes=custom_attributes,
 ContentType=content_type,
 Accept=accept,
 Body=payload
)

print(response['CustomAttributes']) # If model receives and updates
 the custom_attributes header
 # by adding "Trace id: " in
 front of custom_attributes in the request,
 # custom_attributes in response
 becomes
 # "Trace ID: c000b4f9-
df62-4c85-a0bf-7c525f9104a4"

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V2

Data Types
The following data types are supported by Amazon SageMaker Service:

• AlgorithmSpecification (p. 863)

856

https://docs.aws.amazon.com/goto/aws-cli/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/SdkForCpp/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/SdkForGoPilot/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/SdkForJava/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/boto3/runtime.sagemaker-2017-05-13/InvokeEndpoint
https://docs.aws.amazon.com/goto/SdkForRubyV2/runtime.sagemaker-2017-05-13/InvokeEndpoint

Amazon SageMaker Developer Guide
Data Types

• AlgorithmStatusDetails (p. 865)
• AlgorithmStatusItem (p. 866)
• AlgorithmSummary (p. 867)
• AlgorithmValidationProfile (p. 869)
• AlgorithmValidationSpecification (p. 870)
• AnnotationConsolidationConfig (p. 871)
• CategoricalParameterRange (p. 874)
• CategoricalParameterRangeSpecification (p. 875)
• Channel (p. 876)
• ChannelSpecification (p. 878)
• CheckpointConfig (p. 880)
• CodeRepositorySummary (p. 881)
• CognitoMemberDefinition (p. 883)
• CompilationJobSummary (p. 884)
• ContainerDefinition (p. 886)
• ContinuousParameterRange (p. 888)
• ContinuousParameterRangeSpecification (p. 890)
• DataProcessing (p. 891)
• DataSource (p. 893)
• DeployedImage (p. 894)
• DesiredWeightAndCapacity (p. 895)
• EndpointConfigSummary (p. 896)
• EndpointSummary (p. 897)
• FileSystemDataSource (p. 899)
• Filter (p. 901)
• FinalHyperParameterTuningJobObjectiveMetric (p. 904)
• GitConfig (p. 905)
• GitConfigForUpdate (p. 906)
• HumanTaskConfig (p. 907)
• HyperParameterAlgorithmSpecification (p. 912)
• HyperParameterSpecification (p. 914)
• HyperParameterTrainingJobDefinition (p. 916)
• HyperParameterTrainingJobSummary (p. 919)
• HyperParameterTuningJobConfig (p. 922)
• HyperParameterTuningJobObjective (p. 924)
• HyperParameterTuningJobSummary (p. 925)
• HyperParameterTuningJobWarmStartConfig (p. 927)
• InferenceSpecification (p. 929)
• InputConfig (p. 931)
• IntegerParameterRange (p. 933)
• IntegerParameterRangeSpecification (p. 935)
• LabelCounters (p. 936)
• LabelCountersForWorkteam (p. 938)
• LabelingJobAlgorithmsConfig (p. 939)
• LabelingJobDataAttributes (p. 941)
• LabelingJobDataSource (p. 942)

857

Amazon SageMaker Developer Guide
Data Types

• LabelingJobForWorkteamSummary (p. 943)
• LabelingJobInputConfig (p. 945)
• LabelingJobOutput (p. 946)
• LabelingJobOutputConfig (p. 947)
• LabelingJobResourceConfig (p. 948)
• LabelingJobS3DataSource (p. 949)
• LabelingJobStoppingConditions (p. 950)
• LabelingJobSummary (p. 951)
• MemberDefinition (p. 954)
• MetricData (p. 955)
• MetricDefinition (p. 956)
• ModelArtifacts (p. 957)
• ModelPackageContainerDefinition (p. 958)
• ModelPackageStatusDetails (p. 960)
• ModelPackageStatusItem (p. 961)
• ModelPackageSummary (p. 962)
• ModelPackageValidationProfile (p. 964)
• ModelPackageValidationSpecification (p. 965)
• ModelSummary (p. 966)
• NestedFilters (p. 967)
• NotebookInstanceLifecycleConfigSummary (p. 968)
• NotebookInstanceLifecycleHook (p. 969)
• NotebookInstanceSummary (p. 970)
• NotificationConfiguration (p. 973)
• ObjectiveStatusCounters (p. 974)
• OutputConfig (p. 975)
• OutputDataConfig (p. 976)
• ParameterRange (p. 978)
• ParameterRanges (p. 979)
• ParentHyperParameterTuningJob (p. 980)
• ProductionVariant (p. 981)
• ProductionVariantSummary (p. 983)
• PropertyNameQuery (p. 985)
• PropertyNameSuggestion (p. 986)
• PublicWorkforceTaskPrice (p. 987)
• RenderableTask (p. 989)
• RenderingError (p. 990)
• ResourceConfig (p. 991)
• ResourceLimits (p. 993)
• S3DataSource (p. 994)
• SearchExpression (p. 996)
• SearchRecord (p. 998)
• SecondaryStatusTransition (p. 999)
• ShuffleConfig (p. 1001)
• SourceAlgorithm (p. 1002)
• SourceAlgorithmSpecification (p. 1003)

858

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• StoppingCondition (p. 1004)
• SubscribedWorkteam (p. 1005)
• SuggestionQuery (p. 1007)
• Tag (p. 1008)
• TrainingJob (p. 1009)
• TrainingJobDefinition (p. 1015)
• TrainingJobStatusCounters (p. 1017)
• TrainingJobSummary (p. 1019)
• TrainingSpecification (p. 1021)
• TransformDataSource (p. 1023)
• TransformInput (p. 1024)
• TransformJobDefinition (p. 1026)
• TransformJobSummary (p. 1028)
• TransformOutput (p. 1030)
• TransformResources (p. 1032)
• TransformS3DataSource (p. 1034)
• UiConfig (p. 1036)
• UiTemplate (p. 1037)
• USD (p. 1038)
• VpcConfig (p. 1039)
• Workteam (p. 1040)

The following data types are supported by Amazon SageMaker Runtime:

Amazon SageMaker Service
The following data types are supported by Amazon SageMaker Service:

• AlgorithmSpecification (p. 863)
• AlgorithmStatusDetails (p. 865)
• AlgorithmStatusItem (p. 866)
• AlgorithmSummary (p. 867)
• AlgorithmValidationProfile (p. 869)
• AlgorithmValidationSpecification (p. 870)
• AnnotationConsolidationConfig (p. 871)
• CategoricalParameterRange (p. 874)
• CategoricalParameterRangeSpecification (p. 875)
• Channel (p. 876)
• ChannelSpecification (p. 878)
• CheckpointConfig (p. 880)
• CodeRepositorySummary (p. 881)
• CognitoMemberDefinition (p. 883)
• CompilationJobSummary (p. 884)
• ContainerDefinition (p. 886)
• ContinuousParameterRange (p. 888)
• ContinuousParameterRangeSpecification (p. 890)

859

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• DataProcessing (p. 891)
• DataSource (p. 893)
• DeployedImage (p. 894)
• DesiredWeightAndCapacity (p. 895)
• EndpointConfigSummary (p. 896)
• EndpointSummary (p. 897)
• FileSystemDataSource (p. 899)
• Filter (p. 901)
• FinalHyperParameterTuningJobObjectiveMetric (p. 904)
• GitConfig (p. 905)
• GitConfigForUpdate (p. 906)
• HumanTaskConfig (p. 907)
• HyperParameterAlgorithmSpecification (p. 912)
• HyperParameterSpecification (p. 914)
• HyperParameterTrainingJobDefinition (p. 916)
• HyperParameterTrainingJobSummary (p. 919)
• HyperParameterTuningJobConfig (p. 922)
• HyperParameterTuningJobObjective (p. 924)
• HyperParameterTuningJobSummary (p. 925)
• HyperParameterTuningJobWarmStartConfig (p. 927)
• InferenceSpecification (p. 929)
• InputConfig (p. 931)
• IntegerParameterRange (p. 933)
• IntegerParameterRangeSpecification (p. 935)
• LabelCounters (p. 936)
• LabelCountersForWorkteam (p. 938)
• LabelingJobAlgorithmsConfig (p. 939)
• LabelingJobDataAttributes (p. 941)
• LabelingJobDataSource (p. 942)
• LabelingJobForWorkteamSummary (p. 943)
• LabelingJobInputConfig (p. 945)
• LabelingJobOutput (p. 946)
• LabelingJobOutputConfig (p. 947)
• LabelingJobResourceConfig (p. 948)
• LabelingJobS3DataSource (p. 949)
• LabelingJobStoppingConditions (p. 950)
• LabelingJobSummary (p. 951)
• MemberDefinition (p. 954)
• MetricData (p. 955)
• MetricDefinition (p. 956)
• ModelArtifacts (p. 957)
• ModelPackageContainerDefinition (p. 958)
• ModelPackageStatusDetails (p. 960)
• ModelPackageStatusItem (p. 961)
• ModelPackageSummary (p. 962)
• ModelPackageValidationProfile (p. 964)

860

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• ModelPackageValidationSpecification (p. 965)
• ModelSummary (p. 966)
• NestedFilters (p. 967)
• NotebookInstanceLifecycleConfigSummary (p. 968)
• NotebookInstanceLifecycleHook (p. 969)
• NotebookInstanceSummary (p. 970)
• NotificationConfiguration (p. 973)
• ObjectiveStatusCounters (p. 974)
• OutputConfig (p. 975)
• OutputDataConfig (p. 976)
• ParameterRange (p. 978)
• ParameterRanges (p. 979)
• ParentHyperParameterTuningJob (p. 980)
• ProductionVariant (p. 981)
• ProductionVariantSummary (p. 983)
• PropertyNameQuery (p. 985)
• PropertyNameSuggestion (p. 986)
• PublicWorkforceTaskPrice (p. 987)
• RenderableTask (p. 989)
• RenderingError (p. 990)
• ResourceConfig (p. 991)
• ResourceLimits (p. 993)
• S3DataSource (p. 994)
• SearchExpression (p. 996)
• SearchRecord (p. 998)
• SecondaryStatusTransition (p. 999)
• ShuffleConfig (p. 1001)
• SourceAlgorithm (p. 1002)
• SourceAlgorithmSpecification (p. 1003)
• StoppingCondition (p. 1004)
• SubscribedWorkteam (p. 1005)
• SuggestionQuery (p. 1007)
• Tag (p. 1008)
• TrainingJob (p. 1009)
• TrainingJobDefinition (p. 1015)
• TrainingJobStatusCounters (p. 1017)
• TrainingJobSummary (p. 1019)
• TrainingSpecification (p. 1021)
• TransformDataSource (p. 1023)
• TransformInput (p. 1024)
• TransformJobDefinition (p. 1026)
• TransformJobSummary (p. 1028)
• TransformOutput (p. 1030)
• TransformResources (p. 1032)
• TransformS3DataSource (p. 1034)
• UiConfig (p. 1036)

861

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• UiTemplate (p. 1037)
• USD (p. 1038)
• VpcConfig (p. 1039)
• Workteam (p. 1040)

862

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmSpecification
Service: Amazon SageMaker Service

Specifies the training algorithm to use in a CreateTrainingJob request.

For more information about algorithms provided by Amazon SageMaker, see Algorithms. For information
about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.

Contents

AlgorithmName

The name of the algorithm resource to use for the training job. This must be an algorithm resource
that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you
can't specify a value for TrainingImage.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 170.

Pattern: (arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:[a-z\-]*\/)?([a-zA-
Z0-9]([a-zA-Z0-9-]){0,62})(?<!-)$

Required: No
MetricDefinitions

A list of metric definition objects. Each object specifies the metric name and regular expressions
used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.

Type: Array of MetricDefinition (p. 956) objects

Array Members: Minimum number of 0 items. Maximum number of 40 items.

Required: No
TrainingImage

The registry path of the Docker image that contains the training algorithm. For information about
docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker:
Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and
registry/repository[@digest] image path formats. For more information, see Using Your
Own Algorithms with Amazon SageMaker.

Type: String

Length Constraints: Maximum length of 255.

Pattern: .*

Required: No
TrainingInputMode

The input mode that the algorithm supports. For the input modes that Amazon SageMaker
algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon
SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts
the directory to docker volume for training container. If an algorithm supports the Pipe input mode,
Amazon SageMaker streams data directly from S3 to the container.

In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate
the data download from S3. In addition to the training data, the ML storage volume also stores

863

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

the output model. The algorithm container use ML storage volume to also store intermediate
information, if any.

For distributed algorithms using File mode, training data is distributed uniformly, and your training
duration is predictable if the input data objects size is approximately same. Amazon SageMaker does
not split the files any further for model training. If the object sizes are skewed, training won't be
optimal as the data distribution is also skewed where one host in a training cluster is overloaded,
thus becoming bottleneck in training.

Type: String

Valid Values: Pipe | File

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

864

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AlgorithmSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmStatusDetails
Service: Amazon SageMaker Service

Specifies the validation and image scan statuses of the algorithm.

Contents

ImageScanStatuses

The status of the scan of the algorithm's Docker image container.

Type: Array of AlgorithmStatusItem (p. 866) objects

Required: No
ValidationStatuses

The status of algorithm validation.

Type: Array of AlgorithmStatusItem (p. 866) objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

865

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AlgorithmStatusDetails
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AlgorithmStatusDetails
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AlgorithmStatusDetails
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AlgorithmStatusDetails
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AlgorithmStatusDetails

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmStatusItem
Service: Amazon SageMaker Service

Represents the overall status of an algorithm.

Contents

FailureReason

if the overall status is Failed, the reason for the failure.

Type: String

Required: No
Name

The name of the algorithm for which the overall status is being reported.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
Status

The current status.

Type: String

Valid Values: NotStarted | InProgress | Completed | Failed

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

866

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AlgorithmStatusItem
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AlgorithmStatusItem
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AlgorithmStatusItem
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AlgorithmStatusItem
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AlgorithmStatusItem

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmSummary
Service: Amazon SageMaker Service

Provides summary information about an algorithm.

Contents

AlgorithmArn

The Amazon Resource Name (ARN) of the algorithm.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:algorithm/.*

Required: Yes
AlgorithmDescription

A brief description of the algorithm.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*

Required: No
AlgorithmName

The name of the algorithm that is described by the summary.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
AlgorithmStatus

The overall status of the algorithm.

Type: String

Valid Values: Pending | InProgress | Completed | Failed | Deleting

Required: Yes
CreationTime

A timestamp that shows when the algorithm was created.

Type: Timestamp

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

867

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

868

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AlgorithmSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AlgorithmSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AlgorithmSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AlgorithmSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AlgorithmSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmValidationProfile
Service: Amazon SageMaker Service

Defines a training job and a batch transform job that Amazon SageMaker runs to validate your
algorithm.

The data provided in the validation profile is made available to your buyers on AWS Marketplace.

Contents

ProfileName

The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters
are a-z, A-Z, 0-9, and - (hyphen).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
TrainingJobDefinition

The TrainingJobDefinition object that describes the training job that Amazon SageMaker runs
to validate your algorithm.

Type: TrainingJobDefinition (p. 1015) object

Required: Yes
TransformJobDefinition

The TransformJobDefinition object that describes the transform job that Amazon SageMaker
runs to validate your algorithm.

Type: TransformJobDefinition (p. 1026) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

869

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AlgorithmValidationProfile
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AlgorithmValidationProfile
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AlgorithmValidationProfile
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AlgorithmValidationProfile
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AlgorithmValidationProfile

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AlgorithmValidationSpecification
Service: Amazon SageMaker Service

Specifies configurations for one or more training jobs that Amazon SageMaker runs to test the
algorithm.

Contents

ValidationProfiles

An array of AlgorithmValidationProfile objects, each of which specifies a training job and
batch transform job that Amazon SageMaker runs to validate your algorithm.

Type: Array of AlgorithmValidationProfile (p. 869) objects

Array Members: Fixed number of 1 item.

Required: Yes
ValidationRole

The IAM roles that Amazon SageMaker uses to run the training jobs.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

870

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AlgorithmValidationSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AlgorithmValidationSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AlgorithmValidationSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AlgorithmValidationSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AlgorithmValidationSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

AnnotationConsolidationConfig
Service: Amazon SageMaker Service

Configures how labels are consolidated across human workers.

Contents

AnnotationConsolidationLambdaArn

The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation
consolidation.

For the built-in bounding box, image classification, semantic segmentation, and text classification
task types, Amazon SageMaker Ground Truth provides the following Lambda functions:
• Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of

the boxes.

arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox

arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox

arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox

arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox

arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox

arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox

arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox

arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox

arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox

arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox

arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox

arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox

• Image classification - Uses a variant of the Expectation Maximization approach to estimate the
true class of an image based on annotations from individual workers.

arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass

arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass

arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass

arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass

arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass

arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass

arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass

arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass

arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass

871

Amazon SageMaker Developer Guide
Amazon SageMaker Service

arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass

arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass

arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass

• Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats
pixel annotations from workers as "votes" for the correct label.

arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation

arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation

arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation

arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation

arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-
SemanticSegmentation

arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-
SemanticSegmentation

arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation

arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation

arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-
SemanticSegmentation

arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation

arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-
SemanticSegmentation

arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation

• Text classification - Uses a variant of the Expectation Maximization approach to estimate the true
class of text based on annotations from individual workers.

arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass

arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass

arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass

arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass

arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass

arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass

arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass

arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass

arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass

arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass

arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass
872

Amazon SageMaker Developer Guide
Amazon SageMaker Service

arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass

• Named entity eecognition - Groups similar selections and calculates aggregate boundaries,
resolving to most-assigned label.

arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition

arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition

arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition

arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition

arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-
NamedEntityRecognition

arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-
NamedEntityRecognition

arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition

arn:aws:lambda:eu-central-1:203001061592:function:ACS-
NamedEntityRecognition

arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-
NamedEntityRecognition

arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition

arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-
NamedEntityRecognition

arn:aws:lambda:ca-central-1:918755190332:function:ACS-
NamedEntityRecognition

For more information, see Annotation Consolidation.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-
Z0-9-_\.]+(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

873

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/AnnotationConsolidationConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/AnnotationConsolidationConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/AnnotationConsolidationConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/AnnotationConsolidationConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/AnnotationConsolidationConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CategoricalParameterRange
Service: Amazon SageMaker Service

A list of categorical hyperparameters to tune.

Contents

Name

The name of the categorical hyperparameter to tune.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
Values

A list of the categories for the hyperparameter.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

874

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CategoricalParameterRange
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CategoricalParameterRange
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CategoricalParameterRange
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CategoricalParameterRange
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CategoricalParameterRange

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CategoricalParameterRangeSpecification
Service: Amazon SageMaker Service

Defines the possible values for a categorical hyperparameter.

Contents

Values

The allowed categories for the hyperparameter.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

875

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CategoricalParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CategoricalParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CategoricalParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CategoricalParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CategoricalParameterRangeSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Channel
Service: Amazon SageMaker Service

A channel is a named input source that training algorithms can consume.

Contents

ChannelName

The name of the channel.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [A-Za-z0-9\.\-_]+

Required: Yes
CompressionType

If training data is compressed, the compression type. The default value is None. CompressionType
is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

Type: String

Valid Values: None | Gzip

Required: No
ContentType

The MIME type of the data.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: No
DataSource

The location of the channel data.

Type: DataSource (p. 893) object

Required: Yes
InputMode

(Optional) The input mode to use for the data channel in a training job. If you don't set a value for
InputMode, Amazon SageMaker uses the value set for TrainingInputMode. Use this parameter
to override the TrainingInputMode setting in a AlgorithmSpecification (p. 863) request when
you have a channel that needs a different input mode from the training job's general setting. To
download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage
volume, and mount the directory to a Docker volume, use File input mode. To stream data directly
from Amazon S3 to the container, choose Pipe input mode.

To use a model for incremental training, choose File input model.

Type: String

876

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Values: Pipe | File

Required: No
RecordWrapperType

Specify RecordIO as the value when input data is in raw format but the training algorithm requires
the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO
record. If the input data is already in RecordIO format, you don't need to set this attribute. For more
information, see Create a Dataset Using RecordIO.

In File mode, leave this field unset or set it to None.

Type: String

Valid Values: None | RecordIO

Required: No
ShuffleConfig

A configuration for a shuffle option for input data in a channel. If you use S3Prefix for
S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile,
the order of the S3 object references in the ManifestFile is shuffled. If you use
AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is
shuffled. The shuffling order is determined using the Seed value.

For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this
ensures that the order of the training data is different for each epoch, it helps reduce bias
and possible overfitting. In a multi-node training job when ShuffleConfig is combined with
S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the
content sent to a particular node on the first epoch might be sent to a different node on the second
epoch.

Type: ShuffleConfig (p. 1001) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

877

https://mxnet.incubator.apache.org/architecture/note_data_loading.html#data-format
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/Channel
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/Channel
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/Channel
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/Channel
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/Channel

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ChannelSpecification
Service: Amazon SageMaker Service

Defines a named input source, called a channel, to be used by an algorithm.

Contents

Description

A brief description of the channel.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*

Required: No
IsRequired

Indicates whether the channel is required by the algorithm.

Type: Boolean

Required: No
Name

The name of the channel.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [A-Za-z0-9\.\-_]+

Required: Yes
SupportedCompressionTypes

The allowed compression types, if data compression is used.

Type: Array of strings

Valid Values: None | Gzip

Required: No
SupportedContentTypes

The supported MIME types for the data.

Type: Array of strings

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
SupportedInputModes

The allowed input mode, either FILE or PIPE.

878

Amazon SageMaker Developer Guide
Amazon SageMaker Service

In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon
Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most
commonly used input mode.

In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm
without using the EBS volume.

Type: Array of strings

Array Members: Minimum number of 1 item.

Valid Values: Pipe | File

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

879

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ChannelSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ChannelSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ChannelSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ChannelSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ChannelSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CheckpointConfig
Service: Amazon SageMaker Service

Contains information about the output location for managed spot training checkpoint data.

Contents

LocalPath

(Optional) The local directory where checkpoints are written. The default directory is /opt/ml/
checkpoints/.

Type: String

Length Constraints: Maximum length of 4096.

Pattern: .*

Required: No
S3Uri

Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://
bucket-name/key-name-prefix.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

880

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CheckpointConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CheckpointConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CheckpointConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CheckpointConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CheckpointConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CodeRepositorySummary
Service: Amazon SageMaker Service

Specifies summary information about a Git repository.

Contents

CodeRepositoryArn

The Amazon Resource Name (ARN) of the Git repository.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:code-repository/.*

Required: Yes
CodeRepositoryName

The name of the Git repository.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
CreationTime

The date and time that the Git repository was created.

Type: Timestamp

Required: Yes
GitConfig

Configuration details for the Git repository, including the URL where it is located and the ARN of the
AWS Secrets Manager secret that contains the credentials used to access the repository.

Type: GitConfig (p. 905) object

Required: No
LastModifiedTime

The date and time that the Git repository was last modified.

Type: Timestamp

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go

881

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CodeRepositorySummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CodeRepositorySummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

882

https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CodeRepositorySummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CodeRepositorySummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CodeRepositorySummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CognitoMemberDefinition
Service: Amazon SageMaker Service

Identifies a Amazon Cognito user group. A user group can be used in on or more work teams.

Contents

ClientId

An identifier for an application client. You must create the app client ID using Amazon Cognito.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [\w+]+

Required: Yes
UserGroup

An identifier for a user group.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [\p{L}\p{M}\p{S}\p{N}\p{P}]+

Required: Yes
UserPool

An identifier for a user pool. The user pool must be in the same region as the service that you are
calling.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 55.

Pattern: [\w-]+_[0-9a-zA-Z]+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

883

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CognitoMemberDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CognitoMemberDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CognitoMemberDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CognitoMemberDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CognitoMemberDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

CompilationJobSummary
Service: Amazon SageMaker Service

A summary of a model compilation job.

Contents

CompilationEndTime

The time when the model compilation job completed.

Type: Timestamp

Required: No
CompilationJobArn

The Amazon Resource Name (ARN) of the model compilation job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:compilation-job/.*

Required: Yes
CompilationJobName

The name of the model compilation job that you want a summary for.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
CompilationJobStatus

The status of the model compilation job.

Type: String

Valid Values: INPROGRESS | COMPLETED | FAILED | STARTING | STOPPING | STOPPED

Required: Yes
CompilationStartTime

The time when the model compilation job started.

Type: Timestamp

Required: No
CompilationTargetDevice

The type of device that the model will run on after compilation has completed.

Type: String

Valid Values: lambda | ml_m4 | ml_m5 | ml_c4 | ml_c5 | ml_p2 | ml_p3 |
jetson_tx1 | jetson_tx2 | jetson_nano | rasp3b | deeplens | rk3399 | rk3288
| aisage | sbe_c | qcs605 | qcs603

884

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: Yes
CreationTime

The time when the model compilation job was created.

Type: Timestamp

Required: Yes
LastModifiedTime

The time when the model compilation job was last modified.

Type: Timestamp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

885

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/CompilationJobSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/CompilationJobSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/CompilationJobSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/CompilationJobSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/CompilationJobSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ContainerDefinition
Service: Amazon SageMaker Service

Describes the container, as part of model definition.

Contents

ContainerHostname

This parameter is ignored for models that contain only a PrimaryContainer.

When a ContainerDefinition is part of an inference pipeline, the value of ths parameter
uniquely identifies the container for the purposes of logging and metrics. For information, see Use
Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter
for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically
assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value
for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline,
you must specify a value for the ContainerHostName parameter of every ContainerDefinition
in that pipeline.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No

Environment

The environment variables to set in the Docker container. Each key and value in the Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.

Type: String to string map

Key Length Constraints: Maximum length of 1024.

Key Pattern: [a-zA-Z_][a-zA-Z0-9_]*

Value Length Constraints: Maximum length of 1024.

Value Pattern: [\S\s]*

Required: No

Image

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are
using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the
inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
registry/repository[:tag] and registry/repository[@digest] image path formats. For
more information, see Using Your Own Algorithms with Amazon SageMaker

Type: String

Length Constraints: Maximum length of 255.

Pattern: [\S]+

Required: No

886

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelDataUrl

The S3 path where the model artifacts, which result from model training, are stored. This path must
point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon
SageMaker built-in algorithms, but not if you use your own algorithms. For more information on
built-in algorithms, see Common Parameters.

If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to
download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user
account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS
STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS
Region in the AWS Identity and Access Management User Guide.

Important
If you use a built-in algorithm to create a model, Amazon SageMaker requires that you
provide a S3 path to the model artifacts in ModelDataUrl.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: No
ModelPackageName

The name or Amazon Resource Name (ARN) of the model package to use to create the model.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 170.

Pattern: (arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:[a-z\-]*\/)?([a-zA-
Z0-9]([a-zA-Z0-9-]){0,62})(?<!-)$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

887

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ContainerDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ContainerDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ContainerDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ContainerDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ContainerDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ContinuousParameterRange
Service: Amazon SageMaker Service

A list of continuous hyperparameters to tune.

Contents

MaxValue

The maximum value for the hyperparameter. The tuning job uses floating-point values between
MinValue value and this value for tuning.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
MinValue

The minimum value for the hyperparameter. The tuning job uses floating-point values between this
value and MaxValuefor tuning.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
Name

The name of the continuous hyperparameter to tune.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
ScalingType

The scale that hyperparameter tuning uses to search the hyperparameter range. For information
about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
Auto

Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
Linear

Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Logarithmic

Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic
scale.

Logarithmic scaling works only for ranges that have only values greater than 0.

888

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ReverseLogarithmic

Hyperparemeter tuning searches the values in the hyperparameter range by using a reverse
logarithmic scale.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

Type: String

Valid Values: Auto | Linear | Logarithmic | ReverseLogarithmic

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

889

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ContinuousParameterRange
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ContinuousParameterRange
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ContinuousParameterRange
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ContinuousParameterRange
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ContinuousParameterRange

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ContinuousParameterRangeSpecification
Service: Amazon SageMaker Service

Defines the possible values for a continuous hyperparameter.

Contents

MaxValue

The maximum floating-point value allowed.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
MinValue

The minimum floating-point value allowed.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

890

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ContinuousParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ContinuousParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ContinuousParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ContinuousParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ContinuousParameterRangeSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DataProcessing
Service: Amazon SageMaker Service

The data structure used to specify the data to be used for inference in a batch transform job and to
associate the data that is relevant to the prediction results in the output. The input filter provided allows
you to exclude input data that is not needed for inference in a batch transform job. The output filter
provided allows you to include input data relevant to interpreting the predictions in the output from the
job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Contents

InputFilter

A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use
the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want
Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value $.

Examples: "$", "$[1:]", "$.features"

Type: String

Length Constraints: Minimum length of 0. Maximum length of 63.

Required: No
JoinSource

Specifies the source of the data to join with the transformed data. The valid values are None and
Input The default value is None which specifies not to join the input with the transformed data.
If you want the batch transform job to join the original input data with the transformed data, set
JoinSource to Input.

For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data
to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must
be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a
new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key
and the results are stored in SageMakerOutput.

For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of
the input data and stores it in the output file. The joined data has the joined input data followed by
the transformed data and the output is a CSV file.

Type: String

Valid Values: Input | None

Required: No
OutputFilter

A JSONPath expression used to select a portion of the joined dataset to save in the output file for a
batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output
file, leave the default value, $. If you specify indexes that aren't within the dimension size of the
joined dataset, you get an error.

Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"

Type: String

Length Constraints: Minimum length of 0. Maximum length of 63.

Required: No

891

https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators
https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

892

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DataProcessing
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DataProcessing
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DataProcessing
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DataProcessing
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DataProcessing

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DataSource
Service: Amazon SageMaker Service

Describes the location of the channel data.

Contents

FileSystemDataSource

The file system that is associated with a channel.

Type: FileSystemDataSource (p. 899) object

Required: No
S3DataSource

The S3 location of the data source that is associated with a channel.

Type: S3DataSource (p. 994) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

893

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DataSource
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DataSource
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DataSource
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DataSource

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DeployedImage
Service: Amazon SageMaker Service

Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this
ProductionVariant (p. 981).

If you used the registry/repository[:tag] form to specify the image path of the primary container
when you created the model hosted in this ProductionVariant, the path resolves to a path of the
form registry/repository[@digest]. A digest is a hash value that identifies a specific version of an
image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide.

Contents

ResolutionTime

The date and time when the image path for the model resolved to the ResolvedImage

Type: Timestamp

Required: No
ResolvedImage

The specific digest path of the image hosted in this ProductionVariant.

Type: String

Length Constraints: Maximum length of 255.

Pattern: [\S]+

Required: No
SpecifiedImage

The image path you specified when you created the model.

Type: String

Length Constraints: Maximum length of 255.

Pattern: [\S]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

894

https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DeployedImage
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DeployedImage
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DeployedImage
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DeployedImage
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DeployedImage

Amazon SageMaker Developer Guide
Amazon SageMaker Service

DesiredWeightAndCapacity
Service: Amazon SageMaker Service

Specifies weight and capacity values for a production variant.

Contents

DesiredInstanceCount

The variant's capacity.

Type: Integer

Valid Range: Minimum value of 1.

Required: No
DesiredWeight

The variant's weight.

Type: Float

Valid Range: Minimum value of 0.

Required: No
VariantName

The name of the variant to update.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

895

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/DesiredWeightAndCapacity
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/DesiredWeightAndCapacity
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/DesiredWeightAndCapacity
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/DesiredWeightAndCapacity
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/DesiredWeightAndCapacity

Amazon SageMaker Developer Guide
Amazon SageMaker Service

EndpointConfigSummary
Service: Amazon SageMaker Service

Provides summary information for an endpoint configuration.

Contents

CreationTime

A timestamp that shows when the endpoint configuration was created.

Type: Timestamp

Required: Yes
EndpointConfigArn

The Amazon Resource Name (ARN) of the endpoint configuration.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint-config/.*

Required: Yes
EndpointConfigName

The name of the endpoint configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

896

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/EndpointConfigSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/EndpointConfigSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/EndpointConfigSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/EndpointConfigSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/EndpointConfigSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

EndpointSummary
Service: Amazon SageMaker Service

Provides summary information for an endpoint.

Contents

CreationTime

A timestamp that shows when the endpoint was created.

Type: Timestamp

Required: Yes
EndpointArn

The Amazon Resource Name (ARN) of the endpoint.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:endpoint/.*

Required: Yes
EndpointName

The name of the endpoint.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
EndpointStatus

The status of the endpoint.
• OutOfService: Endpoint is not available to take incoming requests.
• Creating: CreateEndpoint (p. 632) is executing.
• Updating: UpdateEndpoint (p. 840) or UpdateEndpointWeightsAndCapacities (p. 842) is

executing.
• SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-

scaled until it has completed. This maintenance operation does not change any customer-specified
values such as VPC config, KMS encryption, model, instance type, or instance count.

• RollingBack: Endpoint fails to scale up or down or change its variant weight and is in
the process of rolling back to its previous configuration. Once the rollback completes,
endpoint returns to an InService status. This transitional status only applies to an
endpoint that has autoscaling enabled and is undergoing variant weight or capacity
changes as part of an UpdateEndpointWeightsAndCapacities (p. 842) call or when the
UpdateEndpointWeightsAndCapacities (p. 842) operation is called explicitly.

• InService: Endpoint is available to process incoming requests.
• Deleting: DeleteEndpoint (p. 683) is executing.
• Failed: Endpoint could not be created, updated, or re-scaled. Use

DescribeEndpoint:FailureReason (p. 711) for information about the failure.
DeleteEndpoint (p. 683) is the only operation that can be performed on a failed endpoint.

897

Amazon SageMaker Developer Guide
Amazon SageMaker Service

To get a list of endpoints with a specified status, use the ListEndpoints:StatusEquals (p. 775) filter.

Type: String

Valid Values: OutOfService | Creating | Updating | SystemUpdating | RollingBack
| InService | Deleting | Failed

Required: Yes
LastModifiedTime

A timestamp that shows when the endpoint was last modified.

Type: Timestamp

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

898

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/EndpointSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/EndpointSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/EndpointSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/EndpointSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/EndpointSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

FileSystemDataSource
Service: Amazon SageMaker Service

Specifies a file system data source for a channel.

Contents

DirectoryPath

The full path to the directory to associate with the channel.

Type: String

Length Constraints: Maximum length of 4096.

Pattern: .*

Required: Yes
FileSystemAccessMode

The access mode of the mount of the directory associated with the channel. A directory can be
mounted either in ro (read-only) or rw (read-write) mode.

Type: String

Valid Values: rw | ro

Required: Yes
FileSystemId

The file system id.

Type: String

Length Constraints: Minimum length of 11.

Pattern: .*

Required: Yes
FileSystemType

The file system type.

Type: String

Valid Values: EFS | FSxLustre

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

899

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/FileSystemDataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/FileSystemDataSource
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/FileSystemDataSource
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/FileSystemDataSource
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/FileSystemDataSource

Amazon SageMaker Developer Guide
Amazon SageMaker Service

900

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Filter
Service: Amazon SageMaker Service

A conditional statement for a search expression that includes a Boolean operator, a resource property,
and a value.

If you don't specify an Operator and a Value, the filter searches for only the specified property. For
example, defining a Filter for the FailureReason for the TrainingJob Resource searches for
training job objects that have a value in the FailureReason field.

If you specify a Value, but not an Operator, Amazon SageMaker uses the equals operator as the
default.

In search, there are several property types:

Metrics

To define a metric filter, enter a value using the form "Metrics.<name>", where <name> is a
metric name. For example, the following filter searches for training jobs with an "accuracy" metric
greater than "0.9":

{

"Name": "Metrics.accuracy",

"Operator": "GREATER_THAN",

"Value": "0.9"

}

HyperParameters

To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>".
Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value
is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values
are treated as integers. For example, the following filter is satisfied by training jobs with a
"learning_rate" hyperparameter that is less than "0.5":

{

"Name": "HyperParameters.learning_rate",

"Operator": "LESS_THAN",

"Value": "0.5"

}

Tags

To define a tag filter, enter a value with the form "Tags.<key>".

Contents

Name

A property name. For example, TrainingJobName. For the list of valid property names returned in
a search result for each supported resource, see TrainingJob (p. 1009) properties. You must specify a
valid property name for the resource.

901

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: Yes
Operator

A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the
following values:
Equals

The specified resource in Name equals the specified Value.
NotEquals

The specified resource in Name does not equal the specified Value.
GreaterThan

The specified resource in Name is greater than the specified Value. Not supported for text-
based properties.

GreaterThanOrEqualTo

The specified resource in Name is greater than or equal to the specified Value. Not supported
for text-based properties.

LessThan

The specified resource in Name is less than the specified Value. Not supported for text-based
properties.

LessThanOrEqualTo

The specified resource in Name is less than or equal to the specified Value. Not supported for
text-based properties.

Contains

Only supported for text-based properties. The word-list of the property contains the specified
Value.

If you have specified a filter Value, the default is Equals.

Type: String

Valid Values: Equals | NotEquals | GreaterThan | GreaterThanOrEqualTo |
LessThan | LessThanOrEqualTo | Contains

Required: No
Value

A value used with Resource and Operator to determine if objects satisfy the filter's condition. For
numerical properties, Value must be an integer or floating-point decimal. For timestamp properties,
Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: .+

Required: No

902

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

903

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/Filter
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/Filter
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/Filter
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/Filter
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/Filter

Amazon SageMaker Developer Guide
Amazon SageMaker Service

FinalHyperParameterTuningJobObjectiveMetric
Service: Amazon SageMaker Service

Shows the final value for the objective metric for a training job that was launched by a hyperparameter
tuning job. You define the objective metric in the HyperParameterTuningJobObjective parameter
of HyperParameterTuningJobConfig (p. 922).

Contents

MetricName

The name of the objective metric.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: Yes
Type

Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

Type: String

Valid Values: Maximize | Minimize

Required: No
Value

The value of the objective metric.

Type: Float

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

904

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/FinalHyperParameterTuningJobObjectiveMetric
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/FinalHyperParameterTuningJobObjectiveMetric
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/FinalHyperParameterTuningJobObjectiveMetric
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/FinalHyperParameterTuningJobObjectiveMetric
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/FinalHyperParameterTuningJobObjectiveMetric

Amazon SageMaker Developer Guide
Amazon SageMaker Service

GitConfig
Service: Amazon SageMaker Service

Specifies configuration details for a Git repository in your AWS account.

Contents

Branch

The default branch for the Git repository.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: [^ ~^:?*\[]+

Required: No
RepositoryUrl

The URL where the Git repository is located.

Type: String

Pattern: ^https://([^/]+)/?(.*)$

Required: Yes
SecretArn

The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials
used to access the git repository. The secret must have a staging label of AWSCURRENT and must be
in the following format:

{"username": UserName, "password": Password}

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:secretsmanager:[a-z0-9\-]*:[0-9]{12}:secret:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

905

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/GitConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/GitConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/GitConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/GitConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/GitConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

GitConfigForUpdate
Service: Amazon SageMaker Service

Specifies configuration details for a Git repository when the repository is updated.

Contents

SecretArn

The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials
used to access the git repository. The secret must have a staging label of AWSCURRENT and must be
in the following format:

{"username": UserName, "password": Password}

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:secretsmanager:[a-z0-9\-]*:[0-9]{12}:secret:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

906

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/GitConfigForUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/GitConfigForUpdate
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/GitConfigForUpdate
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/GitConfigForUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/GitConfigForUpdate

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HumanTaskConfig
Service: Amazon SageMaker Service

Information required for human workers to complete a labeling task.

Contents

AnnotationConsolidationConfig

Configures how labels are consolidated across human workers.

Type: AnnotationConsolidationConfig (p. 871) object

Required: Yes
MaxConcurrentTaskCount

Defines the maximum number of data objects that can be labeled by human workers at the same
time. Each object may have more than one worker at one time.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 1000.

Required: No
NumberOfHumanWorkersPerDataObject

The number of human workers that will label an object.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 9.

Required: Yes
PreHumanTaskLambdaArn

The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a
human worker. Use this function to provide input to a custom labeling job.

For the built-in bounding box, image classification, semantic segmentation, and text classification
task types, Amazon SageMaker Ground Truth provides the following Lambda functions:

US East (Northern Virginia) (us-east-1):
• arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox

• arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass

• arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation

• arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass

• arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition

US East (Ohio) (us-east-2):
• arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox

• arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass

• arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation

• arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass

• arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition

US West (Oregon) (us-west-2):

907

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox

• arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass

• arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation

• arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass

• arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition

Canada (Central) (ca-central-1):
• arn:awslambda:ca-central-1:918755190332:function:PRE-BoundingBox

• arn:awslambda:ca-central-1:918755190332:function:PRE-ImageMultiClass

• arn:awslambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation

• arn:awslambda:ca-central-1:918755190332:function:PRE-TextMultiClass

• arn:awslambda:ca-central-1:918755190332:function:PRE-
NamedEntityRecognition

EU (Ireland) (eu-west-1):
• arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox

• arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass

• arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation

• arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass

• arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition

EU (London) (eu-west-2):
• arn:awslambda:eu-west-2:487402164563:function:PRE-BoundingBox

• arn:awslambda:eu-west-2:487402164563:function:PRE-ImageMultiClass

• arn:awslambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation

• arn:awslambda:eu-west-2:487402164563:function:PRE-TextMultiClass

• arn:awslambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition

EU Frankfurt (eu-central-1):
• arn:awslambda:eu-central-1:203001061592:function:PRE-BoundingBox

• arn:awslambda:eu-central-1:203001061592:function:PRE-ImageMultiClass

• arn:awslambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation

• arn:awslambda:eu-central-1:203001061592:function:PRE-TextMultiClass

• arn:awslambda:eu-central-1:203001061592:function:PRE-
NamedEntityRecognition

Asia Pacific (Tokyo) (ap-northeast-1):
• arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox

• arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass

• arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-
SemanticSegmentation

• arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass

• arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-
NamedEntityRecognition

Asia Pacific (Seoul) (ap-northeast-2):
• arn:awslambda:ap-northeast-2:845288260483:function:PRE-BoundingBox

• arn:awslambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass

• arn:awslambda:ap-northeast-2:845288260483:function:PRE-
SemanticSegmentation

908

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• arn:awslambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass

• arn:awslambda:ap-northeast-2:845288260483:function:PRE-
NamedEntityRecognition

Asia Pacific (Mumbai) (ap-south-1):
• arn:awslambda:ap-south-1:565803892007:function:PRE-BoundingBox

• arn:awslambda:ap-south-1:565803892007:function:PRE-ImageMultiClass

• arn:awslambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation

• arn:awslambda:ap-south-1:565803892007:function:PRE-TextMultiClass

• arn:awslambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition

Asia Pacific (Singapore) (ap-southeast-1):
• arn:awslambda:ap-southeast-1:377565633583:function:PRE-BoundingBox

• arn:awslambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass

• arn:awslambda:ap-southeast-1:377565633583:function:PRE-
SemanticSegmentation

• arn:awslambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass

• arn:awslambda:ap-southeast-1:377565633583:function:PRE-
NamedEntityRecognition

Asia Pacific (Sydney) (ap-southeast-2):
• arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox

• arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass

• arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-
SemanticSegmentation

• arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass

• arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-
NamedEntityRecognition

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-
Z0-9-_\.]+(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: Yes
PublicWorkforceTaskPrice

The price that you pay for each task performed by an Amazon Mechanical Turk worker.

Type: PublicWorkforceTaskPrice (p. 987) object

Required: No
TaskAvailabilityLifetimeInSeconds

The length of time that a task remains available for labeling by human workers. If you choose the
Amazon Mechanical Turk workforce, the maximum is 12 hours (43200). For private and vendor
workforces, the maximum is as listed.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 864000.

Required: No

909

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TaskDescription

A description of the task for your human workers.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: Yes
TaskKeywords

Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the
task.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Minimum length of 1. Maximum length of 30.

Pattern: ^[A-Za-z0-9]+([A-Za-z0-9]+)*$

Required: No
TaskTimeLimitInSeconds

The amount of time that a worker has to complete a task.

Type: Integer

Valid Range: Minimum value of 30. Maximum value of 28800.

Required: Yes
TaskTitle

A title for the task for your human workers.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: ^[\t\n\r -\uD7FF\uE000-\uFFFD]*$

Required: Yes
UiConfig

Information about the user interface that workers use to complete the labeling task.

Type: UiConfig (p. 1036) object

Required: Yes
WorkteamArn

The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:workteam/.*

910

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

911

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HumanTaskConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HumanTaskConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HumanTaskConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HumanTaskConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HumanTaskConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterAlgorithmSpecification
Service: Amazon SageMaker Service

Specifies which training algorithm to use for training jobs that a hyperparameter tuning job launches
and the metrics to monitor.

Contents

AlgorithmName

The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value
for this parameter, do not specify a value for TrainingImage.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 170.

Pattern: (arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:[a-z\-]*\/)?([a-zA-
Z0-9]([a-zA-Z0-9-]){0,62})(?<!-)$

Required: No
MetricDefinitions

An array of MetricDefinition (p. 956) objects that specify the metrics that the algorithm emits.

Type: Array of MetricDefinition (p. 956) objects

Array Members: Minimum number of 0 items. Maximum number of 40 items.

Required: No
TrainingImage

The registry path of the Docker image that contains the training algorithm. For information about
Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker:
Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and
registry/repository[@digest] image path formats. For more information, see Using Your
Own Algorithms with Amazon SageMaker.

Type: String

Length Constraints: Maximum length of 255.

Pattern: .*

Required: No
TrainingInputMode

The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker
downloads the training data from Amazon S3 to the storage volume that is attached to the training
instance and mounts the directory to the Docker volume for the training container. In Pipe input
mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

If you specify File mode, make sure that you provision the storage volume that is attached to the
training instance with enough capacity to accommodate the training data downloaded from Amazon
S3, the model artifacts, and intermediate information.

For more information about input modes, see Algorithms.

Type: String

912

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Values: Pipe | File

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

913

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterAlgorithmSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterSpecification
Service: Amazon SageMaker Service

Defines a hyperparameter to be used by an algorithm.

Contents

DefaultValue

The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot
be required.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: No
Description

A brief description of the hyperparameter.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*

Required: No
IsRequired

Indicates whether this hyperparameter is required.

Type: Boolean

Required: No
IsTunable

Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

Type: Boolean

Required: No
Name

The name of this hyperparameter. The name must be unique.

Type: String

Length Constraints: Maximum length of 256.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*

Required: Yes
Range

The allowed range for this hyperparameter.

Type: ParameterRange (p. 978) object

914

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: No
Type

The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and
FreeText.

Type: String

Valid Values: Integer | Continuous | Categorical | FreeText

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

915

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterTrainingJobDefinition
Service: Amazon SageMaker Service

Defines the training jobs launched by a hyperparameter tuning job.

Contents

AlgorithmSpecification

The HyperParameterAlgorithmSpecification (p. 912) object that specifies the resource algorithm to
use for the training jobs that the tuning job launches.

Type: HyperParameterAlgorithmSpecification (p. 912) object

Required: Yes
CheckpointConfig

Contains information about the output location for managed spot training checkpoint data.

Type: CheckpointConfig (p. 880) object

Required: No
EnableInterContainerTrafficEncryption

To encrypt all communications between ML compute instances in distributed training, choose True.
Encryption provides greater security for distributed training, but training might take longer. How
long it takes depends on the amount of communication between compute instances, especially if
you use a deep learning algorithm in distributed training.

Type: Boolean

Required: No
EnableManagedSpotTraining

A Boolean indicating whether managed spot training is enabled (True) or not (False).

Type: Boolean

Required: No
EnableNetworkIsolation

Isolates the training container. No inbound or outbound network calls can be made, except for
calls between peers within a training cluster for distributed training. If network isolation is used
for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads
customer data and model artifacts through the specified VPC, but the training container does not
have network access.

Note
The Semantic Segmentation built-in algorithm does not support network isolation.

Type: Boolean

Required: No
InputDataConfig

An array of Channel (p. 876) objects that specify the input for the training jobs that the tuning job
launches.

Type: Array of Channel (p. 876) objects

916

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
OutputDataConfig

Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs
that the tuning job launches.

Type: OutputDataConfig (p. 976) object

Required: Yes
ResourceConfig

The resources, including the compute instances and storage volumes, to use for the training jobs
that the tuning job launches.

Storage volumes store model artifacts and incremental states. Training algorithms might also use
storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to
store the training data, choose File as the TrainingInputMode in the algorithm specification. For
distributed training algorithms, specify an instance count greater than 1.

Type: ResourceConfig (p. 991) object

Required: Yes
RoleArn

The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning
job launches.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes
StaticHyperParameters

Specifies the values of hyperparameters that do not change for the tuning job.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
StoppingCondition

Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long
you are willing to wait for a managed spot training job to complete. When the job reaches the a
limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

Type: StoppingCondition (p. 1004) object

Required: Yes

917

Amazon SageMaker Developer Guide
Amazon SageMaker Service

VpcConfig

The VpcConfig (p. 1039) object that specifies the VPC that you want the training jobs that this
hyperparameter tuning job launches to connect to. Control access to and from your training
container by configuring the VPC. For more information, see Protect Training Jobs by Using an
Amazon Virtual Private Cloud.

Type: VpcConfig (p. 1039) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

918

https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterTrainingJobSummary
Service: Amazon SageMaker Service

Specifies summary information about a training job.

Contents

CreationTime

The date and time that the training job was created.

Type: Timestamp

Required: Yes
FailureReason

The reason that the training job failed.

Type: String

Length Constraints: Maximum length of 1024.

Required: No
FinalHyperParameterTuningJobObjectiveMetric

The FinalHyperParameterTuningJobObjectiveMetric (p. 904) object that specifies the value of the
objective metric of the tuning job that launched this training job.

Type: FinalHyperParameterTuningJobObjectiveMetric (p. 904) object

Required: No
ObjectiveStatus

The status of the objective metric for the training job:
• Succeeded: The final objective metric for the training job was evaluated by the hyperparameter

tuning job and used in the hyperparameter tuning process.
• Pending: The training job is in progress and evaluation of its final objective metric is pending.
• Failed: The final objective metric for the training job was not evaluated, and was not used in the

hyperparameter tuning process. This typically occurs when the training job failed or did not emit
an objective metric.

Type: String

Valid Values: Succeeded | Pending | Failed

Required: No
TrainingEndTime

Specifies the time when the training job ends on training instances. You are billed for the time
interval between the value of TrainingStartTime and this time. For successful jobs and stopped
jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when
Amazon SageMaker detects a job failure.

Type: Timestamp

Required: No
TrainingJobArn

The Amazon Resource Name (ARN) of the training job.

919

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-job/.*

Required: Yes
TrainingJobName

The name of the training job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
TrainingJobStatus

The status of the training job.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: Yes
TrainingStartTime

The date and time that the training job started.

Type: Timestamp

Required: No
TunedHyperParameters

A list of the hyperparameters for which you specified ranges to search.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: Yes
TuningJobName

The HyperParameter tuning job that launched the training job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No

920

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

921

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterTrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterTrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterTrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterTrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterTrainingJobSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterTuningJobConfig
Service: Amazon SageMaker Service

Configures a hyperparameter tuning job.

Contents

HyperParameterTuningJobObjective

The HyperParameterTuningJobObjective (p. 924) object that specifies the objective metric for this
tuning job.

Type: HyperParameterTuningJobObjective (p. 924) object

Required: No
ParameterRanges

The ParameterRanges (p. 979) object that specifies the ranges of hyperparameters that this tuning
job searches.

Type: ParameterRanges (p. 979) object

Required: No
ResourceLimits

The ResourceLimits (p. 993) object that specifies the maximum number of training jobs and
parallel training jobs for this tuning job.

Type: ResourceLimits (p. 993) object

Required: Yes
Strategy

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for
the training job it launches. To use the Bayesian search stategy, set this to Bayesian. To randomly
search, set it to Random. For information about search strategies, see How Hyperparameter Tuning
Works.

Type: String

Valid Values: Bayesian | Random

Required: Yes
TrainingJobEarlyStoppingType

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job.
This can be one of the following values (the default value is OFF):
OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.
AUTO

Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they
are unlikely to perform better than previously completed training jobs. For more information,
see Stop Training Jobs Early.

Type: String

Valid Values: Off | Auto

922

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

923

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterTuningJobConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterTuningJobConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterTuningJobConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterTuningJobConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterTuningJobConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterTuningJobObjective
Service: Amazon SageMaker Service

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of
this metric to evaluate the training jobs it launches, and returns the training job that results in either the
highest or lowest value for this metric, depending on the value you specify for the Type parameter.

Contents

MetricName

The name of the metric to use for the objective metric.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: Yes
Type

Whether to minimize or maximize the objective metric.

Type: String

Valid Values: Maximize | Minimize

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

924

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterTuningJobObjective
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterTuningJobObjective
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterTuningJobObjective
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterTuningJobObjective
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterTuningJobObjective

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterTuningJobSummary
Service: Amazon SageMaker Service

Provides summary information about a hyperparameter tuning job.

Contents

CreationTime

The date and time that the tuning job was created.

Type: Timestamp

Required: Yes
HyperParameterTuningEndTime

The date and time that the tuning job ended.

Type: Timestamp

Required: No
HyperParameterTuningJobArn

The Amazon Resource Name (ARN) of the tuning job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:hyper-parameter-
tuning-job/.*

Required: Yes
HyperParameterTuningJobName

The name of the tuning job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
HyperParameterTuningJobStatus

The status of the tuning job.

Type: String

Valid Values: Completed | InProgress | Failed | Stopped | Stopping

Required: Yes
LastModifiedTime

The date and time that the tuning job was modified.

Type: Timestamp

Required: No

925

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ObjectiveStatusCounters

The ObjectiveStatusCounters (p. 974) object that specifies the numbers of training jobs,
categorized by objective metric status, that this tuning job launched.

Type: ObjectiveStatusCounters (p. 974) object

Required: Yes
ResourceLimits

The ResourceLimits (p. 993) object that specifies the maximum number of training jobs and
parallel training jobs allowed for this tuning job.

Type: ResourceLimits (p. 993) object

Required: No
Strategy

Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to use
for each iteration. Currently, the only valid value is Bayesian.

Type: String

Valid Values: Bayesian | Random

Required: Yes
TrainingJobStatusCounters

The TrainingJobStatusCounters (p. 1017) object that specifies the numbers of training jobs,
categorized by status, that this tuning job launched.

Type: TrainingJobStatusCounters (p. 1017) object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

926

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterTuningJobSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterTuningJobSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterTuningJobSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterTuningJobSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterTuningJobSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameterTuningJobWarmStartConfig
Service: Amazon SageMaker Service

Specifies the configuration for a hyperparameter tuning job that uses one or more previous
hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform
which combinations of hyperparameters to search over in the new tuning job.

All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective
metric, and the training job that performs the best is compared to the best training jobs from the parent
tuning jobs. From these, the training job that performs the best as measured by the objective metric is
returned as the overall best training job.

Note
All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter
tuning jobs count against the limit of training jobs for the tuning job.

Contents

ParentHyperParameterTuningJobs

An array of hyperparameter tuning jobs that are used as the starting point for the new
hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job,
see Using a Previous Hyperparameter Tuning Job as a Starting Point.

Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm
start tuning jobs.

Type: Array of ParentHyperParameterTuningJob (p. 980) objects

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Required: Yes
WarmStartType

Specifies one of the following:
IDENTICAL_DATA_AND_ALGORITHM

The new hyperparameter tuning job uses the same input data and training image as the parent
tuning jobs. You can change the hyperparameter ranges to search and the maximum number
of training jobs that the hyperparameter tuning job launches. You cannot use a new version
of the training algorithm, unless the changes in the new version do not affect the algorithm
itself. For example, changes that improve logging or adding support for a different data format
are allowed. You can also change hyperparameters from tunable to static, and from static to
tunable, but the total number of static plus tunable hyperparameters must remain the same as
it is in all parent jobs. The objective metric for the new tuning job must be the same as for all
parent jobs.

TRANSFER_LEARNING

The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum
number of concurrent training jobs, and maximum number of training jobs that are different
than those of its parent hyperparameter tuning jobs. The training image can also be a different
version from the version used in the parent hyperparameter tuning job. You can also change
hyperparameters from tunable to static, and from static to tunable, but the total number
of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The
objective metric for the new tuning job must be the same as for all parent jobs.

Type: String

Valid Values: IdenticalDataAndAlgorithm | TransferLearning

927

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

928

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/HyperParameterTuningJobWarmStartConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/HyperParameterTuningJobWarmStartConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/HyperParameterTuningJobWarmStartConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/HyperParameterTuningJobWarmStartConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/HyperParameterTuningJobWarmStartConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

InferenceSpecification
Service: Amazon SageMaker Service

Defines how to perform inference generation after a training job is run.

Contents

Containers

The Amazon ECR registry path of the Docker image that contains the inference code.

Type: Array of ModelPackageContainerDefinition (p. 958) objects

Array Members: Fixed number of 1 item.

Required: Yes
SupportedContentTypes

The supported MIME types for the input data.

Type: Array of strings

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
SupportedRealtimeInferenceInstanceTypes

A list of the instance types that are used to generate inferences in real-time.

Type: Array of strings

Valid Values: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge
| ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge |
ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge
| ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.large | ml.c4.xlarge |
ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge
| ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge |
ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge |
ml.c5.18xlarge

Required: Yes
SupportedResponseMIMETypes

The supported MIME types for the output data.

Type: Array of strings

Length Constraints: Maximum length of 1024.

Pattern: ^[-\w]+\/.+$

Required: Yes
SupportedTransformInstanceTypes

A list of the instance types on which a transformation job can be run or on which an endpoint can be
deployed.

Type: Array of strings

929

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Array Members: Minimum number of 1 item.

Valid Values: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge
| ml.m4.16xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge
| ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge
| ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.xlarge |
ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.m5.large
| ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge |
ml.m5.24xlarge

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

930

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/InferenceSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/InferenceSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/InferenceSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/InferenceSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/InferenceSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

InputConfig
Service: Amazon SageMaker Service

Contains information about the location of input model artifacts, the name and shape of the expected
data inputs, and the framework in which the model was trained.

Contents

DataInputConfig

Specifies the name and shape of the expected data inputs for your trained model with a JSON
dictionary form. The data inputs are InputConfig:Framework (p. 932) specific.

• TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs
using a dictionary format for your trained model. The dictionary formats required for the console
and CLI are different.

• Examples for one input:

• If using the console, {"input":[1,1024,1024,3]}

• If using the CLI, {\"input\":[1,1024,1024,3]}

• Examples for two inputs:

• If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

• If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

• MXNET/ONNX: You must specify the name and shape (NCHW format) of the expected data inputs
in order using a dictionary format for your trained model. The dictionary formats required for the
console and CLI are different.

• Examples for one input:

• If using the console, {"data":[1,3,1024,1024]}

• If using the CLI, {\"data\":[1,3,1024,1024]}

• Examples for two inputs:

• If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

• If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

• PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in
order using a dictionary format for your trained model or you can specify the shape only using a
list format. The dictionary formats required for the console and CLI are different. The list formats
for the console and CLI are the same.

• Examples for one input in dictionary format:

• If using the console, {"input0":[1,3,224,224]}

• If using the CLI, {\"input0\":[1,3,224,224]}

• Example for one input in list format: [[1,3,224,224]]

• Examples for two inputs in dictionary format:

• If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

• If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

• Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

• XGBOOST: input data name and shape are not needed.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: [\S\s]+

Required: Yes

931

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Framework

Identifies the framework in which the model was trained. For example: TENSORFLOW.

Type: String

Valid Values: TENSORFLOW | MXNET | ONNX | PYTORCH | XGBOOST

Required: Yes
S3Uri

The S3 path where the model artifacts, which result from model training, are stored. This path must
point to a single gzip compressed tar archive (.tar.gz suffix).

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

932

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/InputConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/InputConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/InputConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/InputConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/InputConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

IntegerParameterRange
Service: Amazon SageMaker Service

For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

Contents

MaxValue

The maximum value of the hyperparameter to search.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
MinValue

The minimum value of the hyperparameter to search.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
Name

The name of the hyperparameter to search.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
ScalingType

The scale that hyperparameter tuning uses to search the hyperparameter range. For information
about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
Auto

Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
Linear

Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Logarithmic

Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic
scale.

Logarithmic scaling works only for ranges that have only values greater than 0.

Type: String

933

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Valid Values: Auto | Linear | Logarithmic | ReverseLogarithmic

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

934

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/IntegerParameterRange
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/IntegerParameterRange
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/IntegerParameterRange
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/IntegerParameterRange
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/IntegerParameterRange

Amazon SageMaker Developer Guide
Amazon SageMaker Service

IntegerParameterRangeSpecification
Service: Amazon SageMaker Service

Defines the possible values for an integer hyperparameter.

Contents

MaxValue

The maximum integer value allowed.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes
MinValue

The minimum integer value allowed.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

935

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/IntegerParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/IntegerParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/IntegerParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/IntegerParameterRangeSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/IntegerParameterRangeSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelCounters
Service: Amazon SageMaker Service

Provides a breakdown of the number of objects labeled.

Contents

FailedNonRetryableError

The total number of objects that could not be labeled due to an error.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
HumanLabeled

The total number of objects labeled by a human worker.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
MachineLabeled

The total number of objects labeled by automated data labeling.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
TotalLabeled

The total number of objects labeled.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Unlabeled

The total number of objects not yet labeled.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++

936

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelCounters

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

937

https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelCounters
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelCounters
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelCounters
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelCounters

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelCountersForWorkteam
Service: Amazon SageMaker Service

Provides counts for human-labeled tasks in the labeling job.

Contents

HumanLabeled

The total number of data objects labeled by a human worker.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
PendingHuman

The total number of data objects that need to be labeled by a human worker.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Total

The total number of tasks in the labeling job.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

938

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelCountersForWorkteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelCountersForWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelCountersForWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelCountersForWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelCountersForWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobAlgorithmsConfig
Service: Amazon SageMaker Service

Provides configuration information for auto-labeling of your data objects. A
LabelingJobAlgorithmsConfig object must be supplied in order to use auto-labeling.

Contents

InitialActiveLearningModelArn

At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon Resource Nam
(ARN) of the final model used for auto-labeling. You can use this model as the starting point for
subsequent similar jobs by providing the ARN of the model here.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model/.*

Required: No

LabelingJobAlgorithmSpecificationArn

Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select
one of the following ARNs:

• Image classification

arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-
specification/image-classification

• Text classification

arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-
specification/text-classification

• Object detection

arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-
specification/object-detection

• Semantic Segmentation

arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-
specification/semantic-segmentation

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:.*

Required: Yes

LabelingJobResourceConfig

Provides configuration information for a labeling job.

Type: LabelingJobResourceConfig (p. 948) object

Required: No

939

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

940

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobAlgorithmsConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobAlgorithmsConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobAlgorithmsConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobAlgorithmsConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobAlgorithmsConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobDataAttributes
Service: Amazon SageMaker Service

Attributes of the data specified by the customer. Use these to describe the data to be labeled.

Contents

ContentClassifiers

Declares that your content is free of personally identifiable information or adult content. Amazon
SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this
information.

Type: Array of strings

Array Members: Maximum number of 256 items.

Valid Values: FreeOfPersonallyIdentifiableInformation | FreeOfAdultContent

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

941

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobDataAttributes
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobDataAttributes
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobDataAttributes
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobDataAttributes
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobDataAttributes

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobDataSource
Service: Amazon SageMaker Service

Provides information about the location of input data.

Contents

S3DataSource

The Amazon S3 location of the input data objects.

Type: LabelingJobS3DataSource (p. 949) object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

942

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobDataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobDataSource
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobDataSource
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobDataSource
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobDataSource

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobForWorkteamSummary
Service: Amazon SageMaker Service

Provides summary information for a work team.

Contents

CreationTime

The date and time that the labeling job was created.

Type: Timestamp

Required: Yes
JobReferenceCode

A unique identifier for a labeling job. You can use this to refer to a specific labeling job.

Type: String

Length Constraints: Minimum length of 1.

Pattern: .+

Required: Yes
LabelCounters

Provides information about the progress of a labeling job.

Type: LabelCountersForWorkteam (p. 938) object

Required: No
LabelingJobName

The name of the labeling job that the work team is assigned to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
NumberOfHumanWorkersPerDataObject

The configured number of workers per data object.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 9.

Required: No
WorkRequesterAccountId

Type: String

Pattern: ^\d+$

Required: Yes

943

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

944

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobForWorkteamSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobForWorkteamSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobForWorkteamSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobForWorkteamSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobForWorkteamSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobInputConfig
Service: Amazon SageMaker Service

Input configuration information for a labeling job.

Contents

DataAttributes

Attributes of the data specified by the customer.

Type: LabelingJobDataAttributes (p. 941) object

Required: No
DataSource

The location of the input data.

Type: LabelingJobDataSource (p. 942) object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

945

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobInputConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobInputConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobInputConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobInputConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobInputConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobOutput
Service: Amazon SageMaker Service

Specifies the location of the output produced by the labeling job.

Contents

FinalActiveLearningModelArn

The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of
automated data labeling.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model/.*

Required: No
OutputDatasetS3Uri

The Amazon S3 bucket location of the manifest file for labeled data.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

946

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobOutput
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobOutput
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobOutput
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobOutput

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobOutputConfig
Service: Amazon SageMaker Service

Output configuration information for a labeling job.

Contents

KmsKeyId

The AWS Key Management Service ID of the key used to encrypt the output data, if any.

If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must
include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker
uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side
encryption with KMS-managed keys for LabelingJobOutputConfig. If you use a bucket policy
with an s3:PutObject permission that only allows objects with server-side encryption, set the
condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see
KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KMS key policy must grant permission to the IAM role that you specify in your
CreateLabelingJob request. For more information, see Using Key Policies in AWS KMS in the AWS
Key Management Service Developer Guide.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No
S3OutputPath

The Amazon S3 location to write output data.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

947

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobOutputConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobOutputConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobOutputConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobOutputConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobOutputConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobResourceConfig
Service: Amazon SageMaker Service

Provides configuration information for labeling jobs.

Contents

VolumeKmsKeyId

The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data
on the storage volume attached to the ML compute instance(s) that run the training job. The
VolumeKmsKeyId can be any of the following formats:
• // KMS Key ID

"1234abcd-12ab-34cd-56ef-1234567890ab"

• // Amazon Resource Name (ARN) of a KMS Key

"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

948

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobResourceConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobResourceConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobResourceConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobResourceConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobResourceConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobS3DataSource
Service: Amazon SageMaker Service

The Amazon S3 location of the input data objects.

Contents

ManifestS3Uri

The Amazon S3 location of the manifest file that describes the input data objects.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

949

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobS3DataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobS3DataSource
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobS3DataSource
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobS3DataSource
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobS3DataSource

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobStoppingConditions
Service: Amazon SageMaker Service

A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically
stopped. You can use these conditions to control the cost of data labeling.

Contents

MaxHumanLabeledObjectCount

The maximum number of objects that can be labeled by human workers.

Type: Integer

Valid Range: Minimum value of 1.

Required: No
MaxPercentageOfInputDatasetLabeled

The maximum number of input data objects that should be labeled.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

950

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobStoppingConditions
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobStoppingConditions
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobStoppingConditions
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobStoppingConditions
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobStoppingConditions

Amazon SageMaker Developer Guide
Amazon SageMaker Service

LabelingJobSummary
Service: Amazon SageMaker Service

Provides summary information about a labeling job.

Contents

AnnotationConsolidationLambdaArn

The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations
from individual workers into a label for a data object. For more information, see Annotation
Consolidation.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-
Z0-9-_\.]+(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: No
CreationTime

The date and time that the job was created (timestamp).

Type: Timestamp

Required: Yes
FailureReason

If the LabelingJobStatus field is Failed, this field contains a description of the error.

Type: String

Length Constraints: Maximum length of 1024.

Required: No
InputConfig

Input configuration for the labeling job.

Type: LabelingJobInputConfig (p. 945) object

Required: No
LabelCounters

Counts showing the progress of the labeling job.

Type: LabelCounters (p. 936) object

Required: Yes
LabelingJobArn

The Amazon Resource Name (ARN) assigned to the labeling job when it was created.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:labeling-job/.*

951

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: Yes
LabelingJobName

The name of the labeling job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
LabelingJobOutput

The location of the output produced by the labeling job.

Type: LabelingJobOutput (p. 946) object

Required: No
LabelingJobStatus

The current status of the labeling job.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: Yes
LastModifiedTime

The date and time that the job was last modified (timestamp).

Type: Timestamp

Required: Yes
PreHumanTaskLambdaArn

The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data
object is sent to a worker.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-
Z0-9-_\.]+(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: Yes
WorkteamArn

The Amazon Resource Name (ARN) of the work team assigned to the job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:workteam/.*

Required: Yes

952

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

953

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/LabelingJobSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/LabelingJobSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/LabelingJobSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/LabelingJobSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/LabelingJobSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

MemberDefinition
Service: Amazon SageMaker Service

Defines the Amazon Cognito user group that is part of a work team.

Contents

CognitoMemberDefinition

The Amazon Cognito user group that is part of the work team.

Type: CognitoMemberDefinition (p. 883) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

954

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/MemberDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/MemberDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/MemberDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/MemberDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/MemberDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

MetricData
Service: Amazon SageMaker Service

The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.

Contents

MetricName

The name of the metric.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: No
Timestamp

The date and time that the algorithm emitted the metric.

Type: Timestamp

Required: No
Value

The value of the metric.

Type: Float

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

955

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/MetricData
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/MetricData
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/MetricData
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/MetricData
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/MetricData

Amazon SageMaker Developer Guide
Amazon SageMaker Service

MetricDefinition
Service: Amazon SageMaker Service

Specifies a metric that the training algorithm writes to stderr or stdout . Amazon
SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a
hyperparameter tuning job uses as its objective metric to choose the best training job.

Contents

Name

The name of the metric.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: Yes
Regex

A regular expression that searches the output of a training job and gets the value of the metric. For
more information about using regular expressions to define metrics, see Defining Objective Metrics.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 500.

Pattern: .+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

956

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/MetricDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/MetricDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/MetricDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/MetricDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/MetricDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelArtifacts
Service: Amazon SageMaker Service

Provides information about the location that is configured for storing model artifacts.

Contents

S3ModelArtifacts

The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/
keynameprefix/model.tar.gz.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

957

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelArtifacts
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelArtifacts
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelArtifacts
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelArtifacts
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelArtifacts

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelPackageContainerDefinition
Service: Amazon SageMaker Service

Describes the Docker container for the model package.

Contents

ContainerHostname

The DNS host name for the Docker container.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
Image

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker,
the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
registry/repository[:tag] and registry/repository[@digest] image path formats. For
more information, see Using Your Own Algorithms with Amazon SageMaker.

Type: String

Length Constraints: Maximum length of 255.

Pattern: [\S]+

Required: Yes
ImageDigest

An MD5 hash of the training algorithm that identifies the Docker image used for training.

Type: String

Length Constraints: Maximum length of 72.

Pattern: ^[Ss][Hh][Aa]256:[0-9a-fA-F]{64}$

Required: No
ModelDataUrl

The Amazon S3 path where the model artifacts, which result from model training, are stored. This
path must point to a single gzip compressed tar archive (.tar.gz suffix).

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: No
ProductId

The AWS Marketplace product ID of the model package.

958

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

959

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelPackageContainerDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelPackageContainerDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelPackageContainerDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelPackageContainerDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelPackageContainerDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelPackageStatusDetails
Service: Amazon SageMaker Service

Specifies the validation and image scan statuses of the model package.

Contents

ImageScanStatuses

The status of the scan of the Docker image container for the model package.

Type: Array of ModelPackageStatusItem (p. 961) objects

Required: No
ValidationStatuses

The validation status of the model package.

Type: Array of ModelPackageStatusItem (p. 961) objects

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

960

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelPackageStatusDetails
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelPackageStatusDetails
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelPackageStatusDetails
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelPackageStatusDetails
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelPackageStatusDetails

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelPackageStatusItem
Service: Amazon SageMaker Service

Represents the overall status of a model package.

Contents

FailureReason

if the overall status is Failed, the reason for the failure.

Type: String

Required: No
Name

The name of the model package for which the overall status is being reported.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
Status

The current status.

Type: String

Valid Values: NotStarted | InProgress | Completed | Failed

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

961

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelPackageStatusItem
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelPackageStatusItem
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelPackageStatusItem
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelPackageStatusItem
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelPackageStatusItem

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelPackageSummary
Service: Amazon SageMaker Service

Provides summary information about a model package.

Contents

CreationTime

A timestamp that shows when the model package was created.

Type: Timestamp

Required: Yes
ModelPackageArn

The Amazon Resource Name (ARN) of the model package.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model-package/.*

Required: Yes
ModelPackageDescription

A brief description of the model package.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: [\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}]*

Required: No
ModelPackageName

The name of the model package.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
ModelPackageStatus

The overall status of the model package.

Type: String

Valid Values: Pending | InProgress | Completed | Failed | Deleting

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

962

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

963

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelPackageSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelPackageSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelPackageSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelPackageSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelPackageSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelPackageValidationProfile
Service: Amazon SageMaker Service

Contains data, such as the inputs and targeted instance types that are used in the process of validating
the model package.

The data provided in the validation profile is made available to your buyers on AWS Marketplace.

Contents

ProfileName

The name of the profile for the model package.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*$

Required: Yes
TransformJobDefinition

The TransformJobDefinition object that describes the transform job used for the validation of
the model package.

Type: TransformJobDefinition (p. 1026) object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

964

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelPackageValidationProfile
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelPackageValidationProfile
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelPackageValidationProfile
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelPackageValidationProfile
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelPackageValidationProfile

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelPackageValidationSpecification
Service: Amazon SageMaker Service

Specifies batch transform jobs that Amazon SageMaker runs to validate your model package.

Contents

ValidationProfiles

An array of ModelPackageValidationProfile objects, each of which specifies a batch transform
job that Amazon SageMaker runs to validate your model package.

Type: Array of ModelPackageValidationProfile (p. 964) objects

Array Members: Fixed number of 1 item.

Required: Yes
ValidationRole

The IAM roles to be used for the validation of the model package.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

965

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelPackageValidationSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelPackageValidationSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelPackageValidationSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelPackageValidationSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelPackageValidationSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelSummary
Service: Amazon SageMaker Service

Provides summary information about a model.

Contents

CreationTime

A timestamp that indicates when the model was created.

Type: Timestamp

Required: Yes
ModelArn

The Amazon Resource Name (ARN) of the model.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model/.*

Required: Yes
ModelName

The name of the model that you want a summary for.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

966

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ModelSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ModelSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ModelSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ModelSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ModelSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NestedFilters
Service: Amazon SageMaker Service

Defines a list of NestedFilters objects. To satisfy the conditions specified in the NestedFilters call,
a resource must satisfy the conditions of all of the filters.

For example, you could define a NestedFilters using the training job's InputDataConfig property
to filter on Channel objects.

A NestedFilters object contains multiple filters. For example, to find all training jobs whose name
contains train and that have cat/data in their S3Uri (specified in InputDataConfig), you need
to create a NestedFilters object that specifies the InputDataConfig property with the following
Filter objects:

• '{Name:"InputDataConfig.ChannelName", "Operator":"EQUALS", "Value":"train"}',

• '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
"Operator":"CONTAINS", "Value":"cat/data"}'

Contents

Filters

A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For
example, a NestedFilters call might include a filter on the PropertyName parameter of the
InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri.

Type: Array of Filter (p. 901) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: Yes
NestedPropertyName

The name of the property to use in the nested filters. The value must match a listed property name,
such as InputDataConfig .

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

967

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/NestedFilters
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/NestedFilters
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/NestedFilters
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/NestedFilters
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/NestedFilters

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NotebookInstanceLifecycleConfigSummary
Service: Amazon SageMaker Service

Provides a summary of a notebook instance lifecycle configuration.

Contents

CreationTime

A timestamp that tells when the lifecycle configuration was created.

Type: Timestamp

Required: No
LastModifiedTime

A timestamp that tells when the lifecycle configuration was last modified.

Type: Timestamp

Required: No
NotebookInstanceLifecycleConfigArn

The Amazon Resource Name (ARN) of the lifecycle configuration.

Type: String

Length Constraints: Maximum length of 256.

Required: Yes
NotebookInstanceLifecycleConfigName

The name of the lifecycle configuration.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

968

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/NotebookInstanceLifecycleConfigSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/NotebookInstanceLifecycleConfigSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/NotebookInstanceLifecycleConfigSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/NotebookInstanceLifecycleConfigSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/NotebookInstanceLifecycleConfigSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NotebookInstanceLifecycleHook
Service: Amazon SageMaker Service

Contains the notebook instance lifecycle configuration script.

Each lifecycle configuration script has a limit of 16384 characters.

The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/
sbin:/usr/bin.

View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/
NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook].

Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5
minutes, it fails and the notebook instance is not created or started.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a
Notebook Instance.

Contents

Content

A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 16384.

Pattern: [\S\s]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

969

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/NotebookInstanceLifecycleHook
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/NotebookInstanceLifecycleHook
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/NotebookInstanceLifecycleHook
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/NotebookInstanceLifecycleHook
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/NotebookInstanceLifecycleHook

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NotebookInstanceSummary
Service: Amazon SageMaker Service

Provides summary information for an Amazon SageMaker notebook instance.

Contents

AdditionalCodeRepositories

An array of up to three Git repositories associated with the notebook instance. These can be either
the names of Git repositories stored as resources in your account, or the URL of Git repositories in
AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level
as the default repository of your notebook instance. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: Array of strings

Array Members: Maximum number of 3 items.

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
CreationTime

A timestamp that shows when the notebook instance was created.

Type: Timestamp

Required: No
DefaultCodeRepository

The Git repository associated with the notebook instance as its default code repository. This can
be either the name of a Git repository stored as a resource in your account, or the URL of a Git
repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance,
it opens in the directory that contains this repository. For more information, see Associating Git
Repositories with Amazon SageMaker Notebook Instances.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: ^https://([^/]+)/?(.*)$|^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
InstanceType

The type of ML compute instance that the notebook instance is running on.

Type: String

Valid Values: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge |
ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m4.xlarge
| ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge
| ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge
| ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge |
ml.c4.8xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge
| ml.c5.18xlarge | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge

970

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

| ml.c5d.9xlarge | ml.c5d.18xlarge | ml.p2.xlarge | ml.p2.8xlarge |
ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge

Required: No
LastModifiedTime

A timestamp that shows when the notebook instance was last modified.

Type: Timestamp

Required: No
NotebookInstanceArn

The Amazon Resource Name (ARN) of the notebook instance.

Type: String

Length Constraints: Maximum length of 256.

Required: Yes
NotebookInstanceLifecycleConfigName

The name of a notebook instance lifecycle configuration associated with this notebook instance.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize
a Notebook Instance.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No
NotebookInstanceName

The name of the notebook instance that you want a summary for.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
NotebookInstanceStatus

The status of the notebook instance.

Type: String

Valid Values: Pending | InService | Stopping | Stopped | Failed | Deleting |
Updating

Required: No
Url

The URL that you use to connect to the Jupyter instance running in your notebook instance.

Type: String

971

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

972

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/NotebookInstanceSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/NotebookInstanceSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/NotebookInstanceSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/NotebookInstanceSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/NotebookInstanceSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

NotificationConfiguration
Service: Amazon SageMaker Service

Configures SNS notifications of available or expiring work items for work teams.

Contents

NotificationTopicArn

The ARN for the SNS topic to which notifications should be published.

Type: String

Pattern: arn:aws[a-z\-]*:sns:[a-z0-9\-]*:[0-9]{12}:[a-zA-Z0-9_.-]*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

973

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/NotificationConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/NotificationConfiguration
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/NotificationConfiguration
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/NotificationConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/NotificationConfiguration

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ObjectiveStatusCounters
Service: Amazon SageMaker Service

Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the
status of their objective metric. The objective metric status shows whether the final objective metric for
the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.

Contents

Failed

The number of training jobs whose final objective metric was not evaluated and used in the
hyperparameter tuning process. This typically occurs when the training job failed or did not emit an
objective metric.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Pending

The number of training jobs that are in progress and pending evaluation of their final objective
metric.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Succeeded

The number of training jobs whose final objective metric was evaluated by the hyperparameter
tuning job and used in the hyperparameter tuning process.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

974

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ObjectiveStatusCounters
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ObjectiveStatusCounters
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ObjectiveStatusCounters
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ObjectiveStatusCounters
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ObjectiveStatusCounters

Amazon SageMaker Developer Guide
Amazon SageMaker Service

OutputConfig
Service: Amazon SageMaker Service

Contains information about the output location for the compiled model and the device (target) that the
model runs on.

Contents

S3OutputLocation

Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes
TargetDevice

Identifies the device that you want to run your model on after it has been compiled. For example:
ml_c5.

Type: String

Valid Values: lambda | ml_m4 | ml_m5 | ml_c4 | ml_c5 | ml_p2 | ml_p3 |
jetson_tx1 | jetson_tx2 | jetson_nano | rasp3b | deeplens | rk3399 | rk3288
| aisage | sbe_c | qcs605 | qcs603

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

975

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/OutputConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/OutputConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/OutputConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/OutputConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/OutputConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

OutputDataConfig
Service: Amazon SageMaker Service

Provides information about how to store model training results (model artifacts).

Contents

KmsKeyId

The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the
model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the
following formats:
• // KMS Key ID

"1234abcd-12ab-34cd-56ef-1234567890ab"

• // Amazon Resource Name (ARN) of a KMS Key

"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

• // KMS Key Alias

"alias/ExampleAlias"

• // Amazon Resource Name (ARN) of a KMS Key Alias

"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must
include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker
uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-
side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an
s3:PutObject permission that only allows objects with server-side encryption, set the condition
key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-
Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KMS key policy must grant permission to the IAM role that you specify in your
CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests.
For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service
Developer Guide.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No
S3OutputPath

Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

976

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/http:/docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

977

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/OutputDataConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/OutputDataConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/OutputDataConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/OutputDataConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/OutputDataConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ParameterRange
Service: Amazon SageMaker Service

Defines the possible values for categorical, continuous, and integer hyperparameters to be used by an
algorithm.

Contents

CategoricalParameterRangeSpecification

A CategoricalParameterRangeSpecification object that defines the possible values for a
categorical hyperparameter.

Type: CategoricalParameterRangeSpecification (p. 875) object

Required: No
ContinuousParameterRangeSpecification

A ContinuousParameterRangeSpecification object that defines the possible values for a
continuous hyperparameter.

Type: ContinuousParameterRangeSpecification (p. 890) object

Required: No
IntegerParameterRangeSpecification

A IntegerParameterRangeSpecification object that defines the possible values for an integer
hyperparameter.

Type: IntegerParameterRangeSpecification (p. 935) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

978

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ParameterRange
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ParameterRange
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ParameterRange
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ParameterRange
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ParameterRange

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ParameterRanges
Service: Amazon SageMaker Service

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning
job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within
these ranges to find the combination of values that result in the training job with the best performance
as measured by the objective metric of the hyperparameter tuning job.

Note
You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search
over. Every possible value of a categorical parameter range counts against this limit.

Contents

CategoricalParameterRanges

The array of CategoricalParameterRange (p. 874) objects that specify ranges of categorical
hyperparameters that a hyperparameter tuning job searches.

Type: Array of CategoricalParameterRange (p. 874) objects

Array Members: Minimum number of 0 items. Maximum number of 20 items.

Required: No
ContinuousParameterRanges

The array of ContinuousParameterRange (p. 888) objects that specify ranges of continuous
hyperparameters that a hyperparameter tuning job searches.

Type: Array of ContinuousParameterRange (p. 888) objects

Array Members: Minimum number of 0 items. Maximum number of 20 items.

Required: No
IntegerParameterRanges

The array of IntegerParameterRange (p. 933) objects that specify ranges of integer hyperparameters
that a hyperparameter tuning job searches.

Type: Array of IntegerParameterRange (p. 933) objects

Array Members: Minimum number of 0 items. Maximum number of 20 items.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

979

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ParameterRanges
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ParameterRanges
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ParameterRanges
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ParameterRanges
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ParameterRanges

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ParentHyperParameterTuningJob
Service: Amazon SageMaker Service

A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new
hyperparameter tuning job.

Contents

HyperParameterTuningJobName

The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter
tuning job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

980

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ParentHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ParentHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ParentHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ParentHyperParameterTuningJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ParentHyperParameterTuningJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ProductionVariant
Service: Amazon SageMaker Service

Identifies a model that you want to host and the resources to deploy for hosting it. If you are deploying
multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying
variant weights.

Contents

AcceleratorType

The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide
on-demand GPU computing for inference. For more information, see Using Elastic Inference in
Amazon SageMaker.

Type: String

Valid Values: ml.eia1.medium | ml.eia1.large | ml.eia1.xlarge

Required: No

InitialInstanceCount

Number of instances to launch initially.

Type: Integer

Valid Range: Minimum value of 1.

Required: Yes

InitialVariantWeight

Determines initial traffic distribution among all of the models that you specify in the endpoint
configuration. The traffic to a production variant is determined by the ratio of the VariantWeight
to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to
1.0.

Type: Float

Valid Range: Minimum value of 0.

Required: No

InstanceType

The ML compute instance type.

Type: String

Valid Values: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge
| ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge |
ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge
| ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.large | ml.c4.xlarge |
ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge
| ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge |
ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge |
ml.c5.18xlarge

Required: Yes

981

https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ModelName

The name of the model that you want to host. This is the name that you specified when creating the
model.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
VariantName

The name of the production variant.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

982

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ProductionVariant
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ProductionVariant
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ProductionVariant
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ProductionVariant
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ProductionVariant

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ProductionVariantSummary
Service: Amazon SageMaker Service

Describes weight and capacities for a production variant associated with an endpoint. If you sent a
request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating,
you get different desired and current values.

Contents

CurrentInstanceCount

The number of instances associated with the variant.

Type: Integer

Valid Range: Minimum value of 1.

Required: No
CurrentWeight

The weight associated with the variant.

Type: Float

Valid Range: Minimum value of 0.

Required: No
DeployedImages

An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the
inference images deployed on instances of this ProductionVariant.

Type: Array of DeployedImage (p. 894) objects

Required: No
DesiredInstanceCount

The number of instances requested in the UpdateEndpointWeightsAndCapacities request.

Type: Integer

Valid Range: Minimum value of 1.

Required: No
DesiredWeight

The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.

Type: Float

Valid Range: Minimum value of 0.

Required: No
VariantName

The name of the variant.

Type: String

Length Constraints: Maximum length of 63.

983

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

984

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ProductionVariantSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ProductionVariantSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ProductionVariantSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ProductionVariantSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ProductionVariantSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

PropertyNameQuery
Service: Amazon SageMaker Service

A type of SuggestionQuery. A suggestion query for retrieving property names that match the specified
hint.

Contents

PropertyNameHint

Text that is part of a property's name. The property names of hyperparameter, metric, and tag key
names that begin with the specified text in the PropertyNameHint.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 100.

Pattern: .*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

985

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/PropertyNameQuery
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/PropertyNameQuery
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/PropertyNameQuery
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/PropertyNameQuery
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/PropertyNameQuery

Amazon SageMaker Developer Guide
Amazon SageMaker Service

PropertyNameSuggestion
Service: Amazon SageMaker Service

A property name returned from a GetSearchSuggestions call that specifies a value in the
PropertyNameQuery field.

Contents

PropertyName

A suggested property name based on what you entered in the search textbox in the Amazon
SageMaker console.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

986

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/PropertyNameSuggestion
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/PropertyNameSuggestion
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/PropertyNameSuggestion
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/PropertyNameSuggestion
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/PropertyNameSuggestion

Amazon SageMaker Developer Guide
Amazon SageMaker Service

PublicWorkforceTaskPrice
Service: Amazon SageMaker Service

Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.

Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on
the complexity of the task; the longer it takes in your initial testing, the more you should offer.

• 0.036
• 0.048
• 0.060
• 0.072
• 0.120
• 0.240
• 0.360
• 0.480
• 0.600
• 0.720
• 0.840
• 0.960
• 1.080
• 1.200

Use one of the following prices for image classification, text classification, and custom tasks. Prices are in
US dollars.

• 0.012
• 0.024
• 0.036
• 0.048
• 0.060
• 0.072
• 0.120
• 0.240
• 0.360
• 0.480
• 0.600
• 0.720
• 0.840
• 0.960
• 1.080
• 1.200

Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

• 0.840
• 0.960
• 1.080

987

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• 1.200

Contents

AmountInUsd

Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

Type: USD (p. 1038) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

988

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/PublicWorkforceTaskPrice
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/PublicWorkforceTaskPrice
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/PublicWorkforceTaskPrice
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/PublicWorkforceTaskPrice
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/PublicWorkforceTaskPrice

Amazon SageMaker Developer Guide
Amazon SageMaker Service

RenderableTask
Service: Amazon SageMaker Service

Contains input values for a task.

Contents

Input

A JSON object that contains values for the variables defined in the template. It is made available
to the template under the substitution variable task.input. For example, if you define a variable
task.input.text in your template, you can supply the variable in the JSON object as "text":
"sample text".

Type: String

Length Constraints: Minimum length of 2. Maximum length of 128000.

Pattern: [\S\s]+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

989

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/RenderableTask
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/RenderableTask
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/RenderableTask
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/RenderableTask
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/RenderableTask

Amazon SageMaker Developer Guide
Amazon SageMaker Service

RenderingError
Service: Amazon SageMaker Service

A description of an error that occurred while rendering the template.

Contents

Code

A unique identifier for a specific class of errors.

Type: String

Required: Yes
Message

A human-readable message describing the error.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

990

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/RenderingError
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/RenderingError
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/RenderingError
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/RenderingError
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/RenderingError

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ResourceConfig
Service: Amazon SageMaker Service

Describes the resources, including ML compute instances and ML storage volumes, to use for model
training.

Contents

InstanceCount

The number of ML compute instances to use. For distributed training, provide a value greater than 1.

Type: Integer

Valid Range: Minimum value of 1.

Required: Yes
InstanceType

The ML compute instance type.

Type: String

Valid Values: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge
| ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge |
ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge |
ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge
| ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge
| ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge |
ml.c5.18xlarge | ml.p3dn.24xlarge

Required: Yes
VolumeKmsKeyId

The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data
on the storage volume attached to the ML compute instance(s) that run the training job. The
VolumeKmsKeyId can be any of the following formats:
• // KMS Key ID

"1234abcd-12ab-34cd-56ef-1234567890ab"

• // Amazon Resource Name (ARN) of a KMS Key

"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No
VolumeSizeInGB

The size of the ML storage volume that you want to provision.

ML storage volumes store model artifacts and incremental states. Training algorithms might also
use the ML storage volume for scratch space. If you want to store the training data in the ML storage
volume, choose File as the TrainingInputMode in the algorithm specification.

991

Amazon SageMaker Developer Guide
Amazon SageMaker Service

You must specify sufficient ML storage for your scenario.

Note
Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

Type: Integer

Valid Range: Minimum value of 1.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

992

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ResourceConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ResourceConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ResourceConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ResourceConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ResourceConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ResourceLimits
Service: Amazon SageMaker Service

Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning
job can launch.

Contents

MaxNumberOfTrainingJobs

The maximum number of training jobs that a hyperparameter tuning job can launch.

Type: Integer

Valid Range: Minimum value of 1.

Required: Yes
MaxParallelTrainingJobs

The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

Type: Integer

Valid Range: Minimum value of 1.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

993

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ResourceLimits
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ResourceLimits
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ResourceLimits
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ResourceLimits
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ResourceLimits

Amazon SageMaker Developer Guide
Amazon SageMaker Service

S3DataSource
Service: Amazon SageMaker Service

Describes the S3 data source.

Contents

AttributeNames

A list of one or more attribute names to use that are found in a specified augmented manifest file.

Type: Array of strings

Array Members: Maximum number of 16 items.

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: .+

Required: No
S3DataDistributionType

If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is
launched for model training, specify FullyReplicated.

If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that
is launched for model training, specify ShardedByS3Key. If there are n ML compute instances
launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In
this case, model training on each machine uses only the subset of training data.

Don't choose more ML compute instances for training than available S3 objects. If you do, some
nodes won't get any data and you will pay for nodes that aren't getting any training data. This
applies in both File and Pipe modes. Keep this in mind when developing algorithms.

In distributed training, where you use multiple ML compute EC2 instances, you might choose
ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when
TrainingInputMode is set to File), this copies 1/n of the number of objects.

Type: String

Valid Values: FullyReplicated | ShardedByS3Key

Required: No
S3DataType

If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects
that match the specified key name prefix for model training.

If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of
object keys that you want Amazon SageMaker to use for model training.

If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented
manifest file in JSON lines format. This file contains the data you want to use for model training.
AugmentedManifestFile can only be used if the Channel's input mode is Pipe.

Type: String

Valid Values: ManifestFile | S3Prefix | AugmentedManifestFile

Required: Yes

994

Amazon SageMaker Developer Guide
Amazon SageMaker Service

S3Uri

Depending on the value specified for the S3DataType, identifies either a key name prefix or a
manifest. For example:
• A key name prefix might look like this: s3://bucketname/exampleprefix.
• A manifest might look like this: s3://bucketname/example.manifest

The manifest is an S3 object which is a JSON file with the following format:

[

{"prefix": "s3://customer_bucket/some/prefix/"},

"relative/path/to/custdata-1",

"relative/path/custdata-2",

...

]

The preceding JSON matches the following s3Uris:

s3://customer_bucket/some/prefix/relative/path/to/custdata-1

s3://customer_bucket/some/prefix/relative/path/custdata-2

...

The complete set of s3uris in this manifest is the input data for the channel for this datasource.
The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker
uses to perform tasks on your behalf.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

995

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/S3DataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/S3DataSource
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/S3DataSource
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/S3DataSource
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/S3DataSource

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SearchExpression
Service: Amazon SageMaker Service

A multi-expression that searches for the specified resource or resources in a search. All resource objects
that satisfy the expression's condition are included in the search results. You must specify at least one
subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements.

A SearchExpression contains the following components:

• A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource
property name, Boolean operator, and value.

• A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list
of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean
expressions.

• A list of SearchExpression objects. A search expression object can be nested in a list of search
expression objects.

• A Boolean operator: And or Or.

Contents

Filters

A list of filter objects.

Type: Array of Filter (p. 901) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
NestedFilters

A list of nested filter objects.

Type: Array of NestedFilters (p. 967) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
Operator

A Boolean operator used to evaluate the search expression. If you want every conditional statement
in all lists to be satisfied for the entire search expression to be true, specify And. If only a single
conditional statement needs to be true for the entire search expression to be true, specify Or. The
default value is And.

Type: String

Valid Values: And | Or

Required: No
SubExpressions

A list of search expression objects.

Type: Array of SearchExpression (p. 996) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

996

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

997

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/SearchExpression
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/SearchExpression
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/SearchExpression
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/SearchExpression
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/SearchExpression

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SearchRecord
Service: Amazon SageMaker Service

An individual search result record that contains a single resource object.

Contents

TrainingJob

A TrainingJob object that is returned as part of a Search request.

Type: TrainingJob (p. 1009) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

998

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/SearchRecord
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/SearchRecord
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/SearchRecord
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/SearchRecord
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/SearchRecord

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SecondaryStatusTransition
Service: Amazon SageMaker Service

An array element of DescribeTrainingJob:SecondaryStatusTransitions (p. 749). It provides additional
details about a status that the training job has transitioned through. A training job can be in one of
several states, for example, starting, downloading, training, or uploading. Within each state, there are
a number of intermediate states. For example, within the starting state, Amazon SageMaker could be
starting the training job or launching the ML instances. These transitional states are referred to as the
job's secondary status.

Contents

EndTime

A timestamp that shows when the training job transitioned out of this secondary status state into
another secondary status state or when the training job has ended.

Type: Timestamp

Required: No
StartTime

A timestamp that shows when the training job transitioned to the current secondary status state.

Type: Timestamp

Required: Yes
Status

Contains a secondary status information from a training job.

Status might be one of the following secondary statuses:
InProgress

• Starting - Starting the training job.
• Downloading - An optional stage for algorithms that support File training input mode. It

indicates that data is being downloaded to the ML storage volumes.
• Training - Training is in progress.
• Uploading - Training is complete and the model artifacts are being uploaded to the S3

location.
Completed

• Completed - The training job has completed.
Failed

• Failed - The training job has failed. The reason for the failure is returned in the
FailureReason field of DescribeTrainingJobResponse.

Stopped
• MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed

runtime.
• Stopped - The training job has stopped.

Stopping
• Stopping - Stopping the training job.

We no longer support the following secondary statuses:
• LaunchingMLInstances

• PreparingTrainingStack

999

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• DownloadingTrainingImage

Type: String

Valid Values: Starting | LaunchingMLInstances | PreparingTrainingStack |
Downloading | DownloadingTrainingImage | Training | Uploading | Stopping
| Stopped | MaxRuntimeExceeded | Completed | Failed | Interrupted |
MaxWaitTimeExceeded

Required: Yes
StatusMessage

A detailed description of the progress within a secondary status.

Amazon SageMaker provides secondary statuses and status messages that apply to each of them:
Starting

• Starting the training job.
• Launching requested ML instances.
• Insufficient capacity error from EC2 while launching instances, retrying!
• Launched instance was unhealthy, replacing it!
• Preparing the instances for training.

Training
• Downloading the training image.
• Training image download completed. Training in progress.

Important
Status messages are subject to change. Therefore, we recommend not including them in
code that programmatically initiates actions. For examples, don't use status messages in if
statements.

To have an overview of your training job's progress, view TrainingJobStatus and
SecondaryStatus in DescribeTrainingJob (p. 744), and StatusMessage together. For example, at
the start of a training job, you might see the following:
• TrainingJobStatus - InProgress
• SecondaryStatus - Training
• StatusMessage - Downloading the training image

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1000

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/SecondaryStatusTransition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/SecondaryStatusTransition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/SecondaryStatusTransition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/SecondaryStatusTransition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/SecondaryStatusTransition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

ShuffleConfig
Service: Amazon SageMaker Service

A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType,
the results of the S3 key prefix matches are shuffled. If you use ManifestFile, the order of the S3
object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of
the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the
Seed value.

For Pipe input mode, shuffling is done at the start of every epoch. With large datasets, this
ensures that the order of the training data is different for each epoch, and it helps reduce bias
and possible overfitting. In a multi-node training job when ShuffleConfig is combined with
S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content
sent to a particular node on the first epoch might be sent to a different node on the second epoch.

Contents

Seed

Determines the shuffling order in ShuffleConfig value.

Type: Long

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1001

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/ShuffleConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/ShuffleConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/ShuffleConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/ShuffleConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/ShuffleConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SourceAlgorithm
Service: Amazon SageMaker Service

Specifies an algorithm that was used to create the model package. The algorithm must be either an
algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are
subscribed to.

Contents

AlgorithmName

The name of an algorithm that was used to create the model package. The algorithm must be either
an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that
you are subscribed to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 170.

Pattern: (arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:[a-z\-]*\/)?([a-zA-
Z0-9]([a-zA-Z0-9-]){0,62})(?<!-)$

Required: Yes
ModelDataUrl

The Amazon S3 path where the model artifacts, which result from model training, are stored. This
path must point to a single gzip compressed tar archive (.tar.gz suffix).

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1002

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/SourceAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/SourceAlgorithm
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/SourceAlgorithm
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/SourceAlgorithm
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/SourceAlgorithm

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SourceAlgorithmSpecification
Service: Amazon SageMaker Service

A list of algorithms that were used to create a model package.

Contents

SourceAlgorithms

A list of the algorithms that were used to create a model package.

Type: Array of SourceAlgorithm (p. 1002) objects

Array Members: Fixed number of 1 item.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1003

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/SourceAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/SourceAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/SourceAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/SourceAlgorithmSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/SourceAlgorithmSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

StoppingCondition
Service: Amazon SageMaker Service

Specifies a limit to how long a model training or compilation job can run. It also specifies how long you
are willing to wait for a managed spot training job to complete. When the job reaches the time limit,
Amazon SageMaker ends the training or compilation job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination
for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results
of training are not lost.

The training algorithms provided by Amazon SageMaker automatically save the intermediate results
of a model training job when possible. This attempt to save artifacts is only a best effort case as model
might not be in a state from which it can be saved. For example, if training has just started, the model
might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to
create a model with CreateModel.

Note
The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts.
When training NTMs, make sure that the maximum runtime is sufficient for the training job to
complete.

Contents

MaxRuntimeInSeconds

The maximum length of time, in seconds, that the training or compilation job can run. If job does not
complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is
1 day. The maximum value is 28 days.

Type: Integer

Valid Range: Minimum value of 1.

Required: No
MaxWaitTimeInSeconds

The maximum length of time, in seconds, how long you are willing to wait for a managed spot
training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of
time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds.

Type: Integer

Valid Range: Minimum value of 1.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1004

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/StoppingCondition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/StoppingCondition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/StoppingCondition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/StoppingCondition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/StoppingCondition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SubscribedWorkteam
Service: Amazon SageMaker Service

Describes a work team of a vendor that does the a labelling job.

Contents

ListingId

Type: String

Required: No
MarketplaceDescription

The description of the vendor from the Amazon Marketplace.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 200.

Pattern: .+

Required: No
MarketplaceTitle

The title of the service provided by the vendor in the Amazon Marketplace.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 200.

Pattern: .+

Required: No
SellerName

The name of the vendor in the Amazon Marketplace.

Type: String

Required: No
WorkteamArn

The Amazon Resource Name (ARN) of the vendor that you have subscribed.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:workteam/.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++

1005

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/SubscribedWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1006

https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/SubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/SubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/SubscribedWorkteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/SubscribedWorkteam

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SuggestionQuery
Service: Amazon SageMaker Service

Limits the property names that are included in the response.

Contents

PropertyNameQuery

A type of SuggestionQuery. Defines a property name hint. Only property names that match the
specified hint are included in the response.

Type: PropertyNameQuery (p. 985) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1007

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/SuggestionQuery
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/SuggestionQuery
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/SuggestionQuery
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/SuggestionQuery
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/SuggestionQuery

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Tag
Service: Amazon SageMaker Service

Describes a tag.

Contents

Key

The tag key.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: ^([\p{L}\p{Z}\p{N}_.:/=+\-@]*)$

Required: Yes
Value

The tag value.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Pattern: ^([\p{L}\p{Z}\p{N}_.:/=+\-@]*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1008

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/Tag
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/Tag
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/Tag
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/Tag
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/Tag

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TrainingJob
Service: Amazon SageMaker Service

Contains information about a training job.

Contents

AlgorithmSpecification

Information about the algorithm used for training, and algorithm metadata.

Type: AlgorithmSpecification (p. 863) object

Required: No
CreationTime

A timestamp that indicates when the training job was created.

Type: Timestamp

Required: No
EnableInterContainerTrafficEncryption

To encrypt all communications between ML compute instances in distributed training, choose True.
Encryption provides greater security for distributed training, but training might take longer. How
long it takes depends on the amount of communication between compute instances, especially if
you use a deep learning algorithm in distributed training.

Type: Boolean

Required: No
EnableNetworkIsolation

If the TrainingJob was created with network isolation, the value is set to true. If network
isolation is enabled, nodes can't communicate beyond the VPC they run in.

Type: Boolean

Required: No
FailureReason

If the training job failed, the reason it failed.

Type: String

Length Constraints: Maximum length of 1024.

Required: No
FinalMetricDataList

A list of final metric values that are set when the training job completes. Used only if the training job
was configured to use metrics.

Type: Array of MetricData (p. 955) objects

Array Members: Minimum number of 0 items. Maximum number of 40 items.

Required: No

1009

Amazon SageMaker Developer Guide
Amazon SageMaker Service

HyperParameters

Algorithm-specific parameters.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
InputDataConfig

An array of Channel objects that describes each data input channel.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: No
LabelingJobArn

The Amazon Resource Name (ARN) of the labeling job.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:labeling-job/.*

Required: No
LastModifiedTime

A timestamp that indicates when the status of the training job was last modified.

Type: Timestamp

Required: No
ModelArtifacts

Information about the Amazon S3 location that is configured for storing model artifacts.

Type: ModelArtifacts (p. 957) object

Required: No
OutputDataConfig

The S3 path where model artifacts that you configured when creating the job are stored. Amazon
SageMaker creates subfolders for model artifacts.

Type: OutputDataConfig (p. 976) object

Required: No
ResourceConfig

Resources, including ML compute instances and ML storage volumes, that are configured for model
training.

1010

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: ResourceConfig (p. 991) object

Required: No
RoleArn

The AWS Identity and Access Management (IAM) role configured for the training job.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: No
SecondaryStatus

Provides detailed information about the state of the training job. For detailed information about the
secondary status of the training job, see StatusMessage under SecondaryStatusTransition (p. 999).

Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress

• Starting - Starting the training job.
• Downloading - An optional stage for algorithms that support File training input mode. It

indicates that data is being downloaded to the ML storage volumes.
• Training - Training is in progress.
• Uploading - Training is complete and the model artifacts are being uploaded to the S3

location.
Completed

• Completed - The training job has completed.
Failed

• Failed - The training job has failed. The reason for the failure is returned in the
FailureReason field of DescribeTrainingJobResponse.

Stopped
• MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed

runtime.
• Stopped - The training job has stopped.

Stopping
• Stopping - Stopping the training job.

Important
Valid values for SecondaryStatus are subject to change.

We no longer support the following secondary statuses:
• LaunchingMLInstances

• PreparingTrainingStack

• DownloadingTrainingImage

Type: String

Valid Values: Starting | LaunchingMLInstances | PreparingTrainingStack |
Downloading | DownloadingTrainingImage | Training | Uploading | Stopping
| Stopped | MaxRuntimeExceeded | Completed | Failed | Interrupted |
MaxWaitTimeExceeded

Required: No

1011

Amazon SageMaker Developer Guide
Amazon SageMaker Service

SecondaryStatusTransitions

A history of all of the secondary statuses that the training job has transitioned through.

Type: Array of SecondaryStatusTransition (p. 999) objects

Required: No
StoppingCondition

Specifies a limit to how long a model training job can run. When the job reaches the time limit,
Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job
termination for 120 seconds. Algorithms can use this 120-second window to save the model
artifacts, so the results of training are not lost.

Type: StoppingCondition (p. 1004) object

Required: No
Tags

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing
and Cost Management User Guide.

Type: Array of Tag (p. 1008) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
TrainingEndTime

Indicates the time when the training job ends on training instances. You are billed for the time
interval between the value of TrainingStartTime and this time. For successful jobs and stopped
jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when
Amazon SageMaker detects a job failure.

Type: Timestamp

Required: No
TrainingJobArn

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-job/.*

Required: No
TrainingJobName

The name of the training job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

1012

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: No
TrainingJobStatus

The status of the training job.

Training job statuses are:
• InProgress - The training is in progress.
• Completed - The training job has completed.
• Failed - The training job has failed. To see the reason for the failure, see the FailureReason

field in the response to a DescribeTrainingJobResponse call.
• Stopping - The training job is stopping.
• Stopped - The training job has stopped.

For more detailed information, see SecondaryStatus.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: No
TrainingStartTime

Indicates the time when the training job starts on training instances. You are billed for the time
interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs
might be later than this time. The difference is due to the time it takes to download the training data
and to the size of the training container.

Type: Timestamp

Required: No
TuningJobArn

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job
was launched by a hyperparameter tuning job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:hyper-parameter-
tuning-job/.*

Required: No
VpcConfig

A VpcConfig (p. 1039) object that specifies the VPC that this training job has access to. For more
information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Type: VpcConfig (p. 1039) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++

1013

https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TrainingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1014

https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TrainingJob
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TrainingJob
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TrainingJob
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TrainingJob

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TrainingJobDefinition
Service: Amazon SageMaker Service

Defines the input needed to run a training job using the algorithm.

Contents

HyperParameters

The hyperparameters used for the training job.

Type: String to string map

Key Length Constraints: Maximum length of 256.

Key Pattern: .*

Value Length Constraints: Maximum length of 256.

Value Pattern: .*

Required: No
InputDataConfig

An array of Channel objects, each of which specifies an input source.

Type: Array of Channel (p. 876) objects

Array Members: Minimum number of 1 item. Maximum number of 20 items.

Required: Yes
OutputDataConfig

the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates
subfolders for the artifacts.

Type: OutputDataConfig (p. 976) object

Required: Yes
ResourceConfig

The resources, including the ML compute instances and ML storage volumes, to use for model
training.

Type: ResourceConfig (p. 991) object

Required: Yes
StoppingCondition

Specifies a limit to how long a model training job can run. When the job reaches the time limit,
Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job
termination for 120 seconds. Algorithms can use this 120-second window to save the model
artifacts.

Type: StoppingCondition (p. 1004) object

Required: Yes

1015

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TrainingInputMode

The input mode used by the algorithm for the training job. For the input modes that Amazon
SageMaker algorithms support, see Algorithms.

If an algorithm supports the File input mode, Amazon SageMaker downloads the training data
from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for
training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data
directly from S3 to the container.

Type: String

Valid Values: Pipe | File

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1016

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TrainingJobDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TrainingJobDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TrainingJobStatusCounters
Service: Amazon SageMaker Service

The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.

Contents

Completed

The number of completed training jobs launched by the hyperparameter tuning job.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
InProgress

The number of in-progress training jobs launched by a hyperparameter tuning job.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
NonRetryableError

The number of training jobs that failed and can't be retried. A failed training job can't be retried if it
failed because a client error occurred.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
RetryableError

The number of training jobs that failed, but can be retried. A failed training job can be retried only if
it failed because an internal service error occurred.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Stopped

The number of training jobs launched by a hyperparameter tuning job that were manually stopped.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

1017

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1018

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TrainingJobStatusCounters
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TrainingJobStatusCounters
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TrainingJobStatusCounters
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TrainingJobStatusCounters
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TrainingJobStatusCounters

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TrainingJobSummary
Service: Amazon SageMaker Service

Provides summary information about a training job.

Contents

CreationTime

A timestamp that shows when the training job was created.

Type: Timestamp

Required: Yes
LastModifiedTime

Timestamp when the training job was last modified.

Type: Timestamp

Required: No
TrainingEndTime

A timestamp that shows when the training job ended. This field is set only if the training job has one
of the terminal statuses (Completed, Failed, or Stopped).

Type: Timestamp

Required: No
TrainingJobArn

The Amazon Resource Name (ARN) of the training job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:training-job/.*

Required: Yes
TrainingJobName

The name of the training job that you want a summary for.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes
TrainingJobStatus

The status of the training job.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: Yes

1019

Amazon SageMaker Developer Guide
Amazon SageMaker Service

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1020

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TrainingJobSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TrainingJobSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TrainingSpecification
Service: Amazon SageMaker Service

Defines how the algorithm is used for a training job.

Contents

MetricDefinitions

A list of MetricDefinition objects, which are used for parsing metrics generated by the
algorithm.

Type: Array of MetricDefinition (p. 956) objects

Array Members: Minimum number of 0 items. Maximum number of 40 items.

Required: No
SupportedHyperParameters

A list of the HyperParameterSpecification objects, that define the supported hyperparameters.
This is required if the algorithm supports automatic model tuning.>

Type: Array of HyperParameterSpecification (p. 914) objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.

Required: No
SupportedTrainingInstanceTypes

A list of the instance types that this algorithm can use for training.

Type: Array of strings

Valid Values: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge
| ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge |
ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge |
ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge
| ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge
| ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge |
ml.c5.18xlarge | ml.p3dn.24xlarge

Required: Yes
SupportedTuningJobObjectiveMetrics

A list of the metrics that the algorithm emits that can be used as the objective metric in a
hyperparameter tuning job.

Type: Array of HyperParameterTuningJobObjective (p. 924) objects

Required: No
SupportsDistributedTraining

Indicates whether the algorithm supports distributed training. If set to false, buyers can’t request
more than one instance during training.

Type: Boolean

Required: No

1021

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TrainingChannels

A list of ChannelSpecification objects, which specify the input sources to be used by the
algorithm.

Type: Array of ChannelSpecification (p. 878) objects

Array Members: Minimum number of 1 item. Maximum number of 8 items.

Required: Yes
TrainingImage

The Amazon ECR registry path of the Docker image that contains the training algorithm.

Type: String

Length Constraints: Maximum length of 255.

Pattern: [\S]+

Required: Yes
TrainingImageDigest

An MD5 hash of the training algorithm that identifies the Docker image used for training.

Type: String

Length Constraints: Maximum length of 72.

Pattern: ^[Ss][Hh][Aa]256:[0-9a-fA-F]{64}$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1022

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TrainingSpecification
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TrainingSpecification
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TrainingSpecification
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TrainingSpecification
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TrainingSpecification

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TransformDataSource
Service: Amazon SageMaker Service

Describes the location of the channel data.

Contents

S3DataSource

The S3 location of the data source that is associated with a channel.

Type: TransformS3DataSource (p. 1034) object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1023

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TransformDataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TransformDataSource
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TransformDataSource
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TransformDataSource
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TransformDataSource

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TransformInput
Service: Amazon SageMaker Service

Describes the input source of a transform job and the way the transform job consumes it.

Contents

CompressionType

If your transform data is compressed, specify the compression type. Amazon SageMaker
automatically decompresses the data for the transform job accordingly. The default value is None.

Type: String

Valid Values: None | Gzip

Required: No
ContentType

The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the
MIME type with each http call to transfer data to the transform job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: No
DataSource

Describes the location of the channel data, which is, the S3 location of the input data that the model
can consume.

Type: TransformDataSource (p. 1023) object

Required: Yes
SplitType

The method to use to split the transform job's data files into smaller batches. Splitting is necessary
when the total size of each object is too large to fit in a single request. You can also use data
splitting to improve performance by processing multiple concurrent mini-batches. The default value
for SplitType is None, which indicates that input data files are not split, and request payloads
contain the entire contents of an input object. Set the value of this parameter to Line to split
records on a newline character boundary. SplitType also supports a number of record-oriented
binary data formats.

When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy
and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon
SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB
limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual
records in each request.

Note
Some data formats represent a record as a binary payload wrapped with extra padding
bytes. When splitting is applied to a binary data format, padding is removed if the value
of BatchStrategy is set to SingleRecord. Padding is not removed if the value of
BatchStrategy is set to MultiRecord.

1024

Amazon SageMaker Developer Guide
Amazon SageMaker Service

For more information about the RecordIO, see Data Format in the MXNet documentation.
For more information about the TFRecord, see Consuming TFRecord data in the TensorFlow
documentation.

Type: String

Valid Values: None | Line | RecordIO | TFRecord

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1025

http://mxnet.io/architecture/note_data_loading.html#data-format
https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TransformInput
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TransformInput
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TransformInput
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TransformInput
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TransformInput

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TransformJobDefinition
Service: Amazon SageMaker Service

Defines the input needed to run a transform job using the inference specification specified in the
algorithm.

Contents

BatchStrategy

A string that determines the number of records included in a single mini-batch.

SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is
set to contain as many records that can fit within the MaxPayloadInMB limit.

Type: String

Valid Values: MultiRecord | SingleRecord

Required: No
Environment

The environment variables to set in the Docker container. We support up to 16 key and values
entries in the map.

Type: String to string map

Key Length Constraints: Maximum length of 1024.

Key Pattern: [a-zA-Z_][a-zA-Z0-9_]*

Value Length Constraints: Maximum length of 10240.

Value Pattern: [\S\s]*

Required: No
MaxConcurrentTransforms

The maximum number of parallel requests that can be sent to each instance in a transform job. The
default value is 1.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
MaxPayloadInMB

The maximum payload size allowed, in MB. A payload is the data portion of a record (without
metadata).

Type: Integer

Valid Range: Minimum value of 0.

Required: No
TransformInput

A description of the input source and the way the transform job consumes it.

1026

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Type: TransformInput (p. 1024) object

Required: Yes
TransformOutput

Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the
transform job.

Type: TransformOutput (p. 1030) object

Required: Yes
TransformResources

Identifies the ML compute instances for the transform job.

Type: TransformResources (p. 1032) object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1027

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TransformJobDefinition
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TransformJobDefinition
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TransformJobDefinition
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TransformJobDefinition
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TransformJobDefinition

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TransformJobSummary
Service: Amazon SageMaker Service

Provides a summary of a transform job. Multiple TransformJobSummary objects are returned as a list
after in response to a ListTransformJobs (p. 811) call.

Contents

CreationTime

A timestamp that shows when the transform Job was created.

Type: Timestamp

Required: Yes
FailureReason

If the transform job failed, the reason it failed.

Type: String

Length Constraints: Maximum length of 1024.

Required: No
LastModifiedTime

Indicates when the transform job was last modified.

Type: Timestamp

Required: No
TransformEndTime

Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs,
this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon
SageMaker detected that the job failed.

Type: Timestamp

Required: No
TransformJobArn

The Amazon Resource Name (ARN) of the transform job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:transform-job/.*

Required: Yes
TransformJobName

The name of the transform job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

1028

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Required: Yes
TransformJobStatus

The status of the transform job.

Type: String

Valid Values: InProgress | Completed | Failed | Stopping | Stopped

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1029

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TransformJobSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TransformJobSummary
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TransformJobSummary
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TransformJobSummary
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TransformJobSummary

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TransformOutput
Service: Amazon SageMaker Service

Describes the results of a transform job.

Contents

Accept

The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each
http call to transfer data from the transform job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: .*

Required: No
AssembleWith

Defines how to assemble the results of the transform job as a single S3 object. Choose a format
that is most convenient to you. To concatenate the results in binary format, specify None. To add a
newline character at the end of every transformed record, specify Line.

Type: String

Valid Values: None | Line

Required: No
KmsKeyId

The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the
model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the
following formats:
• // KMS Key ID

"1234abcd-12ab-34cd-56ef-1234567890ab"

• // Amazon Resource Name (ARN) of a KMS Key

"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

• // KMS Key Alias

"alias/ExampleAlias"

• // Amazon Resource Name (ARN) of a KMS Key Alias

"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for
your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple
Storage Service Developer Guide.

The KMS key policy must grant permission to the IAM role that you specify in your
CreateTramsformJob request. For more information, see Using Key Policies in AWS KMS in the
AWS Key Management Service Developer Guide.

Type: String

1030

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No
S3OutputPath

The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job.
For example, s3://bucket-name/key-name-prefix.

For every S3 object used as input for the transform job, batch transform stores the transformed data
with an .out suffix in a corresponding subfolder in the location in the output prefix. For example,
for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv,
batch transform stores the transformed data at s3://bucket-name/output-name-prefix/
input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects.
For an input S3 object that contains multiple records, it creates an .out file only if the transform job
succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job
processes the listed S3 objects and uploads only the output for successfully processed objects. If any
object fails in the transform job batch transform marks the job as failed to prompt investigation.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1031

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TransformOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TransformOutput
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TransformOutput
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TransformOutput
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TransformOutput

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TransformResources
Service: Amazon SageMaker Service

Describes the resources, including ML instance types and ML instance count, to use for transform job.

Contents

InstanceCount

The number of ML compute instances to use in the transform job. For distributed transform jobs,
specify a value greater than 1. The default value is 1.

Type: Integer

Valid Range: Minimum value of 1.

Required: Yes
InstanceType

The ML compute instance type for the transform job. If you are using built-in algorithms to
transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance
types.

Type: String

Valid Values: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge
| ml.m4.16xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge
| ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge
| ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.xlarge |
ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.m5.large
| ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge |
ml.m5.24xlarge

Required: Yes
VolumeKmsKeyId

The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on
the storage volume attached to the ML compute instance(s) that run the batch transform job. The
VolumeKmsKeyId can be any of the following formats:
• // KMS Key ID

"1234abcd-12ab-34cd-56ef-1234567890ab"

• // Amazon Resource Name (ARN) of a KMS Key

"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Type: String

Length Constraints: Maximum length of 2048.

Pattern: .*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

1032

Amazon SageMaker Developer Guide
Amazon SageMaker Service

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1033

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TransformResources
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TransformResources
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TransformResources
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TransformResources
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TransformResources

Amazon SageMaker Developer Guide
Amazon SageMaker Service

TransformS3DataSource
Service: Amazon SageMaker Service

Describes the S3 data source.

Contents

S3DataType

If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects
with the specified key name prefix for batch transform.

If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of
object keys that you want Amazon SageMaker to use for batch transform.

The following values are compatible: ManifestFile, S3Prefix

The following value is not compatible: AugmentedManifestFile

Type: String

Valid Values: ManifestFile | S3Prefix | AugmentedManifestFile

Required: Yes
S3Uri

Depending on the value specified for the S3DataType, identifies either a key name prefix or a
manifest. For example:
• A key name prefix might look like this: s3://bucketname/exampleprefix.
• A manifest might look like this: s3://bucketname/example.manifest

The manifest is an S3 object which is a JSON file with the following format:

[

{"prefix": "s3://customer_bucket/some/prefix/"},

"relative/path/to/custdata-1",

"relative/path/custdata-2",

...

]

The preceding JSON matches the following S3Uris:

s3://customer_bucket/some/prefix/relative/path/to/custdata-1

s3://customer_bucket/some/prefix/relative/path/custdata-1

...

The complete set of S3Uris in this manifest constitutes the input data for the channel for this
datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon
SageMaker uses to perform tasks on your behalf.

Type: String

Length Constraints: Maximum length of 1024.

1034

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1035

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/TransformS3DataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/TransformS3DataSource
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/TransformS3DataSource
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/TransformS3DataSource
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/TransformS3DataSource

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UiConfig
Service: Amazon SageMaker Service

Provided configuration information for the worker UI for a labeling job.

Contents

UiTemplateS3Uri

The Amazon S3 bucket location of the UI template. For more information about the contents of a UI
template, see Creating Your Custom Labeling Task Template.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^(https|s3)://([^/]+)/?(.*)$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1036

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UiConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UiConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UiConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UiConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UiConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

UiTemplate
Service: Amazon SageMaker Service

The Liquid template for the worker user interface.

Contents

Content

The content of the Liquid template for the worker user interface.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128000.

Pattern: [\S\s]+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1037

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/UiTemplate
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/UiTemplate
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/UiTemplate
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/UiTemplate
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/UiTemplate

Amazon SageMaker Developer Guide
Amazon SageMaker Service

USD
Service: Amazon SageMaker Service

Represents an amount of money in United States dollars/

Contents

Cents

The fractional portion, in cents, of the amount.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 99.

Required: No
Dollars

The whole number of dollars in the amount.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 1.

Required: No
TenthFractionsOfACent

Fractions of a cent, in tenths.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 9.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1038

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/USD
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/USD
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/USD
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/USD
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/USD

Amazon SageMaker Developer Guide
Amazon SageMaker Service

VpcConfig
Service: Amazon SageMaker Service

Specifies a VPC that your training jobs and hosted models have access to. Control access to and from
your training and model containers by configuring the VPC. For more information, see Protect Endpoints
by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private
Cloud.

Contents

SecurityGroupIds

The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is
specified in the Subnets field.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 32.

Pattern: [-0-9a-zA-Z]+

Required: Yes
Subnets

The ID of the subnets in the VPC to which you want to connect your training job or model.

Note
Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability
zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in
region us-east-1, create subnets in a/b/f availability zones instead.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 16 items.

Length Constraints: Maximum length of 32.

Pattern: [-0-9a-zA-Z]+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

1039

https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/VpcConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/VpcConfig
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/VpcConfig
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/VpcConfig
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/VpcConfig

Amazon SageMaker Developer Guide
Amazon SageMaker Service

Workteam
Service: Amazon SageMaker Service

Provides details about a labeling work team.

Contents

CreateDate

The date and time that the work team was created (timestamp).

Type: Timestamp

Required: No
Description

A description of the work team.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 200.

Pattern: .+

Required: Yes
LastUpdatedDate

The date and time that the work team was last updated (timestamp).

Type: Timestamp

Required: No
MemberDefinitions

The Amazon Cognito user groups that make up the work team.

Type: Array of MemberDefinition (p. 954) objects

Array Members: Minimum number of 1 item. Maximum number of 10 items.

Required: Yes
NotificationConfiguration

Configures SNS notifications of available or expiring work items for work teams.

Type: NotificationConfiguration (p. 973) object

Required: No
ProductListingIds

The Amazon Marketplace identifier for a vendor's work team.

Type: Array of strings

Required: No
SubDomain

The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.

Type: String

1040

Amazon SageMaker Developer Guide
Amazon SageMaker Runtime

Required: No
WorkteamArn

The Amazon Resource Name (ARN) that identifies the work team.

Type: String

Length Constraints: Maximum length of 256.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:workteam/.*

Required: Yes
WorkteamName

The name of the work team.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9])*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Go - Pilot
• AWS SDK for Java
• AWS SDK for Ruby V2

Amazon SageMaker Runtime
Currently Amazon SageMaker Runtime does not support any data types.

Common Errors
This section lists the errors common to the API actions of all AWS services. For errors specific to an API
action for this service, see the topic for that API action.

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400
IncompleteSignature

The request signature does not conform to AWS standards.

HTTP Status Code: 400

1041

https://docs.aws.amazon.com/goto/SdkForCpp/sagemaker-2017-07-24/Workteam
https://docs.aws.amazon.com/goto/SdkForGoV1/sagemaker-2017-07-24/Workteam
https://docs.aws.amazon.com/goto/SdkForGoPilot/sagemaker-2017-07-24/Workteam
https://docs.aws.amazon.com/goto/SdkForJava/sagemaker-2017-07-24/Workteam
https://docs.aws.amazon.com/goto/SdkForRubyV2/sagemaker-2017-07-24/Workteam

Amazon SageMaker Developer Guide
Common Errors

InternalFailure

The request processing has failed because of an unknown error, exception or failure.

HTTP Status Code: 500
InvalidAction

The action or operation requested is invalid. Verify that the action is typed correctly.

HTTP Status Code: 400
InvalidClientTokenId

The X.509 certificate or AWS access key ID provided does not exist in our records.

HTTP Status Code: 403
InvalidParameterCombination

Parameters that must not be used together were used together.

HTTP Status Code: 400
InvalidParameterValue

An invalid or out-of-range value was supplied for the input parameter.

HTTP Status Code: 400
InvalidQueryParameter

The AWS query string is malformed or does not adhere to AWS standards.

HTTP Status Code: 400
MalformedQueryString

The query string contains a syntax error.

HTTP Status Code: 404
MissingAction

The request is missing an action or a required parameter.

HTTP Status Code: 400
MissingAuthenticationToken

The request must contain either a valid (registered) AWS access key ID or X.509 certificate.

HTTP Status Code: 403
MissingParameter

A required parameter for the specified action is not supplied.

HTTP Status Code: 400
OptInRequired

The AWS access key ID needs a subscription for the service.

HTTP Status Code: 403
RequestExpired

The request reached the service more than 15 minutes after the date stamp on the request or more
than 15 minutes after the request expiration date (such as for pre-signed URLs), or the date stamp
on the request is more than 15 minutes in the future.

1042

Amazon SageMaker Developer Guide
Common Parameters

HTTP Status Code: 400
ServiceUnavailable

The request has failed due to a temporary failure of the server.

HTTP Status Code: 503
ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400
ValidationError

The input fails to satisfy the constraints specified by an AWS service.

HTTP Status Code: 400

Common Parameters
The following list contains the parameters that all actions use for signing Signature Version 4 requests
with a query string. Any action-specific parameters are listed in the topic for that action. For more
information about Signature Version 4, see Signature Version 4 Signing Process in the Amazon Web
Services General Reference.

Action

The action to be performed.

Type: string

Required: Yes
Version

The API version that the request is written for, expressed in the format YYYY-MM-DD.

Type: string

Required: Yes
X-Amz-Algorithm

The hash algorithm that you used to create the request signature.

Condition: Specify this parameter when you include authentication information in a query string
instead of in the HTTP authorization header.

Type: string

Valid Values: AWS4-HMAC-SHA256

Required: Conditional
X-Amz-Credential

The credential scope value, which is a string that includes your access key, the date, the region you
are targeting, the service you are requesting, and a termination string ("aws4_request"). The value is
expressed in the following format: access_key/YYYYMMDD/region/service/aws4_request.

For more information, see Task 2: Create a String to Sign for Signature Version 4 in the Amazon Web
Services General Reference.

1043

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html

Amazon SageMaker Developer Guide
Common Parameters

Condition: Specify this parameter when you include authentication information in a query string
instead of in the HTTP authorization header.

Type: string

Required: Conditional
X-Amz-Date

The date that is used to create the signature. The format must be ISO 8601 basic format
(YYYYMMDD'T'HHMMSS'Z'). For example, the following date time is a valid X-Amz-Date value:
20120325T120000Z.

Condition: X-Amz-Date is optional for all requests; it can be used to override the date used for
signing requests. If the Date header is specified in the ISO 8601 basic format, X-Amz-Date is
not required. When X-Amz-Date is used, it always overrides the value of the Date header. For
more information, see Handling Dates in Signature Version 4 in the Amazon Web Services General
Reference.

Type: string

Required: Conditional
X-Amz-Security-Token

The temporary security token that was obtained through a call to AWS Security Token Service (AWS
STS). For a list of services that support temporary security credentials from AWS Security Token
Service, go to AWS Services That Work with IAM in the IAM User Guide.

Condition: If you're using temporary security credentials from the AWS Security Token Service, you
must include the security token.

Type: string

Required: Conditional
X-Amz-Signature

Specifies the hex-encoded signature that was calculated from the string to sign and the derived
signing key.

Condition: Specify this parameter when you include authentication information in a query string
instead of in the HTTP authorization header.

Type: string

Required: Conditional
X-Amz-SignedHeaders

Specifies all the HTTP headers that were included as part of the canonical request. For more
information about specifying signed headers, see Task 1: Create a Canonical Request For Signature
Version 4 in the Amazon Web Services General Reference.

Condition: Specify this parameter when you include authentication information in a query string
instead of in the HTTP authorization header.

Type: string

Required: Conditional

1044

http://docs.aws.amazon.com/general/latest/gr/sigv4-date-handling.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html

Amazon SageMaker Developer Guide

Document History for Amazon
SageMaker

update-history-change update-history-description update-history-date

New features re:Invent 2018 Amazon SageMaker Ground
Truth, Using Elastic Inference
in Amazon SageMaker, Amazon
SageMaker Resources in
AWS Marketplace, Amazon
SageMaker Inference Pipelines,
Amazon SageMaker Neo,
Manage Machine Learning
Experiments with Search , Use
Reinforcement Learning in
Amazon SageMaker, Associating
Git Repositories with Amazon
SageMaker Notebook Instances,
Semantic Segmentation, Using
Augmented Manifest Files in
TrainingJobs

November 28, 2018

Configuring notebook instances You can use shell scripts to
configure notebook instances
when you create or start them.
For more information, see
Customize a Notebook Instance.

May 1, 2018

Disable direct internet access You can now disable direct
internet access for notebook
instances. For more information,
see Notebook Instances Are
Enabled with Internet Access by
Default.

March 15, 2018

Application Auto Scaling support Amazon SageMaker now
supports Application Auto
Scaling for production
variants. For information, see
Automatically Scaling Amazon
SageMaker SageMaker Models

February 28, 2018

TensorFlow 1.5 and MXNet 1.0
support (p. 1045)

Amazon SageMaker Deep
Learning containers now support
TensorFlow 1.5 and Apache
MXNet 1.0.

February 27, 2018

BlazingText algorithm Amazon SageMaker now
supports the BlazingText
algorithm.

January 18, 2018

1045

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/Neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/search.html
https://docs.aws.amazon.com/sagemaker/latest/dg/search.html
https://docs.aws.amazon.com/sagemaker/latest/dg/reinforcement-learning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/reinforcement-learning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/reinforcement-learning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access
https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access
https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access
https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html

Amazon SageMaker Developer Guide

KMS encryption support for
training and hosting

Amazon SageMaker now
supports KMS encryption
for hosting instances and
training model artifacts at rest.
You can specify a AWS Key
Management Service key that
Amazon SageMaker uses to
encrypt data on the storage
volume attached to a hosting
endpoint by using the KmsKeyId
request parameter in a call to
CreateEndpointConfig. You can
specify an AWS KMS key that
Amazon SageMaker uses to
encrypt training model artifacts
at rest by setting the KmsKeyId
field of the OutputDataConfig
object you use to configure your
training job.

January 17, 2018

CloudTrail support Amazon SageMaker now
supports logging with AWS
CloudTrail.

January 11, 2018

DeepAR Forecasting algorithm Amazon SageMaker now
supports the DeepAR algorithm
for time series forecasting.

January 8, 2018

1046

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_OutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html

Amazon SageMaker Developer Guide

AWS Glossary
For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

1047

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon SageMaker
	Table of Contents
	What Is Amazon SageMaker?
	Are You a First-time User of Amazon SageMaker?

	How Amazon SageMaker Works
	Machine Learning with Amazon SageMaker
	How It Works: Next Topic

	Explore and Preprocess Data
	How It Works: Next Topic

	Train a Model with Amazon SageMaker
	How It Works: Next Topic

	Deploy a Model in Amazon SageMaker
	Deploy a Model on Amazon SageMaker Hosting Services
	Best Practices for Deploying Models on Amazon SageMaker Hosting Services
	How It Works: Next Topic

	Get Inferences for an Entire Dataset with Batch Transform
	How It Works: Next Topic

	Validate a Machine Learning Model
	How It Works: Next Topic

	The Amazon SageMaker Programming Model
	How It Works: Next Topic

	Set Up Amazon SageMaker
	Step 1: Create an AWS Account
	Step 2: Create an IAM Administrator User and Group

	Get Started
	Step 1: Create an Amazon S3 Bucket
	Next Step

	Step 2: Create an Amazon SageMaker Notebook Instance
	Next Step

	Step 3: Create a Jupyter Notebook
	

	Step 4: Download, Explore, and Transform the Training Data
	Step 4.1: Download the MNIST Dataset
	Step 4.2: Explore the Training Dataset
	Step 4.3: Transform the Training Dataset and Upload It to Amazon S3

	Step 5: Train a Model
	Choose the Training Algorithm
	Create and Run a Training Job (Amazon SageMaker Python SDK)
	Create and Run a Training Job (AWS SDK for Python (Boto 3))

	Step 6: Deploy the Model to Amazon SageMaker
	Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services
	Deploy the Model to Amazon SageMaker Hosting Services (Amazon SageMaker Python SDK)
	Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3).)

	Step 6.2: Deploy the Model with Batch Transform
	Deploy a Model with Batch Transform (Amazon SageMaker High-level Python Library)
	Deploy a Model with Batch Transform (SDK for Python (Boto 3))

	Step 7: Validate the Model
	Step 7.1: Validate a Model Deployed to Amazon SageMaker Hosting Services
	Validate a Model Deployed to Amazon SageMaker Hosting Services (Amazon SageMaker Python SDK)
	Validate a Model Deployed to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3))

	Step 7.2: Validate a Model Deployed with Batch Transform

	Step 8: Clean Up
	Step 9: Integrating Amazon SageMaker Endpoints into Internet-facing Applications

	Use Notebook Instances
	Create a Notebook Instance
	Access Notebook Instances
	Control Root Access to a Notebook Instance

	Customize a Notebook Instance
	Lifecycle Configuration Best Practices

	Use Example Notebooks
	Use or View Example Notebooks in Jupyter Classic
	Use or View Example Notebooks in Jupyterlab

	Notebook Instance Software Updates
	Set the Notebook Kernel
	Install External Libraries and Kernels in Notebook Instances
	Maintain a Sandboxed Python Environment

	Associate Git Repositories with Amazon SageMaker Notebook Instances
	Add a Git Repository to Your Amazon SageMaker Account
	Add a Git Repository to Your Amazon SageMaker Account (Console)
	Add a Git Repository to Your Amazon SageMaker Account (CLI)

	Create a Notebook Instance with an Associated Git Repository
	Create a Notebook Instance with an Associated Git Repository (Console)
	Create a Notebook Instance with an Associated Git Repository (CLI)

	Associate a CodeCommit Repository in a Different AWS Account with a Notebook Instance
	Use Git Repositories in a Notebook Instance

	Get Notebook Instance Metadata
	Monitor Jupyter Logs in Amazon CloudWatch Logs

	Build a Model
	Use Amazon SageMaker Built-in Algorithms
	Common Elements of Built-in Algorithms
	Common Parameters for Built-In Algorithms
	Common Data Formats for Built-in Algorithms
	Common Data Formats for Training
	Training Data Formats
	Trained Model Deserialization

	Common Data Formats for Inference
	Convert Data for Inference Request Serialization
	Convert Data for Inference Response Deserialization
	Common Request Formats for All Algorithms
	JSON Request Format
	JSONLINES Request Format
	CSV Request Format
	RECORDIO Request Format

	Use Batch Transform with Build-in Algorithms

	Instance Types for Built-in Algorithms
	Logs for Built-In Algorithms
	Common Errors

	BlazingText Algorithm
	Input/Output Interface for the BlazingText Algorithm
	Training and Validation Data Format
	Training and Validation Data Format for the Word2Vec Algorithm
	Training and Validation Data Format for the Text Classification Algorithm
	Train with File Mode
	Train with Augmented Manifest Text Format

	Model Artifacts and Inference
	Model Artifacts for the Word2Vec Algorithm
	Sample JSON Request

	Model Artifacts for the Text Classification Algorithm
	Sample JSON Request

	EC2 Instance Recommendation for the BlazingText Algorithm
	BlazingText Sample Notebooks
	BlazingText Hyperparameters
	Word2Vec Hyperparameters
	Text Classification Hyperparameters

	Tune a BlazingText Model
	Metrics Computed by the BlazingText Algorithm
	Tunable BlazingText Hyperparameters
	Tunable Hyperparameters for the Word2Vec Algorithm
	Tunable Hyperparameters for the Text Classification Algorithm

	DeepAR Forecasting Algorithm
	Input/Output Interface for the DeepAR Algorithm
	Best Practices for Using the DeepAR Algorithm
	EC2 Instance Recommendations for the DeepAR Algorithm
	DeepAR Sample Notebooks
	How the DeepAR Algorithm Works
	How Feature Time Series Work in the DeepAR Algorithm

	DeepAR Hyperparameters
	Tune a DeepAR Model
	Metrics Computed by the DeepAR Algorithm
	Tunable Hyperparameters for the DeepAR Algorithm

	DeepAR Inference Formats
	DeepAR JSON Request Formats
	DeepAR JSON Response Formats
	Batch Transform with the DeepAR Algorithm

	Factorization Machines Algorithm
	Input/Output Interface for the Factorization Machines Algorithm
	EC2 Instance Recommendation for the Factorization Machines Algorithm
	Factorization Machines Sample Notebooks
	How Factorization Machines Work
	Factorization Machines Hyperparameters
	Tune a Factorization Machines Model
	Metrics Computed by the Factorization Machines Algorithm
	Tunable Factorization Machines Hyperparameters

	Factorization Machine Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	Image Classification Algorithm
	Input/Output Interface for the Image Classification Algorithm
	Train with RecordIO Format
	Train with Image Format
	Train with Augmented Manifest Image Format
	Incremental Training
	Inference with the Image Format Algorithm

	EC2 Instance Recommendation for the Image Classification Algorithm
	Image Classification Sample Notebooks
	How Image Classification Works
	Image Classification Hyperparameters
	Tune an Image Classification Model
	Metrics Computed by the Image Classification Algorithm
	Tunable Image Classification Hyperparameters

	IP Insights Algorithm
	Input/Output Interface for the IP Insights Algorithm
	EC2 Instance Recommendation for the IP Insights Algorithm
	GPU Instances for the IP Insights Algorithm
	CPU Instances for the IP Insights Algorithm

	IP Insights Sample Notebooks
	How IP Insights Works
	IP Insights Hyperparameters
	Tune an IP Insights Model
	Metrics Computed by the IP Insights Algorithm
	Tunable IP Insights Hyperparameters

	IP Insights Data Formats
	IP Insights Training Data Formats
	IP Insights Training Data Input Formats
	INPUT: CSV

	IP Insights Inference Data Formats
	IP Insights Input Request Formats
	INPUT: CSV Format
	INPUT: JSON Format
	INPUT: JSONLINES Format

	IP Insights Output Response Formats
	OUTPUT: JSON Response Format
	OUTPUT: JSONLINES Response Format

	K-Means Algorithm
	Input/Output Interface for the K-Means Algorithm
	EC2 Instance Recommendation for the K-Means Algorithm
	K-Means Sample Notebooks
	How K-Means Clustering Works
	Step 1: Determine the Initial Cluster Centers
	Step 2: Iterate over the Training Dataset and Calculate Cluster Centers
	Step 3: Reduce the Clusters from K to k

	K-Means Hyperparameters
	Tune a K-Means Model
	Metrics Computed by the K-Means Algorithm
	Tunable K-Means Hyperparameters

	K-Means Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	K-Nearest Neighbors (k-NN) Algorithm
	Input/Output Interface for the k-NN Algorithm
	k-NN Sample Notebooks
	How the K-nn Algorithm Works
	Step 1: Sample
	Step 2: Perform Dimension Reduction
	Step 3: Build an Index
	Serialize the Model

	EC2 Instance Recommendation for the K-nn Algorithm
	Instance Recommendation for Training with the K-nn Algorithm
	Instance Recommendation for Inference with the K-nn Algorithm

	K-nn Hyperparameters
	Tune a K-nn Model
	Metrics Computed by the K-nn Algorithm
	Tunable K-nn Hyperparameters

	Data Formats for K-nn Training Input
	CSV Data Format
	RECORDIO Data Format

	K-nn Request and Response Formats
	INPUT: CSV Request Format
	INPUT: JSON Request Format
	INPUT: JSONLINES Request Format
	INPUT: RECORDIO Request Format
	OUTPUT: JSON Response Format
	OUTPUT: JSONLINES Response Format
	OUTPUT: VERBOSE JSON Response Format
	OUTPUT: RECORDIO-PROTOBUF Response Format
	OUTPUT: VERBOSE RECORDIO-PROTOBUF Response Format
	SAMPLE OUTPUT for the K-nn Algorithm

	Latent Dirichlet Allocation (LDA) Algorithm
	Input/Output Interface for the LDA Algorithm
	EC2 Instance Recommendation for the LDA Algorithm
	LDA Sample LDA Notebooks
	How LDA Works
	LDA Hyperparameters
	Tune an LDA Model
	Metrics Computed by the LDA Algorithm
	Tunable LDA Hyperparameters

	Linear Learner Algorithm
	Input/Output Interface for the Linear Learner Algorithm
	EC2 Instance Recommendation for the Linear Learner Algorithm
	Linear Learner Sample Notebooks
	How Linear Learner Works
	Step 1: Preprocess
	Step 2: Train
	Step 3: Validate and Set the Threshold

	Linear Learner Hyperparameters
	Tune a Linear Learner Model
	Metrics Computed by the Linear Learner Algorithm
	Tuning Linear Learner Hyperparameters

	Linear Learner Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	Neural Topic Model (NTM) Algorithm
	Input/Output Interface for the NTM Algorithm
	EC2 Instance Recommendation for the NTM Algorithm
	NTM Sample Notebooks
	NTM Hyperparameters
	Tune an NTM Model
	Metrics Computed by the NTM Algorithm
	Tunable NTM Hyperparameters

	NTM Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	Object2Vec Algorithm
	I/O Interface for the Object2Vec Algorithm
	EC2 Instance Recommendation for the Object2Vec Algorithm
	Instance Recommendation for Training
	Instance Recommendation for Inference

	Object2Vec Sample Notebooks
	How Object2Vec Works
	Step 1: Process Data
	Step 2: Train a Model
	Step 3: Produce Inferences

	Object2Vec Hyperparameters
	Tune an Object2Vec Model
	Metrics Computed by the Object2Vec Algorithm
	Regressor Metrics Computed by the Object2Vec Algorithm
	Classification Metrics Computed by the Object2Vec Algorithm

	Tunable Object2Vec Hyperparameters

	Data Formats for Object2Vec Training
	Input: JSON Lines Request Format

	Data Formats for Object2Vec Inference
	GPU optimization: Classification or Regression
	Input: Classification or Regression Request Format
	Ouput: Classification or Regression Response Format

	Encoder Embeddings for Object2Vec
	GPU optimization: Encoder Embeddings
	Input: Encoder Embeddings
	Output: Encoder Embeddings

	Object Detection Algorithm
	Input/Output Interface for the Object Detection Algorithm
	Train with the RecordIO Format
	Train with the Image Format
	Train with Augmented Manifest Image Format
	Incremental Training

	EC2 Instance Recommendation for the Object Detection Algorithm
	Object Detection Sample Notebooks
	How Object Detection Works
	Object Detection Hyperparameters
	Tune an Object Detection Model
	Metrics Computed by the Object Detection Algorithm
	Tunable Object Detection Hyperparameters

	Object Detection Request and Response Formats
	Request Format
	Response Formats
	OUTPUT: JSON Response Format

	Principal Component Analysis (PCA) Algorithm
	Input/Output Interface for the PCA Algorithm
	EC2 Instance Recommendation for the PCA Algorithm
	PCA Sample Notebooks
	How PCA Works
	Mode 1: Regular
	Mode 2: Randomized

	PCA Hyperparameters
	PCA Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	Random Cut Forest (RCF) Algorithm
	Input/Output Interface for the RCF Algorithm
	Instance Recommendations for the RCF Algorithm
	RCF Sample Notebooks
	How RCF Works
	Sample Data Randomly
	Train a RCF Model and Produce Inferences
	Choose Hyperparameters
	References

	RCF Hyperparameters
	Tune an RCF Model
	Metrics Computed by the RCF Algorithm
	Tunable RCF Hyperparameters

	RCF Response Formats
	JSON Response Format
	JSONLINES Response Format

	RECORDIO Response Format

	Semantic Segmentation Algorithm
	Semantic Segmentation Sample Notebooks
	Input/Output Interface for the Semantic Segmentation Algorithm
	How Training Works
	Training with the Augmented Manifest Format
	Incremental Training
	Produce Inferences

	EC2 Instance Recommendation for the Semantic Segmentation Algorithm
	Semantic Segmentation Hyperparameters

	Sequence-to-Sequence Algorithm
	Input/Output Interface for the Sequence-to-Sequence Algorithm
	EC2 Instance Recommendation for the Sequence-to-Sequence Algorithm
	Sequence-to-Sequence Sample Notebooks
	How Sequence-to-Sequence Works
	Sequence-to-Sequence Hyperparameters
	Tune a Sequence-to-Sequence Model
	Metrics Computed by the Sequence-to-Sequence Algorithm
	Tunable Sequence-to-Sequence Hyperparameters

	XGBoost Algorithm
	How to Use Amazon SageMaker XGBoost
	Input/Output Interface for the XGBoost Algorithm
	EC2 Instance Recommendation for the XGBoost Algorithm
	XGBoost Sample Notebooks
	How XGBoost Works
	XGBoost Hyperparameters
	Tune an XGBoost Model
	Metrics Computed by the XGBoost Algorithm
	Tunable XGBoost Hyperparameters

	XGBoost Previous Versions
	XGBoost Release 0.72
	Input/Output Interface for the XGBoost Release 0.72
	EC2 Instance Recommendation for the XGBoost Release 0.72
	XGBoost Release 0.72 Sample Notebooks
	XGBoost Release 0.72 Hyperparameters
	Tune an XGBoost Release 0.72 Model
	Metrics Computed by the XGBoost Release 0.72 Algorithm
	Tunable XGBoost Release 0.72 Hyperparameters

	Train a Model
	Monitor and Analyze Training Jobs Using Metrics
	Training Metrics Sample Notebooks
	Defining Training Metrics
	Defining Regular Expressions for Metrics
	Defining Training Metrics (Low-level Amazon SageMaker API)
	Defining Training Metrics (Amazon SageMaker Python SDK)
	Define Training Metrics (Console)

	Monitoring Training Job Metrics (Console)
	Monitoring Training Job Metrics (Amazon SageMaker Console)
	Example: Viewing a Training and Validation Curve

	Incremental Training in Amazon SageMaker
	Perform Incremental Training (Console)
	Perform Incremental Training (API)

	Managed Spot Training in Amazon SageMaker
	Using Managed Spot Training
	Managed Spot Training Lifecycle

	Using Checkpoints in Amazon SageMaker
	Automatic Model Tuning
	How Hyperparameter Tuning Works
	Random Search
	Bayesian Search

	Define Metrics
	Define Hyperparameter Ranges
	Hyperparameter Scaling

	Example: Hyperparameter Tuning Job
	Prerequisites
	Create a Notebook
	Next Step

	Get the Amazon Sagemaker Boto 3 Client
	Next Step

	Get the Amazon SageMaker Execution Role
	Next Step

	Specify a Bucket and Data Output Location
	Next Step

	Download, Prepare, and Upload Training Data
	Download and Explore the Training Dataset
	Prepare and Upload Data
	Next Step

	Configure and Launch a Hyperparameter Tuning Job
	Specify the Hyperparameter Tuning Job Settings
	Configure the Training Jobs
	Name and Launch the Hyperparameter Tuning Job
	Next Step

	Monitor the Progress of a Hyperparameter Tuning Job
	View the Status of the Hyperparameter Tuning Job
	View the Status of the Training Jobs
	View the Best Training Job
	Next Step

	Clean up

	Stop Training Jobs Early
	How Early Stopping Works
	Algorithms That Support Early Stopping

	Run a Warm Start Hyperparameter Tuning Job
	Types of Warm Start Tuning Jobs
	Warm Start Tuning Restrictions
	Warm Start Tuning Sample Notebook
	Create a Warm Start Tuning Job
	Create a Warm Start Tuning Job (Low-level Amazon SageMaker API for Python (Boto 3))
	Create a Warm Start Tuning Job (Amazon SageMaker Python SDK)

	Automatic Model Tuning Resource Limits
	Best Practices for Hyperparameter Tuning
	Choosing the Number of Hyperparameters
	Choosing Hyperparameter Ranges
	Using Logarithmic Scales for Hyperparameters
	Choosing the Best Number of Concurrent Training Jobs
	Running Training Jobs on Multiple Instances

	Provide Dataset Metadata to Training Jobs with an Augmented Manifest File
	Augmented Manifest File Format
	Stream Augmented Manifest File Data
	Use an Augmented Manifest File (Console)
	Use an Augmented Manifest File (API)

	Deploy a Model
	Prerequisites
	What do you want to do?
	Manage Model Deployments
	Deploy Your Own Inference Code
	Guide to Amazon SageMaker
	Deploy an Inference Pipeline
	Sample Notebooks for Inference Pipelines
	Feature Processing with Spark ML and Scikit-learn
	Feature Processing with Spark ML
	Feature Processing with Sci-kit Learn

	Create a Pipeline Model
	Run Real-time Predictions with an Inference Pipeline
	Create and Deploy an Inference Pipeline Endpoint
	Request Real-Time Inference from an Inference Pipeline Endpoint

	Run Batch Transforms with Inference Pipelines
	Inference Pipeline Logs and Metrics
	Use Metrics to Monitor Multi-container Models
	Use Logs to Monitor an Inference Pipeline

	Troubleshoot Inference Pipelines
	Troubleshoot Amazon ECR Permissions for Inference Pipelines
	Use CloudWatch Logs to Troubleshoot Amazon SageMaker Inference Pipelines
	Use Error Messages to Troubleshoot Inference Pipelines

	Amazon SageMaker Neo
	Amazon SageMaker Neo Sample Notebooks
	Use Neo to Compile a Model
	Compile a Model (API)
	Compile a Model (Console)
	Compile a Model (Amazon SageMaker SDK)

	Deploy a Model
	Deploy a Model Compiled with Neo with Hosting Services
	Deploy a Model Compiled with Neo (AWS CLI)
	Create a Model That Was Compiled with Neo (AWS CLI)
	Create the Endpoint Configuration (AWS CLI)
	Create an Endpoint (AWS CLI)

	Deploy a Model Compiled with Neo (Console)
	Deploy a Model Compiled with Neo (Amazon SageMaker SDK)

	Deploy a Model Compiled with Neo (AWS IoT Greengrass)

	Request Inferences from a Deployed Service
	Troubleshooting Neo Compilation Errors
	Prevent Neo Input Errors
	Neo Error Messages
	Neo Error Messages
	Neo Error Classifications

	Resolve Neo Errors

	Batch Transform
	Use Batch Transform with Large Datasets
	Speed Up a Batch Transform Job
	Use Batch Transform to Test Production Variants
	Batch Transform Errors
	Batch Transform Sample Notebooks
	Associate Prediction Results with their Corresponding Input Records
	Data Processing Workflow for a Batch Transform Job
	Use Data Processing in Batch Transform Jobs
	Supported JSONPath Operators
	Examples
	Output Only Inference Results
	Output a Combination of Input Data and Results
	Output an ID Column with Results and Exclude the ID Column from the Input (CSV)
	Output an ID Attribute with Results and Exclude the ID Attribute from the Input (JSON)

	Amazon SageMaker Elastic Inference (EI)
	How EI Works
	Choose an EI Accelerator Type
	Use EI in a Amazon SageMaker Notebook Instance
	Use EI on a Hosted Endpoint
	Frameworks that Support EI
	Use EI with Amazon SageMaker Built-in Algorithms
	EI Sample Notebooks
	Set Up to Use EI
	Set Up Required Permissions
	Use a Custom VPC to Connect to EI
	Set up Security Groups to Connect to EI
	Set up a VPC Interface Endpoint to Connect to EI

	Attach EI to a Notebook Instance
	Set Up to Use EI
	Use EI in Local Mode in Amazon SageMaker
	Use EI in Local Mode with Amazon SageMaker TensorFlow Estimators and Models
	Use EI in Local Mode with Amazon SageMaker Apache MXNet Estimators and Models

	Use EI on Amazon SageMaker Hosted Endpoints
	Use EI with an Amazon SageMaker TensorFlow Container
	Use an Estimator Object
	Use a Model Object

	Use EI with an Amazon SageMaker MXNet Container
	Use an Estimator Object
	Use a Model Object

	Use EI with Your Own Container
	Import the EI Version of TensorFlow or MXNet into Your Docker Container
	Create an EI Endpoint with Boto 3
	Create an Endpoint Configuration
	Create an Endpoint

	Automatically Scale Amazon SageMaker Models
	Automatic Scaling Components
	Required Permissions for Automatic Scaling
	Service-Linked Role for Automatic Scaling
	Target Metric for Automatic Scaling
	Minimum and Maximum Capacity for Automatic Scaling
	Cooldown Period for Automatic Scaling

	Before You Begin
	Related Topics
	Configure Automatic Scaling for a Production Variant
	Configure Automatic Scaling for a Production Variant (Console)
	Configure Automatic Scaling for a Production Variant (AWS CLI or the Application Auto Scaling API)
	Register a Production Variant
	Register a Production Variant (AWS CLI)
	Register a Production Variant (Application Auto Scaling API)

	Define a Target-Tracking Scaling Policy
	Use a Predefined Metric
	Use a Custom Metric
	Add a Cooldown Period
	Disable Scale-in Activity

	Apply a Scaling Policy to a Production Variant
	Apply a Scaling Policy to a Production Variant (AWS CLI)
	Apply a Scaling Policy to a Production Variant (Application Auto Scaling API)

	Edit a Scaling Policy
	Edit a Scaling Policy (Console)
	Edit a Scaling Policy (AWS CLI or Application Auto Scaling API)

	Delete a Scaling Policy
	Delete a Scaling Policy (Console)
	Delete a Scaling Policy (AWS CLI or Application Auto Scaling API)
	Delete a Scaling Policy (AWS CLI)
	Delete a Scaling Policy (Application Auto Scaling API)

	Update Endpoints that Use Automatic Scaling
	Load Testing for Production Variant Automatic Scaling
	Determine the Performance Characteristics of a Production Variant
	Calculate the Target SageMakerVariantInvocationsPerInstance

	Best Practices for Configuring Automatic Scaling
	Testing Your Automatic Scaling Configuration
	Updating Endpoints Configured for Automatic Scaling
	Deleting Endpoints Configured for Automatic Scaling
	Using Step Scaling Policies
	Scaling In When There Is No Traffic

	Troubleshoot Amazon SageMaker Model Deployments
	Detection Errors in the Active CPU Count

	Best Practices for Deploying Amazon SageMaker Models
	Deploy Multiple Instances Across Avalibility Zones

	Hosting Instance Storage Volumes

	Use Your Own Algorithms or Models with Amazon SageMaker
	Scenarios for Running Scripts, Training Algorithms, or Deploying Models with Amazon SageMaker
	Docker Container Basics
	Amazon SageMaker Containers: a Library to Create Docker Containers
	Environmental Variables used by Amazon SageMaker Containers to Define Entry Points
	Environmental Variables used by Amazon SageMaker Containers Important for Running User Scripts
	Reference: Amazon SageMaker Containers Environmental Variables
	Additional Information for Scripts

	Get Started: Use Amazon SageMaker Containers to Run a Python Script
	Prebuilt Amazon SageMaker Docker Images for TensorFlow, MXNet, Chainer, and PyTorch
	Prebuilt Amazon SageMaker Docker Images for Scikit-learn and Spark ML
	Example Notebooks: Use Your Own Algorithm or Model
	Use Your Own Training Algorithms
	How Amazon SageMaker Runs Your Training Image
	How Amazon SageMaker Provides Training Information
	Hyperparameters
	Environment Variables
	Input Data Configuration
	Training Data
	Distributed Training Configuration

	How Amazon SageMaker Signals Algorithm Success and Failure
	How Amazon SageMaker Processes Training Output

	Use Your Own Inference Code
	Use Your Own Inference Code with Hosting Services
	How Amazon SageMaker Runs Your Inference Image
	How Amazon SageMaker Loads Your Model Artifacts
	How Containers Serve Requests
	How Your Container Should Respond to Inference Requests
	How Your Container Should Respond to Health Check (Ping) Requests

	Use Your Own Inference Code with Batch Transform
	How Amazon SageMaker Runs Your Inference Image
	How Amazon SageMaker Loads Your Model Artifacts
	How Containers Serve Requests
	How Your Container Should Respond to Health Check (Ping) Requests

	Create Algorithm and Model Package Resources
	Create an Algorithm Resource
	Create an Algorithm Resource (Console)
	Create an Algorithm Resource (API)

	Create a Model Package Resource
	Create a Model Package Resource (Console)
	Create a Model Package Resource (API)

	Use Algorithm and Model Package Resources
	Use an Algorithm to Run a Training Job
	Use an Algorithm to Run a Training Job (Console)
	Use an Algorithm to Run a Training Job (API)
	Use an Algorithm to Run a Training Job (Amazon SageMaker Python SDK)

	Use an Algorithm to Run a Hyperparameter Tuning Job
	Use an Algorithm to Run a Hyperparameter Tuning Job (Console)
	Use an Algorithm to Run a Hyperparameter Tuning Job (API)
	Use an Algorithm to Run a Hyperparameter Tuning Job (Amazon SageMaker Python SDK)

	Use a Model Package to Create a Model
	Use a Model Package to Create a Model (Console)
	Use a Model Package to Create a Model (API)
	Use a Model Package to Create a Model (Amazon SageMaker Python SDK)

	Amazon SageMaker Resources in AWS Marketplace
	Topics
	Amazon SageMaker Algorithms
	Amazon SageMaker Model Packages
	Sell Amazon SageMaker Algorithms and Model Packages
	Topics
	Develop Algorithms and Models in Amazon SageMaker
	Develop Algorithms in Amazon SageMaker
	Develop Models in Amazon SageMaker

	List Your Algorithm or Model Package on AWS Marketplace

	Find and Subscribe to Algorithms and Model Packages on AWS Marketplace
	Use Algorithms and Model Packages

	Manage Machine Learning Experiments with Amazon SageMaker Model Tracking Capability
	Sample Notebooks that Manage ML Experiments with Amazon SageMaker Model Tracking Capability
	Use Model Tracking to Find, Organize, and Evaluate Training Jobs (Console)
	Use Tags to Track Training Jobs (Console)
	Find Training Jobs (Console)
	Evaluate Models Returned by a Search (Console)

	Use Model Tracking to Find and Evaluate Training Jobs (API)
	Use Search to Find Training Jobs Tagged with Specific Values (API)
	Evaluate Models (API)
	Get Suggestions for a Search (API)

	Verify the Contents of Your Training Jobs
	Trace the Lineage of your Models
	Use Single-click on the Amazon SageMaker Console to Trace the Lineage of Your Models (Console)
	Use Code to Trace the Lineage of Your Models (API)

	Use Machine Learning Frameworks with Amazon SageMaker
	Use Apache Spark with Amazon SageMaker
	Download the Amazon SageMaker Spark Library
	Integrate Your Apache Spark Application with Amazon SageMaker
	Example 1: Use Amazon SageMaker for Training and Inference with Apache Spark
	Use Custom Algorithms for Model Training and Hosting on Amazon SageMaker with Apache Spark
	Use the SageMakerEstimator in a Spark Pipeline

	Additional Examples: Use Amazon SageMaker with Apache Spark

	Use TensorFlow with Amazon SageMaker
	Use TensorFlow Version 1.11 and Later
	What do you want to do?

	Use TensorFlow Legacy Mode for Versions 1.11 and Earlier

	Use Apache MXNet with Amazon SageMaker
	What do you want to do?

	Use Scikit-learn with Amazon SageMaker
	What do you want to do?

	Use PyTorch with Amazon SageMaker
	What do you want to do?

	Use Chainer with Amazon SageMaker
	What do you want to do?

	Use SparkML Serving with Amazon SageMaker

	Reinforcement Learning with Amazon SageMaker RL
	Why is Reinforcement Learning Important?
	Markov Decision Process (MDP)
	Key Features of Amazon SageMaker RL
	Sample RL Workflow Using Amazon SageMaker RL
	RL Environments in Amazon SageMaker
	Use OpenAI Gym Interface for Environments in Amazon SageMaker RL
	Use Open Source Environments
	Use Commercial Environments

	Distributed Training with Amazon SageMaker RL
	Hyperparameter Tuning with Amazon SageMaker RL

	Monitor Amazon SageMaker
	Monitor Amazon SageMaker with Amazon CloudWatch
	Log Amazon SageMaker Events with Amazon CloudWatch
	Log Amazon SageMaker API Calls with AWS CloudTrail
	Amazon SageMaker Information in CloudTrail
	Operations Performed by Automatic Model Tuning
	Understanding Amazon SageMaker Log File Entries

	React to Amazon SageMaker Job Status Changes with CloudWatch Events

	Security in Amazon SageMaker
	Data Protection in Amazon SageMaker
	Protecting Data at Rest Using Encryption
	Protecting Data in Transit with Encryption
	Protect Communications Between ML Compute Instances in a Distributed Training Job
	Enable Inter-Container Traffic Encryption (API)
	Enable Inter-Container Traffic Encryption (Console)
	Enable Inter-container Traffic Encryption in a Training Job
	Enable Inter-container Traffic Encryption in a Hyperparameter Tuning Job

	Key Management
	Internetwork Traffic Privacy

	Identity and Access Management for Amazon SageMaker
	Audience
	Authenticating With Identities
	AWS Account Root User
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	How Amazon SageMaker Works with IAM
	Amazon SageMaker Identity-Based Policies
	Actions
	Resources
	Condition Keys
	Examples

	Amazon SageMaker Resource-Based Policies
	Authorization Based on Amazon SageMaker Tags
	Amazon SageMaker IAM Roles
	Using Temporary Credentials with Amazon SageMaker
	Service-Linked Roles
	Service Roles
	Choosing an IAM Role in Amazon SageMaker

	Amazon SageMaker Identity-Based Policy Examples
	Policy Best Practices
	Using the Amazon SageMaker Console
	Permissions Required to Use the Amazon SageMaker Console
	Permissions Required to Use the Amazon SageMaker Ground Truth Console

	Allow Users to View Their Own Permissions
	Control Creation of Amazon SageMaker Resources with Condition Keys
	Control Access to Amazon SageMaker Resources by Using File System Condition Keys
	Restrict an IAM User to Specific Directories and Access Modes
	Restrict an IAM User to Specific File System

	Restrict Training to a Specific VPC
	Enforcing Encryption of Input Data
	Enforcing Encryption of Notebook Instance Storage Volume
	Enforcing Network Isolation for Training Jobs
	Enforcing a Specific Instance Type for Training Jobs
	Enforce Disabling Internet Access and Root Access for Creating Notebook Instances

	Control Access to the Amazon SageMaker API by Using Identity-based Policies
	Restrict Access to Amazon SageMaker API and Runtime to Calls from Within Your VPC

	Limit Access to Amazon SageMaker API and Runtime Calls by IP Address
	Limit Access to a Notebook Instance by IP Address
	Control Access to Amazon SageMaker Resources by Using Tags
	Require the Presence or Absence of Tags for API Calls
	Use Tags with Hyperparameter Tuning Jobs

	Amazon SageMaker Roles
	CreateNotebookInstance API: Execution Role Permissions
	CreateHyperParameterTuningJob API: Execution Role Permissions
	CreateTrainingJob API: Execution Role Permissions
	CreateModel API: Execution Role Permissions
	AmazonSageMakerFullAccess Policy

	AWS Managed (Predefined) Policies for Amazon SageMaker
	Amazon SageMaker API Permissions: Actions, Permissions, and Resources Reference
	Troubleshooting Amazon SageMaker Identity and Access
	I Am Not Authorized to Perform an Action in Amazon SageMaker
	I Am Not Authorized to Perform iam:PassRole
	I Want to View My Access Keys
	I'm an Administrator and Want to Allow Others to Access Amazon SageMaker
	I Want to Allow People Outside of My AWS Account to Access My Amazon SageMaker Resources

	Logging and Monitoring
	Compliance Validation for Amazon SageMaker
	Resilience in Amazon SageMaker
	Infrastructure Security in Amazon SageMaker
	Connect a Notebook Instance to Resources in a VPC
	Notebook Instances Provide the Best Experience for a Single User

	Training and Inference Containers Run in Internet-Free Mode
	Amazon SageMaker Scans AWS Marketplace Training and Inference Containers for Security Vulnerabilities
	Connect to Amazon SageMaker Through a VPC Interface Endpoint
	Create a VPC Endpoint Policy for Amazon SageMaker
	Connect to a Notebook Instance Through a VPC Interface Endpoint
	Connect Your Private Network to Your VPC
	Create a VPC Endpoint Policy for Amazon SageMaker Notebook Instances
	Restrict Access to Connections from Within Your VPC

	Connect Your Private Network to Your VPC

	Give Amazon SageMaker Training Jobs Access to Resources in Your Amazon VPC
	Configure a Training Job for Amazon VPC Access
	Configure Your Private VPC for Amazon SageMaker Training
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to S3
	Restrict Package Installation on the Training Container

	Configure Route Tables
	Configure the VPC Security Group
	Connect to Resources Outside Your VPC

	Give Amazon SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC
	Configure a Model for Amazon VPC Access
	Configure Your Private VPC for Amazon SageMaker Hosting
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to Amazon S3
	Restrict Package Installation on the Model Container with a Custom Endpoint Policy

	Add Permissions for Endpoint Access for Containers Running in a VPC to Custom IAM Policies
	Configure Route Tables
	Connect to Resources Outside Your VPC

	Give Batch Transform Jobs Access to Resources in Your Amazon VPC
	Configure a Batch Transform Job for Amazon VPC Access
	Configure Your Private VPC for Amazon SageMaker Batch Transform
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to S3
	Restrict Package Installation on the Model Container

	Configure Route Tables
	Configure the VPC Security Group
	Connect to Resources Outside Your VPC

	Amazon SageMaker Ground Truth
	Are You a First-time User of Ground Truth?
	Getting started
	Step 1: Before You Begin
	Next

	Step 2: Create a Labeling Job
	Next

	Step 3: Select Workers
	Next

	Step 4: Configure the Bounding Box Tool.
	Next

	Step 5: Monitoring Your Labeling Job

	Data Labeling
	Batches for Labeling Tasks
	Annotation Consolidation
	Creating Your Own Annotation Consolidation Function
	Assessing Similarity
	Assessing the Most Probable Label

	Using Automated Data Labeling
	Amazon EC2 Instances Required for Automated Data Labeling

	Chaining labeling jobs
	Chaining labeling jobs
	Key Term: Label attribute name
	Starting a chained job in the console
	Job overview panel

	Starting a chained job with the API
	Using a partially labeled dataset

	Using Input and Output Data
	Input Data
	Filtering and Selecting Data (Console)
	Using the Full Dataset
	Choosing a Random Sample
	Specifying a Subset

	Output Data
	Output Directories
	activelearning Directory
	annotations Directory
	inference Directory
	manifest Directory
	intermediate Directory

	Confidence Score
	Output Metadata
	Classification Job Output
	Bounding Box Job Output
	Semantic Segmentation Job Output

	Creating Instruction Pages
	Short Instructions
	Full Instructions
	Add example images to your instructions

	Managing Your Workforce
	Using the Amazon Mechanical Turk Workforce
	Managing Vendor Workforces
	Managing a Private Workforce
	Creating a private workforce
	Creating a workforce when creating a labeling job
	Creating a private workforce using the console

	Creating a Work Team

	Create and manage Amazon SNS topics for your work teams
	Create the Amazon SNS topic
	Manage worker subscriptions

	Creating Custom Labeling Workflows
	Next
	Step 1: Setting up your workforce
	Next

	Step 2: Creating your custom labeling task template
	Starting with a base template
	Developing templates locally
	Using External Assets
	Track your variables
	A simple sample
	Adding automation with Liquid
	Variable filters
	Autoescape and explicit escape
	escape_once
	skip_autoescape
	to_json
	grant_read_access

	End-to-end demos
	Next

	Demo Template: Annotation of Images with crowd-bounding-box
	Starter Bounding Box custom template
	Your own Bounding Box custom template
	Your manifest file
	Your pre-annotation Lambda function
	Your post-annotation Lambda function
	The output of your labeling job

	Demo Template: Labeling Intents with crowd-classifier
	Starter Intent Detection custom template
	Your Intent Detection custom template
	Styling Your Elements

	Your pre-annotation Lambda function
	Your post-annotation Lambda function
	Your labeling job output

	Step 3: Processing with AWS Lambda
	Pre-annotation Lambda
	Post-annotation Lambda
	Post-labeling task Lambda permissions

	Next

	Custom Workflows via the API
	HTML Elements Reference
	crowd-bounding-box
	Attributes
	header
	labels
	name
	src
	initial-value

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	boundingBoxes
	inputImageProperties

	See Also

	crowd-image-classifier
	Attributes
	categories
	header
	name
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	See Also

	crowd-classifier
	Attributes
	categories
	header
	name

	Element Hierarchy
	Regions
	classification-target
	full-instructions
	short-instructions

	Output
	See Also

	crowd-instance-segmentation
	Attributes
	header
	labels
	name
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	labeledImage
	instances
	inputImageProperties

	See Also

	crowd-semantic-segmentation
	Attributes
	header
	labels
	name
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	labeledImage
	labelMappings
	inputImageProperties

	See Also

	crowd-entity-annotation
	Attributes
	header
	initial-value
	labels
	name
	text

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	entities

	See Also

	crowd-alert
	Attributes
	dismissible
	type

	Element Hierarchy
	See Also

	crowd-badge
	Attributes
	for
	icon
	label

	Element Hierarchy
	See Also

	crowd-button
	Attributes
	disabled
	form-action
	href
	icon
	icon-align
	icon-url
	loading
	target
	variant

	Element Hierarchy
	See Also

	crowd-card
	Attributes
	heading
	image

	Element Hierarchy
	See Also

	crowd-checkbox
	Attributes
	checked
	disabled
	name
	required
	value

	Element Hierarchy
	Output
	See Also

	crowd-fab
	Attributes
	disabled
	icon
	label
	title

	Element Hierarchy
	See Also

	crowd-form
	Element Hierarchy
	Element Events
	See Also

	crowd-icon-button
	Attributes
	disabled
	icon

	Element Hierarchy
	See Also

	crowd-input
	Attributes
	allowed-pattern
	auto-focus
	auto-validate
	disabled
	error-message
	label
	max-length
	min-length
	name
	placeholder
	required
	type
	value

	Element Hierarchy
	Output
	See Also

	crowd-instructions
	Attributes
	link-text
	link-type

	Element Hierarchy
	Regions
	detailed-instructions
	negative-example
	positive-example
	short-summary

	See Also

	crowd-keypoint
	Attributes
	header
	initial-value
	labels
	name
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	inputImageProperties
	keypoints

	See Also

	crowd-modal
	Attributes
	link-text
	link-type

	Element Hierarchy
	See Also

	crowd-polygon
	Attributes
	header
	labels
	name
	src
	initial-value

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	polygons
	inputImageProperties

	See Also

	crowd-radio-button
	Attributes
	checked
	disabled
	name
	value

	Element Hierarchy
	Output
	See Also

	crowd-radio-group
	Attributes
	Element Hierarchy
	Output
	See Also

	crowd-slider
	Attributes
	disabled
	editable
	max
	min
	name
	pin
	required
	secondary-progress
	step
	value

	Element Hierarchy
	See Also

	crowd-tab
	Attributes
	header

	Element Hierarchy
	See Also

	crowd-tabs
	Attributes
	Element Hierarchy
	See Also

	crowd-text-area
	Attributes
	auto-focus
	auto-validate
	char-counter
	disabled
	error-message
	label
	max-length
	max-rows
	name
	placeholder
	rows
	value

	Element Hierarchy
	Output
	See Also

	crowd-toast
	Attributes
	duration
	text

	Element Hierarchy
	See Also

	crowd-toggle-button
	Attributes
	checked
	disabled
	invalid
	name
	required
	value

	Element Hierarchy
	Output
	See Also

	Limits and Supported Regions
	API Reference
	Actions
	Amazon SageMaker Service
	AddTags
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateAlgorithm
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateCodeRepository
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateCompilationJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateEndpoint
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateEndpointConfig
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateHyperParameterTuningJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateLabelingJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateModel
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateModelPackage
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateNotebookInstance
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateNotebookInstanceLifecycleConfig
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreatePresignedNotebookInstanceUrl
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateTrainingJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateTransformJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateWorkteam
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteAlgorithm
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteCodeRepository
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteEndpoint
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteEndpointConfig
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteModel
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteModelPackage
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteNotebookInstance
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteNotebookInstanceLifecycleConfig
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteTags
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteWorkteam
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeAlgorithm
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeCodeRepository
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeCompilationJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeEndpoint
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeEndpointConfig
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeHyperParameterTuningJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeLabelingJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeModel
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeModelPackage
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeNotebookInstance
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeNotebookInstanceLifecycleConfig
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeSubscribedWorkteam
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeTrainingJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeTransformJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeWorkteam
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSearchSuggestions
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListAlgorithms
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListCodeRepositories
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListCompilationJobs
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListEndpointConfigs
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListEndpoints
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListHyperParameterTuningJobs
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListLabelingJobs
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListLabelingJobsForWorkteam
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListModelPackages
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListModels
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListNotebookInstanceLifecycleConfigs
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListNotebookInstances
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListSubscribedWorkteams
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTags
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTrainingJobs
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTrainingJobsForHyperParameterTuningJob
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTransformJobs
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListWorkteams
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	RenderUiTemplate
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	Search
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	StartNotebookInstance
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	StopCompilationJob
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	StopHyperParameterTuningJob
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	StopLabelingJob
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	StopNotebookInstance
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	StopTrainingJob
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	StopTransformJob
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UpdateCodeRepository
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	UpdateEndpoint
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	UpdateEndpointWeightsAndCapacities
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	UpdateNotebookInstance
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UpdateNotebookInstanceLifecycleConfig
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UpdateWorkteam
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	Amazon SageMaker Runtime
	InvokeEndpoint
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	Example
	Pass a trace ID in the CustomAttribute of a request and return it in the CustomAttribute of the response.
	Sample Request
	Sample Response

	See Also

	Data Types
	Amazon SageMaker Service
	AlgorithmSpecification
	Contents
	See Also

	AlgorithmStatusDetails
	Contents
	See Also

	AlgorithmStatusItem
	Contents
	See Also

	AlgorithmSummary
	Contents
	See Also

	AlgorithmValidationProfile
	Contents
	See Also

	AlgorithmValidationSpecification
	Contents
	See Also

	AnnotationConsolidationConfig
	Contents
	See Also

	CategoricalParameterRange
	Contents
	See Also

	CategoricalParameterRangeSpecification
	Contents
	See Also

	Channel
	Contents
	See Also

	ChannelSpecification
	Contents
	See Also

	CheckpointConfig
	Contents
	See Also

	CodeRepositorySummary
	Contents
	See Also

	CognitoMemberDefinition
	Contents
	See Also

	CompilationJobSummary
	Contents
	See Also

	ContainerDefinition
	Contents
	See Also

	ContinuousParameterRange
	Contents
	See Also

	ContinuousParameterRangeSpecification
	Contents
	See Also

	DataProcessing
	Contents
	See Also

	DataSource
	Contents
	See Also

	DeployedImage
	Contents
	See Also

	DesiredWeightAndCapacity
	Contents
	See Also

	EndpointConfigSummary
	Contents
	See Also

	EndpointSummary
	Contents
	See Also

	FileSystemDataSource
	Contents
	See Also

	Filter
	Contents
	See Also

	FinalHyperParameterTuningJobObjectiveMetric
	Contents
	See Also

	GitConfig
	Contents
	See Also

	GitConfigForUpdate
	Contents
	See Also

	HumanTaskConfig
	Contents
	See Also

	HyperParameterAlgorithmSpecification
	Contents
	See Also

	HyperParameterSpecification
	Contents
	See Also

	HyperParameterTrainingJobDefinition
	Contents
	See Also

	HyperParameterTrainingJobSummary
	Contents
	See Also

	HyperParameterTuningJobConfig
	Contents
	See Also

	HyperParameterTuningJobObjective
	Contents
	See Also

	HyperParameterTuningJobSummary
	Contents
	See Also

	HyperParameterTuningJobWarmStartConfig
	Contents
	See Also

	InferenceSpecification
	Contents
	See Also

	InputConfig
	Contents
	See Also

	IntegerParameterRange
	Contents
	See Also

	IntegerParameterRangeSpecification
	Contents
	See Also

	LabelCounters
	Contents
	See Also

	LabelCountersForWorkteam
	Contents
	See Also

	LabelingJobAlgorithmsConfig
	Contents
	See Also

	LabelingJobDataAttributes
	Contents
	See Also

	LabelingJobDataSource
	Contents
	See Also

	LabelingJobForWorkteamSummary
	Contents
	See Also

	LabelingJobInputConfig
	Contents
	See Also

	LabelingJobOutput
	Contents
	See Also

	LabelingJobOutputConfig
	Contents
	See Also

	LabelingJobResourceConfig
	Contents
	See Also

	LabelingJobS3DataSource
	Contents
	See Also

	LabelingJobStoppingConditions
	Contents
	See Also

	LabelingJobSummary
	Contents
	See Also

	MemberDefinition
	Contents
	See Also

	MetricData
	Contents
	See Also

	MetricDefinition
	Contents
	See Also

	ModelArtifacts
	Contents
	See Also

	ModelPackageContainerDefinition
	Contents
	See Also

	ModelPackageStatusDetails
	Contents
	See Also

	ModelPackageStatusItem
	Contents
	See Also

	ModelPackageSummary
	Contents
	See Also

	ModelPackageValidationProfile
	Contents
	See Also

	ModelPackageValidationSpecification
	Contents
	See Also

	ModelSummary
	Contents
	See Also

	NestedFilters
	Contents
	See Also

	NotebookInstanceLifecycleConfigSummary
	Contents
	See Also

	NotebookInstanceLifecycleHook
	Contents
	See Also

	NotebookInstanceSummary
	Contents
	See Also

	NotificationConfiguration
	Contents
	See Also

	ObjectiveStatusCounters
	Contents
	See Also

	OutputConfig
	Contents
	See Also

	OutputDataConfig
	Contents
	See Also

	ParameterRange
	Contents
	See Also

	ParameterRanges
	Contents
	See Also

	ParentHyperParameterTuningJob
	Contents
	See Also

	ProductionVariant
	Contents
	See Also

	ProductionVariantSummary
	Contents
	See Also

	PropertyNameQuery
	Contents
	See Also

	PropertyNameSuggestion
	Contents
	See Also

	PublicWorkforceTaskPrice
	Contents
	See Also

	RenderableTask
	Contents
	See Also

	RenderingError
	Contents
	See Also

	ResourceConfig
	Contents
	See Also

	ResourceLimits
	Contents
	See Also

	S3DataSource
	Contents
	See Also

	SearchExpression
	Contents
	See Also

	SearchRecord
	Contents
	See Also

	SecondaryStatusTransition
	Contents
	See Also

	ShuffleConfig
	Contents
	See Also

	SourceAlgorithm
	Contents
	See Also

	SourceAlgorithmSpecification
	Contents
	See Also

	StoppingCondition
	Contents
	See Also

	SubscribedWorkteam
	Contents
	See Also

	SuggestionQuery
	Contents
	See Also

	Tag
	Contents
	See Also

	TrainingJob
	Contents
	See Also

	TrainingJobDefinition
	Contents
	See Also

	TrainingJobStatusCounters
	Contents
	See Also

	TrainingJobSummary
	Contents
	See Also

	TrainingSpecification
	Contents
	See Also

	TransformDataSource
	Contents
	See Also

	TransformInput
	Contents
	See Also

	TransformJobDefinition
	Contents
	See Also

	TransformJobSummary
	Contents
	See Also

	TransformOutput
	Contents
	See Also

	TransformResources
	Contents
	See Also

	TransformS3DataSource
	Contents
	See Also

	UiConfig
	Contents
	See Also

	UiTemplate
	Contents
	See Also

	USD
	Contents
	See Also

	VpcConfig
	Contents
	See Also

	Workteam
	Contents
	See Also

	Amazon SageMaker Runtime

	Common Errors
	Common Parameters

	Document History for Amazon SageMaker
	AWS Glossary

