S. Boyd and S. Lall

Linear algebra review

- vector space, subspaces
- ▶ independence, basis, dimension
- nullspace and range
- left and right invertibility

Vector spaces

a vector space or linear space (over the reals) consists of

 \blacktriangleright a set \mathcal{V}

- ▶ a vector sum $+ : \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
- ▶ a scalar multiplication : $\mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$
- ▶ a distinguished element $0 \in \mathcal{V}$

which satisfy a list of properties

Vector space axioms

$$\begin{array}{lll} \bullet & x+y=y+x, \ \forall x,y\in\mathcal{V} & + \ is \ commutative \\ \bullet & (x+y)+z=x+(y+z), \quad \forall x,y,z\in\mathcal{V} & + \ is \ associative \\ \bullet & 0+x=x, \ \forall x\in\mathcal{V} & 0 \ is \ additive \ identity \\ \bullet & \forall x\in\mathcal{V} \ \exists (-x)\in\mathcal{V} \ {\rm s.t.} \ x+(-x)=0 & existence \ of \ additive \ inverse \\ \bullet & (\alpha\beta)x=\alpha(\beta x), \quad \forall \alpha,\beta\in\mathbb{R} \quad \forall x\in\mathcal{V} & scalar \ mult. \ is \ associative \\ \bullet & \alpha(x+y)=\alpha x+\alpha y, \quad \forall \alpha\in\mathbb{R} \ \forall x,y\in\mathcal{V} & right \ distributive \ rule \\ \bullet & (\alpha+\beta)x=\alpha x+\beta x, \quad \forall \alpha,\beta\in\mathbb{R} \ \forall x\in\mathcal{V} & left \ distributive \ rule \\ \bullet & 1x=x, \quad \forall x\in\mathcal{V} & 1 \ is \ multiplicative \ identity \end{array}$$

Examples

- $\mathcal{V}_1 = \mathbb{R}^n$, with standard (componentwise) vector addition and scalar multiplication
- $\mathcal{V}_2 = \{0\}$ (where $0 \in \mathbb{R}^n$)

▶ $\mathcal{V}_3 = \mathbf{span}(v_1, v_2, \dots, v_k)$ where

 $span(v_1, v_2, \dots, v_k) = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbb{R}\}$

and $v_1, \ldots, v_k \in \mathbb{R}^n$

Subspaces

- a subspace of a vector space is a subset of a vector space which is itself a vector space
- roughly speaking, a subspace is closed under vector addition and scalar multiplication
- examples \mathcal{V}_1 , \mathcal{V}_2 , \mathcal{V}_3 above are subspaces of \mathbb{R}^n

Vector spaces of functions

▶ $\mathcal{V}_4 = \{x : \mathbb{R}_+ \to \mathbb{R}^n \mid x \text{ is differentiable}\}, \text{ where vector sum is sum of functions:}$

$$(x+z)(t) = x(t) + z(t)$$

and scalar multiplication is defined by

$$(\alpha x)(t) = \alpha x(t)$$

(a *point* in \mathcal{V}_4 is a *trajectory* in \mathbb{R}^n)

- V₅ = {x ∈ V₄ | ẋ = Ax} (points in V₅ are trajectories of the linear system ẋ = Ax)
- \triangleright \mathcal{V}_5 is a subspace of \mathcal{V}_4

(Euclidean) norm

for $x \in \mathbb{R}^n$ we define the (Euclidean) norm as

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^{\mathsf{T}}x}$$

||x|| measures length of vector (from origin) important properties:

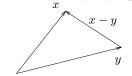
 $\|\alpha x\| = |\alpha| \|x\|$ homogeneity $\|x + y\| \le \|x\| + \|y\|$ triangle inequality $\|x\| \ge 0$ nonnegativity $\|x\| = 0 \iff x = 0$ definiteness

RMS value and (Euclidean) distance

root-mean-square (RMS) value of vector $x \in \mathbb{R}^n$:

$$\mathsf{rms}(x) = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}\right)^{1/2} = \frac{\|x\|}{\sqrt{n}}$$

norm defines distance between vectors: ${\rm dist}(x,y) = \|x-y\|$



Independent set of vectors

a set of vectors $\{v_1, v_2, \ldots, v_k\}$ is *independent* if

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0 \implies \alpha_1 = \alpha_2 = \dots = 0$

some equivalent conditions:

• coefficients of $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$ are uniquely determined, *i.e.*,

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k$

implies $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \ldots, \alpha_k = \beta_k$

▶ no vector v_i can be expressed as a linear combination of the other vectors $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k$

Basis and dimension

set of vectors $\{v_1, v_2, \ldots, v_k\}$ is called a *basis* for a vector space \mathcal{V} if

 $\mathcal{V} = extsf{span}(v_1, v_2, \dots, v_k)$ and $\{v_1, v_2, \dots, v_k\}$ is independent

▶ equivalently, every $v \in V$ can be uniquely expressed as

 $v = \alpha_1 v_1 + \dots + \alpha_k v_k$

 \blacktriangleright for a given vector space \mathcal{V} , the number of vectors in any basis is the same

> number of vectors in any basis is called the *dimension* of \mathcal{V} , denoted **dim** \mathcal{V}

Nullspace of a matrix

the *nullspace* of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\mathsf{null}(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

▶ $\mathbf{null}(A)$ is set of vectors mapped to zero by y = Ax

 \blacktriangleright **null**(A) is set of vectors orthogonal to all rows of A

 $\mathbf{null}(A)$ gives *ambiguity* in x given y = Ax:

- if y = Ax and $z \in \operatorname{null}(A)$, then y = A(x + z)
- ▶ conversely, if y = Ax and $y = A\tilde{x}$, then $\tilde{x} = x + z$ for some $z \in \operatorname{null}(A)$

 $\mathbf{null}(A)$ is also written $\mathcal{N}(A)$

Zero nullspace

A is called *one-to-one* if 0 is the only element of its nullspace

 $\mathsf{null}(A) = \{0\}$

Equivalently,

- ➤ x can always be uniquely determined from y = Ax (*i.e.*, the linear transformation y = Ax doesn't 'lose' information)
- \blacktriangleright mapping from x to Ax is one-to-one: different x's map to different y's
- ▶ columns of A are independent (hence, a basis for their span)
- ▶ A has a *left inverse*, *i.e.*, there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. BA = I
- $A^{\mathsf{T}}A$ is invertible

Two interpretations of nullspace

suppose $z \in \mathsf{null}(A)$, and y = Ax represents *measurement* of x

 \triangleright z is undetectable from sensors — get zero sensor readings

▶ x and x + z are indistinguishable from sensors: Ax = A(x + z)

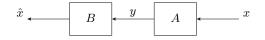
 $\mathbf{null}(A)$ characterizes *ambiguity* in x from measurement y = Ax

alternatively, if y = Ax represents *output* resulting from input x

- ▶ z is an input with no result
- x and x + z have same result

 $\mathbf{null}(A)$ characterizes *freedom of input choice* for given result

Left invertibility and estimation



- \blacktriangleright apply left-inverse B at output of A
- ▶ then estimate $\hat{x} = BAx = x$ as desired
- *non-unique:* both B and C are left inverses of A

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$$

Range of a matrix

the *range* of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\mathsf{range}(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

range(A) can be interpreted as

- ▶ the set of vectors that can be 'hit' by linear mapping y = Ax
- ▶ the span of columns of A
- ▶ the set of vectors y for which Ax = y has a solution

range(A) is also written $\mathcal{R}(A)$

Onto matrices

A is called *onto* if $range(A) = \mathbb{R}^m$

equivalently,

- Ax = y can be solved in x for any y
- ▶ columns of A span \mathbb{R}^m
- ▶ A has a right inverse, *i.e.*, there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. AB = I
- \blacktriangleright rows of A are independent
- ▶ $\operatorname{null}(A^{\mathsf{T}}) = \{0\}$
- ► AA^{T} is invertible

Interpretations of range

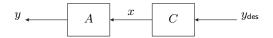
```
\mathsf{suppose}\ v \in \mathbf{range}(A), w \not\in \mathbf{range}(A)
```

- y = Ax represents *measurement* of x
 - y = v is a *possible* or *consistent* sensor signal
 - y = w is *impossible* or *inconsistent*; sensors have failed or model is wrong

- y = Ax represents *output* resulting from input x
 - ▶ v is a possible result or output
 - \blacktriangleright w cannot be a result or output

range(A) characterizes the *possible results* or *achievable outputs*

Right invertibility and control



 \blacktriangleright apply right-inverse C at *input* of A

Inverse

 $A \in \mathbb{R}^{n \times n}$ is *invertible* or *nonsingular* if it has both a left and right inverse

equivalent conditions:

- columns of A are a basis for \mathbb{R}^n
- \blacktriangleright rows of A are a basis for \mathbb{R}^n
- y = Ax has a unique solution x for every $y \in \mathbb{R}^n$
- $\blacktriangleright \ \mathbf{null}(A) = \{0\}$
- $\blacktriangleright \ \mathbf{range}(A) = \mathbb{R}^n$

Inverse

if a matrix \boldsymbol{A} has both a left inverse and a right inverse, then they are equal

$$BA = I \text{ and } AC = I \implies B = C$$

 \blacktriangleright hence if A is invertible then the inverse is unique

$$\blacktriangleright AA^{-1} = A^{-1}A = I$$

Interpretations of inverse

suppose $A \in \mathbb{R}^{n \times n}$ has inverse $B = A^{-1}$

- mapping associated with B undoes mapping associated with A (applied either before or after!)
- x = By is a perfect (pre- or post-) equalizer for the channel y = Ax

•
$$x = By$$
 is unique solution of $Ax = y$

Dual basis interpretation

▶ let a_i be columns of A, and \tilde{b}_i^{T} be rows of $B = A^{-1}$

▶ from $y = x_1a_1 + \cdots + x_na_n$ and $x_i = \tilde{b}_i^{\mathsf{T}}y$, we get

$$y = \sum_{i=1}^{n} (\tilde{b}_i^{\mathsf{T}} y) a_i$$

thus, inner product with *rows of inverse matrix* gives the coefficients in the *expansion of a vector in the columns of the matrix*

• $\{\tilde{b}_1, \ldots, \tilde{b}_n\}$ and $\{a_1, \ldots, a_n\}$ are called *dual bases*

Change of coordinates

▶ standard basis vectors in \mathbb{R}^n : $(e_1, e_2, ..., e_n)$ where $e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \end{bmatrix}$ (1 in *i*th component)

obviously we have

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n$$

 x_i are called the *coordinates* of x (in the standard basis)

• if (t_1, t_2, \ldots, t_n) is another basis for \mathbb{R}^n , we have

$$x = \tilde{x}_1 t_1 + \tilde{x}_2 t_2 + \dots + \tilde{x}_n t_n$$

where \tilde{x}_i are the coordinates of x in the basis (t_1, t_2, \ldots, t_n)

▶ then $x = T\tilde{x}$ and $\tilde{x} = T^{-1}x$

Similarity transformation

consider linear transformation y = Ax, $A \in \mathbb{R}^{n \times n}$

express y and x in terms of t_1, t_2, \ldots, t_n , so $x = T\tilde{x}$ and $y = T\tilde{y}$, then

$$\tilde{y} = (T^{-1}AT)\tilde{x}$$

• $A \longrightarrow T^{-1}AT$ is called *similarity transformation*

▶ similarity transformation by T expresses linear transformation y = Ax in coordinates t_1, t_2, \ldots, t_n