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Linear algebra review

I vector space, subspaces

I independence, basis, dimension

I nullspace and range

I left and right invertibility
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Vector spaces

a vector space or linear space (over the reals) consists of

I a set V

I a vector sum + : V × V → V

I a scalar multiplication : R× V → V

I a distinguished element 0 ∈ V

which satisfy a list of properties
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Vector space axioms

I x+ y = y + x, ∀x, y ∈ V + is commutative

I (x+ y) + z = x+ (y + z), ∀x, y, z ∈ V + is associative

I 0 + x = x, ∀x ∈ V 0 is additive identity

I ∀x ∈ V ∃(−x) ∈ V s.t. x+ (−x) = 0 existence of additive inverse

I (αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V scalar mult. is associative

I α(x+ y) = αx+ αy, ∀α ∈ R ∀x, y ∈ V right distributive rule

I (α+ β)x = αx+ βx, ∀α, β ∈ R ∀x ∈ V left distributive rule

I 1x = x, ∀x ∈ V 1 is multiplicative identity
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Examples

I V1 = Rn, with standard (componentwise) vector addition and scalar multi-
plication

I V2 = {0} (where 0 ∈ Rn)

I V3 = span(v1, v2, . . . , vk) where

span(v1, v2, . . . , vk) = {α1v1 + · · ·+ αkvk | αi ∈ R}

and v1, . . . , vk ∈ Rn
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Subspaces

I a subspace of a vector space is a subset of a vector space which is itself a
vector space

I roughly speaking, a subspace is closed under vector addition and scalar mul-
tiplication

I examples V1, V2, V3 above are subspaces of Rn
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Vector spaces of functions

I V4 = {x : R+ → Rn | x is differentiable}, where vector sum is sum of func-
tions:

(x+ z)(t) = x(t) + z(t)

and scalar multiplication is defined by

(αx)(t) = αx(t)

(a point in V4 is a trajectory in Rn)

I V5 = {x ∈ V4 | ẋ = Ax}
(points in V5 are trajectories of the linear system ẋ = Ax)

I V5 is a subspace of V4
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(Euclidean) norm

for x ∈ Rn we define the (Euclidean) norm as

‖x‖ =
√
x21 + x22 + · · ·+ x2n =

√
xTx

‖x‖ measures length of vector (from origin)

important properties:

I ‖αx‖ = |α|‖x‖ homogeneity

I ‖x+ y‖ ≤ ‖x‖+ ‖y‖ triangle inequality

I ‖x‖ ≥ 0 nonnegativity

I ‖x‖ = 0 ⇐⇒ x = 0 definiteness
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RMS value and (Euclidean) distance

root-mean-square (RMS) value of vector x ∈ Rn:

rms(x) =

(
1

n

n∑
i=1

x2i

)1/2

=
‖x‖√
n

norm defines distance between vectors: dist(x, y) = ‖x− y‖
x

y

x− y

8



Independent set of vectors

a set of vectors {v1, v2, . . . , vk} is independent if

α1v1 + α2v2 + · · ·+ αkvk = 0 =⇒ α1 = α2 = · · · = 0

some equivalent conditions:

I coefficients of α1v1 + α2v2 + · · ·+ αkvk are uniquely determined, i.e.,

α1v1 + α2v2 + · · ·+ αkvk = β1v1 + β2v2 + · · ·+ βkvk

implies α1 = β1, α2 = β2, . . . , αk = βk

I no vector vi can be expressed as a linear combination of the other vectors
v1, . . . , vi−1, vi+1, . . . , vk
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Basis and dimension

set of vectors {v1, v2, . . . , vk} is called a basis for a vector space V if

V = span(v1, v2, . . . , vk)

and

{v1, v2, . . . , vk} is independent

I equivalently, every v ∈ V can be uniquely expressed as

v = α1v1 + · · ·+ αkvk

I for a given vector space V, the number of vectors in any basis is the same

I number of vectors in any basis is called the dimension of V, denoted dimV
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Nullspace of a matrix

the nullspace of A ∈ Rm×n is defined as

null(A) = {x ∈ Rn | Ax = 0 }

I null(A) is set of vectors mapped to zero by y = Ax

I null(A) is set of vectors orthogonal to all rows of A

null(A) gives ambiguity in x given y = Ax:

I if y = Ax and z ∈ null(A), then y = A(x+ z)

I conversely, if y = Ax and y = Ax̃, then x̃ = x+ z for some z ∈ null(A)

null(A) is also written N (A)
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Zero nullspace

A is called one-to-one if 0 is the only element of its nullspace

null(A) = {0}

Equivalently,

I x can always be uniquely determined from y = Ax
(i.e., the linear transformation y = Ax doesn’t ‘lose’ information)

I mapping from x to Ax is one-to-one: different x’s map to different y’s

I columns of A are independent (hence, a basis for their span)

I A has a left inverse, i.e., there is a matrix B ∈ Rn×m s.t. BA = I

I ATA is invertible
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Two interpretations of nullspace

suppose z ∈ null(A), and y = Ax represents measurement of x

I z is undetectable from sensors — get zero sensor readings

I x and x+ z are indistinguishable from sensors: Ax = A(x+ z)

null(A) characterizes ambiguity in x from measurement y = Ax

alternatively, if y = Ax represents output resulting from input x

I z is an input with no result

I x and x+ z have same result

null(A) characterizes freedom of input choice for given result
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Left invertibility and estimation

B A xx̂ y

I apply left-inverse B at output of A

I then estimate x̂ = BAx = x as desired

I non-unique: both B and C are left inverses of A

A =

 1 0
0 1
1 0

 B =

[
1 0 0
0 1 0

]
C =

[
0.5 0 0.5
0 1 0

]
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Range of a matrix

the range of A ∈ Rm×n is defined as

range(A) = {Ax | x ∈ Rn} ⊆ Rm

range(A) can be interpreted as

I the set of vectors that can be ‘hit’ by linear mapping y = Ax

I the span of columns of A

I the set of vectors y for which Ax = y has a solution

range(A) is also written R(A)
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Onto matrices

A is called onto if range(A) = Rm

equivalently,

I Ax = y can be solved in x for any y

I columns of A span Rm

I A has a right inverse, i.e., there is a matrix B ∈ Rn×m s.t. AB = I

I rows of A are independent

I null(AT) = {0}

I AAT is invertible
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Interpretations of range

suppose v ∈ range(A),w 6∈ range(A)

y = Ax represents measurement of x

I y = v is a possible or consistent sensor signal

I y = w is impossible or inconsistent; sensors have failed or model is wrong

y = Ax represents output resulting from input x

I v is a possible result or output

I w cannot be a result or output

range(A) characterizes the possible results or achievable outputs
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Right invertibility and control

A C ydesy x

I apply right-inverse C at input of A

I then output y = ACydes = ydes as desired
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Inverse

A ∈ Rn×n is invertible or nonsingular if it has both a left and right inverse

equivalent conditions:

I columns of A are a basis for Rn

I rows of A are a basis for Rn

I y = Ax has a unique solution x for every y ∈ Rn

I null(A) = {0}

I range(A) = Rn

19



Inverse

if a matrix A has both a left inverse and a right inverse, then they are equal

BA = I and AC = I =⇒ B = C

I hence if A is invertible then the inverse is unique

I AA−1 = A−1A = I

20



Interpretations of inverse

suppose A ∈ Rn×n has inverse B = A−1

I mapping associated with B undoes mapping associated with A (applied either
before or after!)

I x = By is a perfect (pre- or post-) equalizer for the channel y = Ax

I x = By is unique solution of Ax = y
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Dual basis interpretation

I let ai be columns of A, and b̃Ti be rows of B = A−1

I from y = x1a1 + · · ·+ xnan and xi = b̃Ti y, we get

y =
n∑

i=1

(b̃Ti y)ai

thus, inner product with rows of inverse matrix gives the coefficients in the
expansion of a vector in the columns of the matrix

I {b̃1, . . . , b̃n} and {a1, . . . , an} are called dual bases
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Change of coordinates

I standard basis vectors in Rn: (e1, e2, . . . , en) where ei =



0
...
1
...
0

(1 in ith component)

I obviously we have
x = x1e1 + x2e2 + · · ·+ xnen

xi are called the coordinates of x (in the standard basis)

I if (t1, t2, . . . , tn) is another basis for Rn, we have

x = x̃1t1 + x̃2t2 + · · ·+ x̃ntn

where x̃i are the coordinates of x in the basis (t1, t2, . . . , tn)

I then x = T x̃ and x̃ = T−1x
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Similarity transformation

consider linear transformation y = Ax, A ∈ Rn×n

express y and x in terms of t1, t2 . . . , tn, so x = T x̃ and y = T ỹ, then

ỹ = (T−1AT )x̃

I A −→ T−1AT is called similarity transformation

I similarity transformation by T expresses linear transformation y = Ax in
coordinates t1, t2, . . . , tn
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