Linear algebra review

- vector space, subspaces
- independence, basis, dimension
- nullspace and range
- left and right invertibility

Vector spaces

a vector space or linear space (over the reals) consists of

- a set \mathcal{V}
- a vector sum $+: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
- a scalar multiplication : $\mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$
- a distinguished element $0 \in \mathcal{V}$
which satisfy a list of properties

Vector space axioms

- $x+y=y+x, \forall x, y \in \mathcal{V}$
- $(x+y)+z=x+(y+z), \quad \forall x, y, z \in \mathcal{V} \quad+$ is associative
- $0+x=x, \forall x \in \mathcal{V}$

0 is additive identity

- $\forall x \in \mathcal{V} \quad \exists(-x) \in \mathcal{V}$ s.t. $x+(-x)=0 \quad$ existence of additive inverse
- $(\alpha \beta) x=\alpha(\beta x), \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall x \in \mathcal{V} \quad$ scalar mult. is associative
- $\alpha(x+y)=\alpha x+\alpha y, \quad \forall \alpha \in \mathbb{R} \quad \forall x, y \in \mathcal{V} \quad$ right distributive rule
- $(\alpha+\beta) x=\alpha x+\beta x, \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall x \in \mathcal{V}$ left distributive rule
- $1 x=x, \quad \forall x \in \mathcal{V}$

1 is multiplicative identity

Examples

- $\mathcal{V}_{1}=\mathbb{R}^{n}$, with standard (componentwise) vector addition and scalar multiplication
- $\mathcal{V}_{2}=\{0\}$ (where $0 \in \mathbb{R}^{n}$)
- $\mathcal{V}_{3}=\boldsymbol{\operatorname { s p a n }}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ where

$$
\boldsymbol{\operatorname { s p a n }}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid \alpha_{i} \in \mathbb{R}\right\}
$$

and $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$

Subspaces

- a subspace of a vector space is a subset of a vector space which is itself a vector space
- roughly speaking, a subspace is closed under vector addition and scalar multiplication
- examples $\mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}$ above are subspaces of \mathbb{R}^{n}

Vector spaces of functions

- $\mathcal{V}_{4}=\left\{x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n} \mid x\right.$ is differentiable $\}$, where vector sum is sum of functions:

$$
(x+z)(t)=x(t)+z(t)
$$

and scalar multiplication is defined by

$$
(\alpha x)(t)=\alpha x(t)
$$

(a point in \mathcal{V}_{4} is a trajectory in \mathbb{R}^{n})

- $\mathcal{V}_{5}=\left\{x \in \mathcal{V}_{4} \mid \dot{x}=A x\right\}$
(points in \mathcal{V}_{5} are trajectories of the linear system $\dot{x}=A x$)
- \mathcal{V}_{5} is a subspace of \mathcal{V}_{4}

(Euclidean) norm

for $x \in \mathbb{R}^{n}$ we define the (Euclidean) norm as

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{x^{\top} x}
$$

$\|x\|$ measures length of vector (from origin) important properties:

- $\|\alpha x\|=|\alpha|\|x\|$
- $\|x+y\| \leq\|x\|+\|y\|$
- $\|x\| \geq 0$
- $\|x\|=0 \Longleftrightarrow x=0$
homogeneity
triangle inequality
nonnegativity
definiteness

RMS value and (Euclidean) distance

root-mean-square (RMS) value of vector $x \in \mathbb{R}^{n}$:

$$
\operatorname{rms}(x)=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}=\frac{\|x\|}{\sqrt{n}}
$$

norm defines distance between vectors: $\operatorname{dist}(x, y)=\|x-y\|$

Independent set of vectors

a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0 \quad \Longrightarrow \quad \alpha_{1}=\alpha_{2}=\cdots=0
$$

some equivalent conditions:

- coefficients of $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}$ are uniquely determined, i.e.,

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{k} v_{k}
$$

implies $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{k}=\beta_{k}$

- no vector v_{i} can be expressed as a linear combination of the other vectors $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}$

Basis and dimension

set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is called a basis for a vector space \mathcal{V} if

$$
\begin{gathered}
\mathcal{V}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right) \\
\text { and } \\
\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \text { is independent }
\end{gathered}
$$

- equivalently, every $v \in \mathcal{V}$ can be uniquely expressed as

$$
v=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}
$$

- for a given vector space \mathcal{V}, the number of vectors in any basis is the same
- number of vectors in any basis is called the dimension of \mathcal{V}, denoted $\operatorname{dim} \mathcal{V}$

Nullspace of a matrix

the nullspace of $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\operatorname{null}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}
$$

- $\operatorname{null}(A)$ is set of vectors mapped to zero by $y=A x$
- null (A) is set of vectors orthogonal to all rows of A
null (A) gives ambiguity in x given $y=A x$:
- if $y=A x$ and $z \in \operatorname{null}(A)$, then $y=A(x+z)$
- conversely, if $y=A x$ and $y=A \tilde{x}$, then $\tilde{x}=x+z$ for some $z \in \operatorname{null}(A)$
$\operatorname{null}(A)$ is also written $\mathcal{N}(A)$

Zero nullspace

A is called one-to-one if 0 is the only element of its nullspace

$$
\operatorname{null}(A)=\{0\}
$$

Equivalently,

- x can always be uniquely determined from $y=A x$
(i.e., the linear transformation $y=A x$ doesn't 'lose' information)
- mapping from x to $A x$ is one-to-one: different x 's map to different y 's
- columns of A are independent (hence, a basis for their span)
- A has a left inverse, i.e., there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $B A=I$
- $A^{\top} A$ is invertible

Two interpretations of nullspace

suppose $z \in \operatorname{null}(A)$, and $y=A x$ represents measurement of x

- z is undetectable from sensors - get zero sensor readings
- x and $x+z$ are indistinguishable from sensors: $A x=A(x+z)$
null (A) characterizes ambiguity in x from measurement $y=A x$
alternatively, if $y=A x$ represents output resulting from input x
- z is an input with no result
- x and $x+z$ have same result
null (A) characterizes freedom of input choice for given result

Left invertibility and estimation

- apply left-inverse B at output of A
- then estimate $\hat{x}=B A x=x$ as desired
- non-unique: both B and C are left inverses of A

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0.5 & 0 & 0.5 \\
0 & 1 & 0
\end{array}\right]
$$

Range of a matrix

the range of $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\operatorname{range}(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}
$$

range (A) can be interpreted as

- the set of vectors that can be 'hit' by linear mapping $y=A x$
- the span of columns of A
- the set of vectors y for which $A x=y$ has a solution
range (A) is also written $\mathcal{R}(A)$

Onto matrices

A is called onto if $\operatorname{range}(A)=\mathbb{R}^{m}$
equivalently,

- $A x=y$ can be solved in x for any y
- columns of A span \mathbb{R}^{m}
- A has a right inverse, i.e., there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $A B=I$
- rows of A are independent
- $\boldsymbol{n u l l}\left(A^{\top}\right)=\{0\}$
- $A A^{\top}$ is invertible

Interpretations of range

suppose $v \in \operatorname{range}(A), w \notin \operatorname{range}(A)$
$y=A x$ represents measurement of x

- $y=v$ is a possible or consistent sensor signal
- $y=w$ is impossible or inconsistent; sensors have failed or model is wrong
$y=A x$ represents output resulting from input x
- v is a possible result or output
- w cannot be a result or output
range (A) characterizes the possible results or achievable outputs

Right invertibility and control

- apply right-inverse C at input of A
- then output $y=A C y_{\text {des }}=y_{\text {des }}$ as desired

Inverse

$A \in \mathbb{R}^{n \times n}$ is invertible or nonsingular if it has both a left and right inverse

equivalent conditions:

- columns of A are a basis for \mathbb{R}^{n}
- rows of A are a basis for \mathbb{R}^{n}
- $y=A x$ has a unique solution x for every $y \in \mathbb{R}^{n}$
- $\operatorname{null}(A)=\{0\}$
- $\operatorname{range}(A)=\mathbb{R}^{n}$

Inverse

if a matrix A has both a left inverse and a right inverse, then they are equal

$$
B A=I \text { and } A C=I \quad \Longrightarrow \quad B=C
$$

- hence if A is invertible then the inverse is unique
- $A A^{-1}=A^{-1} A=I$

Interpretations of inverse

suppose $A \in \mathbb{R}^{n \times n}$ has inverse $B=A^{-1}$

- mapping associated with B undoes mapping associated with A (applied either before or after!)
- $x=B y$ is a perfect (pre- or post-) equalizer for the channel $y=A x$
- $x=B y$ is unique solution of $A x=y$

Dual basis interpretation

- let a_{i} be columns of A, and \tilde{b}_{i}^{\top} be rows of $B=A^{-1}$
- from $y=x_{1} a_{1}+\cdots+x_{n} a_{n}$ and $x_{i}=\tilde{b}_{i}^{\top} y$, we get

$$
y=\sum_{i=1}^{n}\left(\tilde{b}_{i}^{\top} y\right) a_{i}
$$

thus, inner product with rows of inverse matrix gives the coefficients in the expansion of a vector in the columns of the matrix

- $\left\{\tilde{b}_{1}, \ldots, \tilde{b}_{n}\right\}$ and $\left\{a_{1}, \ldots, a_{n}\right\}$ are called dual bases

Change of coordinates

- standard basis vectors in $\mathbb{R}^{n}:\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $e_{i}=$ (1 in i th component)
- obviously we have

$$
x=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}
$$

x_{i} are called the coordinates of x (in the standard basis)

- if $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is another basis for \mathbb{R}^{n}, we have

$$
x=\tilde{x}_{1} t_{1}+\tilde{x}_{2} t_{2}+\cdots+\tilde{x}_{n} t_{n}
$$

where \tilde{x}_{i} are the coordinates of x in the basis $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$

- then $x=T \tilde{x}$ and $\tilde{x}=T^{-1} x$

Similarity transformation

consider linear transformation $y=A x, A \in \mathbb{R}^{n \times n}$
express y and x in terms of $t_{1}, t_{2} \ldots, t_{n}$, so $x=T \tilde{x}$ and $y=T \tilde{y}$, then

$$
\tilde{y}=\left(T^{-1} A T\right) \tilde{x}
$$

- $A \longrightarrow T^{-1} A T$ is called similarity transformation
- similarity transformation by T expresses linear transformation $y=A x$ in coordinates $t_{1}, t_{2}, \ldots, t_{n}$

